1
|
Betto A, Palumbo F, Riommi D, Vannozzi A, Barcaccia G. Harnessing Genomics for Breeding Lantana camara L.: Genotyping and Ploidy Testing of Clonal Lines Through ddRADseq Applications. Int J Mol Sci 2025; 26:4898. [PMID: 40430036 PMCID: PMC12112523 DOI: 10.3390/ijms26104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Lantana camara L. is sold worldwide for ornamental purposes, although it is also characterized by high invasiveness potential. Genetic and molecular data available for L. camara are still poor, and breeding is performed through conventional methods. This study focused on a molecular genotyping analysis through the ddRADseq method on an experimental collection of lantana clonal lines to evaluate the potential of molecular techniques in performing marker-assisted breeding, in favour of variety registration and in guaranteeing plant variety protection for the species. Although high genetic uniformity was observed in the population, a unique molecular profile was assigned to every line, indicating the effectiveness of the approach used. Interestingly, low degrees of heterozygosity were observed. In addition, the possibility of inferring ploidy levels through SNP profiles was assessed since it would avoid the necessity of previous biological knowledge and the use of fresh materials. Ploidy analysis is of high interest for lantana breeding to obtain less invasive triploids. Flow cytometry and chromosome counting were used for inference assessment. An nQuack framework provided correct results for the majority of the clonal lines, confirming its effectiveness. These findings encourage the adoption of molecular systems to help breed minor species such as L. camara.
Collapse
Affiliation(s)
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (A.B.); (D.R.); (A.V.); (G.B.)
| | | | | | | |
Collapse
|
2
|
Guo L, Wang X, Li H, Zhou M, Liu L, Wang R, Li P. Using RAD-seq to identify and differentiate the medicinal herb Scrophularia ningpoensis and its adulterants. BMC Genomics 2025; 26:109. [PMID: 39905289 PMCID: PMC11796183 DOI: 10.1186/s12864-025-11304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Scrophulariae Radix, the dried root of Scrophularia ningpoensis Hemsl., belongs to the Scrophulariaceae family and is known for its diverse pharmacological effects, such as antihypertensive, anti-inflammatory, and antitumor properties. It is common that the Scrophulariae Radix is often contaminated by various adulterants like S. buergeriana, S. kakudensis, and S. yoshimurae in its medicinal usage. However, traditional methods for identifying Chinese medicinal materials have been found to be insufficient in accurately distinguishing S. ningpoensis from the three adulterant species. RESULTS In this study, RAD-seq technology was employed to sequence 27 individuals from the four species, yielding 55,250 high-quality SNP sites. Genetic differentiation analysis using these sites revealed significant genetic divergence between S. ningpoensis and the three adulterants. Through assessment genetic structure, principal component, and phylogenetic analysis, these four species were effectively distinguished with a high degree of confidence. The phylogenetic results indicated that S. ningpoensis is more closely related to S. yoshimurae, while S. buergeriana shows a closer relationship with S. kakudensis, providing new reference information for understanding interspecific relationships among the four Scrophularia species. CONCLUSIONS This study successfully identified S. ningpoensis and the three adulterants, enriched the genomic information of Scrophularia species, and contributed to a more profound understanding of the evolutionary dynamics within this genus. Furthermore, it offers novel insights and methodologies for the identification of medicinal plants.
Collapse
Affiliation(s)
- Lei Guo
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xia Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hong Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengli Zhou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Liqin Liu
- TCM Dispensary, Hangzhou Red Cross Hospital, Hangzhou, 310020, China
| | - Ruihong Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Bioaffiliationersity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Liu JX, Guo C, Ma PF, Zhou MY, Luo YH, Zhu GF, Xu ZC, Milne RI, Vorontsova MS, Li DZ. The origin and morphological character evolution of the paleotropical woody bamboos. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2242-2261. [PMID: 39166548 DOI: 10.1111/jipb.13751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
The woody bamboos (Bambusoideae) exhibit distinctive biological traits within Poaceae, such as highly lignified culms, rapid shoot growth, monocarpic mass flowering and nutlike or fleshy caryopses. Much of the remarkable morphological diversity across the subfamily exists within a single hexaploid clade, the paleotropical woody bamboos (PWB), making it ideal to investigate the factors underlying morphological evolution in woody bamboos. However, the origin and biogeographical history of PWB remain elusive, as does the effect of environmental factors on the evolution of their morphological characters. We generated a robust and time-calibrated phylogeny of PWB using single nucleotide polymorphisms retrieved from optimized double digest restriction site associated DNA sequencing, and explored the evolutionary trends of habit, inflorescence, and caryopsis type in relation to environmental factors including climate, soil, and topography. We inferred that the PWB started to diversify across the Oligocene-Miocene boundary and formed four major clades, that is, Melocanninae, Racemobambosinae s.l. (comprising Dinochloinae, Greslanlinae, Racemobambosinae s.str. and Temburongiinae), Hickeliinae and Bambusinae s.l. (comprising Bambusinae s.str. plus Holttumochloinae). The ancestor of PWB was reconstructed as having erect habit, indeterminate inflorescence and basic caryopsis. The characters including climbing/scrambling habit, determinate inflorescence, and nucoid/bacoid caryopsis have since undergone multiple changes and reversals during the diversification of PWB. The evolution of all three traits was correlated with, and hence likely influenced by, aspects of climate, topography, and soil, with climate factors most strongly correlated with morphological traits, and soil factors least so. However, topography had more influence than climate or soil on the evolution of erect habit, whereas both factors had greater effect on the evolution of bacoid caryopsis than did soil. Our results provide novel insights into morphological diversity and adaptive evolution in bamboos for future ecological and evolutionary research.
Collapse
Affiliation(s)
- Jing-Xia Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cen Guo
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya-Huang Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guang-Fu Zhu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zu-Chang Xu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | | | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
4
|
Probowati W, Koga S, Harada K, Nagano Y, Nagano AJ, Ishimaru K, Ohshima K, Fukuda S. RAD-Seq analysis of wild Japanese garlic (Allium macrostemon Bunge) growing in Japan revealed that this neglected crop was previously actively utilized. Sci Rep 2023; 13:16354. [PMID: 37773322 PMCID: PMC10541398 DOI: 10.1038/s41598-023-43537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Allium macrostemon Bunge, commonly referred to as "no-biru" in Japan, is a widespread wild onion species found across the country. Despite being deeply entwined in ancient Japanese culture, it remains an underutilized crop in Japan. Determining the origins of its domestic populations and understanding their genetic composition is crucial to highlighting the plant's historical significance in Japan. This study aims to bridge this knowledge gap by examining the genetic diversity of 47 A. macrostemon samples from various regions in Japan using RAD-Seq. Our analyses distinguished unique population structures, dividing the samples into three distinct groups: A, B, and C. Notably, groups A and B showed clear evidence of bulb propagation, while group C did not. Group C formed four subgroups: C1, C2, C3, and C4. Hybridization between subgroup C1 and either group A, B, or both, resulted in the emergence of subgroups C2, C3, and C4. Thus, groups A, B, and C1 are posited as the ancestral populations. Additionally, our morphological observations indicated distinct differences among these three groups. Our findings also suggest that human migration may have influenced the plant's distribution, hinting at active usage in the past that later waned, causing its current underutilized status.
Collapse
Affiliation(s)
- Wiwit Probowati
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Center for Education and Research in Agricultural Innovation, Saga University, Saga, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Shogo Koga
- Center for Education and Research in Agricultural Innovation, Saga University, Saga, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Kentaro Harada
- Center for Education and Research in Agricultural Innovation, Saga University, Saga, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Yukio Nagano
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kanji Ishimaru
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Kazusato Ohshima
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Shinji Fukuda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
- Center for Education and Research in Agricultural Innovation, Saga University, Saga, Japan.
- Faculty of Agriculture, Saga University, Saga, Japan.
| |
Collapse
|
5
|
De Luca D, Del Guacchio E, Cennamo P, Paino L, Caputo P. Genotyping-by-sequencing provides new genetic and taxonomic insights in the critical group of Centaurea tenorei. FRONTIERS IN PLANT SCIENCE 2023; 14:1130889. [PMID: 37260938 PMCID: PMC10228698 DOI: 10.3389/fpls.2023.1130889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023]
Abstract
Centaurea L. is one of the most widespread, differentiated, and critical genera of Asteraceae in the Euro-Mediterranean area, with more than 100 currently recognized species inhabiting the region. The controversial C. tenorei group, narrowly endemic to the Peninsula of Sorrento (Campania region, southern Italy), includes three weakly differentiated microspecies: C. tenorei Guss. ex Lacaita, C. montaltensis (Fiori) Peruzzi and C. lacaitae Peruzzi. However, their taxonomic distinctiveness and relationships with close or sympatric species are still unclear. In particular, the existence in several localities of individuals with intermediate morphology suggests inadequate taxonomic assessment within the group or hybridization and introgression with other species. In this study we aimed at defining population structure in this complex. With this objective, we sampled the three currently accepted species from their loci classici (i.e., the localities in which the taxa were originally described) and from other localities throughout the range, including populations of difficult identification occurring where the ranges of different taxa overlap. We employed a panel of SNPs obtained via genotyping-by-sequencing for investigations on genetic structure, admixture and ploidy inference, the latter also compared with chromosome counts. Our results showed that Centaurea tenorei s.l. is consistently tetraploid, contradicting the current taxonomy that was also based on ploidy level. Population structure analyses indicated the presence of four to seven clusters, most of which with clear evidence of admixture. Furthermore, contrarily to what previously supposed, we demonstrated a remarkable contribution of C. deusta, more that of C. cineraria in the genetic make-up of C. tenorei. However, we found a population of C. cineraria outside its ecological range, probably driven by climate change, which could be responsible in the future of further hybridization phenomena.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Emanuele Del Guacchio
- Department of Biology, University of Naples Federico II, Naples, Italy
- Botanical Garden of Naples, University of Naples Federico II, Naples, Italy
| | - Paola Cennamo
- Department of Humanities, University Suor Orsola Benincasa, Naples, Italy
| | - Luca Paino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Paolo Caputo
- Department of Biology, University of Naples Federico II, Naples, Italy
- Botanical Garden of Naples, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Scariolo F, Palumbo F, Farinati S, Barcaccia G. Pipeline to Design Inbred Lines and F1 Hybrids of Leaf Chicory (Radicchio) Using Male Sterility and Genotyping-by-Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 12:1242. [PMID: 36986929 PMCID: PMC10055022 DOI: 10.3390/plants12061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Chicory, a horticultural crop cultivated worldwide, presents many botanical varieties and local biotypes. Among these, cultivars of the Italian radicchio group of the pure species Cichorium intybus L. and its interspecific hybrids with Cichorium endivia L.-as the "Red of Chioggia" biotype-includes several phenotypes. This study uses a pipeline to address the marker-assisted breeding of F1 hybrids: it presents the genotyping-by-sequencing results of four elite inbred lines using a RADseq approach and an original molecular assay based on CAPS markers for screening mutants with nuclear male sterility in the radicchio of Chioggia. A total of 2953 SNP-carrying RADtags were identified and used to compute the actual estimates of homozygosity and overall genetic similarity and uniformity of the populations, as well as to determine their genetic distinctiveness and differentiation. Molecular data were further used to investigate the genomic distribution of the RADtags among the two Cichorium species, allowing their mapping in 1131 and 1071 coding sequences in chicory and endive, respectively. Paralleling this, an assay to screen the genotype at the male sterility locus Cims-1 was developed to discriminate wild-type and mutant alleles of the causative gene myb80-like. Moreover, a RADtag mapped close to this genomic region proved the potential application of this method for future marker-assisted selection tools. Finally, after combining the genotype information of the core collection, the best 10 individuals from each inbred line were selected to compute the observed genetic similarity as a measure of uniformity as well as the expected homozygosity and heterozygosity estimates scorable by the putative progenies derived from selfing (pollen parent) and full-sibling (seed parent) or pair-wise crossing (F1 hybrids). This predictive approach was conducted as a pilot study to understand the potential application of RADseq in the fine tuning of molecular marker-assisted breeding strategies aimed at the development of inbred lines and F1 hybrids in leaf chicory.
Collapse
|
7
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
8
|
Assessment of the Genetic Distinctiveness and Uniformity of Pre-Basic Seed Stocks of Italian Ryegrass Varieties. Genes (Basel) 2022; 13:genes13112097. [DOI: 10.3390/genes13112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Lolium multiflorum Lam., commonly known as Italian ryegrass, is a forage grass mostly valued for its high palatability and digestibility, along with its high productivity. However, Italian ryegrass has an outbreeding nature and therefore has high genetic heterogeneity within each variety. Consequently, the exclusive use of morphological descriptors in the existing varietal identification and registration process based on the Distinctness, Uniformity, and Stability (DUS) test results in an inadequately precise assessment. The primary objective of this work was to effectively test whether the uniformity observed at the phenological level within each population of Italian ryegrass was confirmed at the genetic level through an SSR marker analysis. In this research, using 12 polymorphic SSR loci, we analyzed 672 samples belonging to 14 different Italian ryegrass commercial varieties to determine the pairwise genetic similarity (GS), verified the distribution of genetic diversity within and among varieties, and investigated the population structure. Although the fourteen commercial varieties did not show elevated genetic differentiation, with only 13% of the total variation attributable to among-cultivar genetic variation, when analyzed as a core, each variety constitutes a genetic cluster on its own, resulting in distinct characteristics from the others, except for two varieties. In this way, by combining a genetic tool with the traditional morphological approach, we were able to limit biases linked to the environmental effect of field trials, assessing the real source of diversity among varieties and concretely answering the key requisites of the Plant Variety Protection (PVP) system.
Collapse
|