1
|
Lin X, Huang W, Qiu Z, Yao J, Zhao H, Khan W, Sun B, Liu S, Zheng P. Impact of Fresh Leaf Elements on Flavor Components and Aroma Quality in Ancient Dancong Tea Gardens Across Varying Altitudes. PLANTS (BASEL, SWITZERLAND) 2025; 14:1339. [PMID: 40364368 PMCID: PMC12073577 DOI: 10.3390/plants14091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
China's ancient tea gardens boast a rich resource, and their unique environmental conditions cause their quality differences. In this study, flavor components and aroma compounds of fresh leaves from four Dancong ancient tea gardens (Zimao (ZMF), Baixiang (BX), Xialiao (HSK), and Da'an (DAF)) at different altitudes were determined by HPLC and GC-MS and then correlated with elemental contents. The results showed that low-altitude tea gardens ZMF had a higher caffeine content (5.21%) and astringency index (0.82) compared to other high-altitude tea gardens, which led to a more bitter taste and astringent sensation. Fresh leaves from ZMF had a higher content of linalool (151.31 μg/kg) and geraniol (61.09 μg/kg) than those of other tea gardens. Correlation analysis showed that the bitter and astringent indexes had a strong correlation with element N content (correlation coefficient: 0.74, 0.48); volatile compounds had significant positive or negative correlations with various elemental contents, among which the correlation coefficient between element Al content and linalool content of fresh leaves was -0.83 (p < 0.001). The fresh leaves of ZMF tea gardens had a higher N content and lower Al, Si, and Hf content, which may cause more bitterness astringency and differences in volatile compounds in their teas than those of higher altitude tea gardens. The results of the study further provide guidance for the scientific management of Dancong ancient tea gardens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.L.); (W.H.); (Z.Q.); (J.Y.); (H.Z.); (W.K.); (B.S.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.L.); (W.H.); (Z.Q.); (J.Y.); (H.Z.); (W.K.); (B.S.)
| |
Collapse
|
2
|
Li W, Wang K, Wang P, Yang P, Xu S, Tong J, Zhang Y, Yang Y, Han L, Ye M, Shen S, Lei B, Liu B. Impact of glyphosate on soil bacterial communities and degradation mechanisms in large-leaf tea plantations. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136626. [PMID: 39603119 DOI: 10.1016/j.jhazmat.2024.136626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
This study investigated the impact of glyphosate on bacterial communities and their degradation mechanisms in large-leaf tea soil, through exposure microcosm and enrichment culture experiments. Soils from three tea gardens in Yunnan, China, were used: two glyphosate-free (JM and KL) for microcosm study and one long-term exposed (G2) for enrichment culture experiment. The results revealed a two-phase degradation process with half-lives of 12.7 to 268 days, while the metabolite AMPA was notably persistent. The acidic conditions and high organic content of tea soils may retard glyphosate microbial availability and degradation. Glyphosate initially stimulated bacterial growth but led to abundance declines with prolonged exposure. It tended to enhance bacterial diversity at lower doses. Network complexity increased in JM soil where strong adsorption moderated glyphosate exposure, yet decreased in KL soil where weak adsorption enabled greater microbial-glyphosate interactions. Community structure analysis revealed soil-specific responses, with decreased Proteobacteria in JM soil and Actinobacteria in KL soil, while several phyla including Proteobacteria, Acidobacteriota, Chloroflexi, Myxococcota, and Verrucomicrobiota showed increased abundance. PICRUSt2 analysis indicated enhanced biosynthesis and cell growth pathways, while carbohydrate metabolism, nitrogen metabolism, and xenobiotics biodegradation pathways were reduced. LEfSe analysis identified potential degrading biomarkers primarily from Proteobacteria, Acidobacteriota, Myxococcota, Chloroflexi, and Actinobacteriota, suggesting their putative role in degradation. The enriched consortium G2 efficiently degraded 400 mg/L glyphosate within 7 days, with notable increases in Afipia, Dokdonella, and Cohnella abundance. This study provides insights into bacterial interactions with glyphosate in tea soils, suggesting strategies for contamination mitigation and environmental restoration.
Collapse
Affiliation(s)
- Wenxi Li
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, Yunnan, China; Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Kaibo Wang
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Panlei Wang
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Peiwen Yang
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Shengtao Xu
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Jiayin Tong
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Yanmei Zhang
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Yuhan Yang
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Lijun Han
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Min Ye
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, Yunnan, China.
| | - Shiquan Shen
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China.
| | - Baokun Lei
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Benying Liu
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| |
Collapse
|
3
|
Fan L, Chen S, Guo Z, Hu R, Yao L. Soil pH enhancement and alterations in nutrient and Bacterial Community profiles following Pleioblastus amarus expansion in tea plantations. BMC PLANT BIOLOGY 2024; 24:837. [PMID: 39242495 PMCID: PMC11378374 DOI: 10.1186/s12870-024-05374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The expansion of bamboo forests increases environmental heterogeneity in tea plantation ecosystems, affecting soil properties and microbial communities. Understanding these impacts is essential for developing sustainable bamboo management and maintaining ecological balance in tea plantations. METHODS We studied the effect of the continuous expansion of Pleioblastus amarus into tea plantations, by establishing five plot types: pure P. amarus forest area (BF), P. amarus forest interface area (BA), mixed forest interface area (MA), mixed forest center area (TB), and pure tea plantation area (TF). We conducted a comprehensive analysis of soil chemical properties and utilized Illumina sequencing to profile microbial community composition and diversity, emphasizing their responses to bamboo expansion. RESULTS (1) Bamboo expansion significantly raised soil pH and enhanced levels of organic matter, nitrogen, and phosphorus, particularly noticeable in BA and MA sites. In the TB sites, improvements in soil nutrients were statistically indistinguishable from those in pure tea plantation areas. (2) Continuous bamboo expansion led to significant changes in soil bacterial diversity, especially noticeable between BA and TF sites, while fungal diversity was unaffected. (3) Bamboo expansion substantially altered the composition of less abundant bacterial and fungal communities, which proved more sensitive to changes in soil chemical properties. CONCLUSION The expansion of bamboo forests causes significant alterations in soil pH and nutrient characteristics, impacting the diversity and composition of soil bacteria in tea plantations. However, as expansion progresses, its long-term beneficial impact on soil quality in tea plantations appears limited.
Collapse
Affiliation(s)
- Lili Fan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Shuanglin Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ziwu Guo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ruicai Hu
- Longyou County Forestry Technology Extension Station, Quzhou, 324400, China
| | - Liangjin Yao
- Zhejiang Academy of Forestry, Hangzhou, 310023, China.
| |
Collapse
|
4
|
Long P, Su S, Han Z, Granato D, Hu W, Ke J, Zhang L. The effects of tea plant age on the color, taste, and chemical characteristics of Yunnan Congou black tea by multi-spectral omics insight. Food Chem X 2024; 21:101190. [PMID: 38357378 PMCID: PMC10864201 DOI: 10.1016/j.fochx.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
The present study comprehensively used integrated multi-spectral omics combined with sensory evaluation analysis to investigate the quality of three types of Yunnan Congou black teas from different tree ages (decades, DB; hundreds, HB; a thousand years, TB). TB infusion presented the highest scores of sweetness and umami, higher brightness, and yellow hue. Eighty-four marker metabolites were identified, including Amadori rearrangement products, catechin oxidation products, flavonoid glycosides, and organic acids, which are simultaneously related to tea infusions' color and taste. Moreover, the content of some characteristic flavonoid glycosides and organic acids was determined. Our finding implied trans-4-O-p-coumaroylquinic acid and quercetin 3-O-rutinoside contributed to bitterness and astringency, while dehydro theanine-glucose Amadori product and xylopyranosyl-glucopyranose resulted in umami and sweetness. These results provided quantitative and qualitative information for deciphering differences among black teas with different tea plant ages, conducing to the further utilization of ancient tea plants in Southwest China.
Collapse
Affiliation(s)
- Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengxiao Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Daniel Granato
- Bioactivity and Applications Laboratory, Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wei Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jiaping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Gao J, Tang J, Zhang S, Zhang C. Intercropped Flemingia macrophylla successfully traps tea aphid (Toxoptera aurantia) and alters associated networks to enhance tea quality. PEST MANAGEMENT SCIENCE 2024; 80:1474-1483. [PMID: 37947785 DOI: 10.1002/ps.7879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The tea aphid, Toxoptera aurantia is a destructive pest causing severe damage to the quality and yield of tea, Camellia sinensis. Relying on chemical insecticides to control this pest causes adverse ecological and economic consequences. Trap plants are an eco-friendly alternative strategy to mitigate pest damage on focal plants by attracting target insects and natural enemies. Yet, the utilization of trap plants in tea plantations remains limited. Besides, the effects of the trap plant on the tea aphid-ant-predator community and tea quality and yield are unknown. RESULTS Intercropped Flemingia macrophylla successfully trapped tea aphids and enhanced the complexity of aphid-ant-predator networks over three consecutive years compared to monoculture management. Moreover, F. macrophylla significantly increased the abundance of natural predators by 3100% and species richness by 57%. The increasing predators suppressed the aphid population and hampered its spillover to neighbouring tea plants. Consequently, F. macrophylla improved tea quality by an 8% increase in soluble sugar and a 26% reduction in polyphenols to amino acids ratio. CONCLUSION The study illustrated that F. macrophylla is a suitable trap crop for tea aphid control in tea plantations. This legume increases species nodes and strengthens multiple connections in aphid-associated communities through its cascade effects, improving tea quality. These findings shed light on the potential application of trap plants in tea plantations as an efficient integrated pest management (IPM) strategy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, China
| | - Jianwei Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, China
| | - Sen Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, China
- University of Chinese Academy of Science, Beijing, China
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, China
- University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
6
|
Li D, Qu C, Cheng X, Chen Y, Yan H, Wu Q. Effect of different fertilization strategies on the yield, quality of Euryales Semen and soil microbial community. Front Microbiol 2023; 14:1310366. [PMID: 38098669 PMCID: PMC10719947 DOI: 10.3389/fmicb.2023.1310366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Euryales Semen, a medicinal herb widely utilized in Asia, faces a critical constraint in its production, primarily attributed to fertilizer utilization. Understanding the impact of different fertilization schemes on Euryales Semen (ES) planting and exploring the supporting mechanism are crucial for achieving high yield and sustainable development of the ES planting industry. Methods In this study, a field plot experiment was conducted to evaluate the effects of four different fertilization treatments on the yield and quality of ES using morphological characteristics and metabolomic changes. These treatments included a control group and three groups with different organic fertilizer to chemical fertilizer ratios (3:7, 5:5, and 7:3). The results of this study revealed the mechanisms underlying the effect of the different treatments on the yield and quality of Euryales Semen. These insights were achieved through analyses of soil physicochemical properties, soil enzyme activity, and soil microbial structure. Results We found that the quality and yield of ES were the best at a ratio of organic fertilizer to chemical fertilizer of 7:3. The optimality of this treatment was reflected in the yield, soil available nitrogen, soil available phosphorus, and soil enzyme activity of ES. This ratio also increased soil microbial diversity, resulting in an increase and decrease in Proteobacteria and Firmicutes abundances, respectively. In addition, linear discriminant analysis showed that Chloroflexi, Gammaproteobacteria, and Hypocreales-incertae-sedis were significantly enriched in the ratio of organic fertilizer to chemical fertilizer of 7:3. Variance partitioning analysis showed that the soil properties, enzyme activities, and their interactions cumulatively can explain 90.80% of the differences in Euryales Semen yield and metabolome. In general, blending organic and chemical fertilizers at a 7:3 ratio can enhance soil fertility, boost Euryales Semen yield and quality, and bring forth conditions that are agriculturally beneficial to microbial (bacteria and fungi) dynamics. Discussion This study initially revealed the scientific connotation of the effects of different fertilization patterns on the planting of Euryales Semen and laid a theoretical foundation for the study of green planting patterns of Euryales Semen with high quality and yield.
Collapse
Affiliation(s)
- Dishuai Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Xuemei Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yexing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| |
Collapse
|
7
|
Wang P, Xie W, Ding L, Zhuo Y, Gao Y, Li J, Zhao L. Effects of Maize-Crop Rotation on Soil Physicochemical Properties, Enzyme Activities, Microbial Biomass and Microbial Community Structure in Southwest China. Microorganisms 2023; 11:2621. [PMID: 38004632 PMCID: PMC10672910 DOI: 10.3390/microorganisms11112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Introducing cover crops into maize rotation systems is widely practiced to increase crop productivity and achieve sustainable agricultural development, yet the potential for crop rotational diversity to contribute to environmental benefits in soils remains uncertain. Here, we investigated the effects of different crop rotation patterns on the physicochemical properties, enzyme activities, microbial biomass and microbial communities in soils from field experiments. Crop rotation patterns included (i) pure maize monoculture (CC), (ii) maize-garlic (CG), (iii) maize-rape (CR) and (iv) maize-annual ryegrass for one year (Cir1), two years (Cir2) and three years (Cir3). Our results showed that soil physicochemical properties varied in all rotation patterns, with higher total and available phosphorus concentrations in CG and CR and lower soil organic carbon and total nitrogen concentrations in the maize-ryegrass rotations compared to CC. Specifically, soil fertility was ranked as CG > Cir2 > CR > Cir3 > CC > Cir1. CG decreased enzyme activities but enhanced microbial biomass. Cir2 decreased carbon (C) and nitrogen (N) acquiring enzyme activities and soil microbial C and N concentrations, but increased phosphorus (P) acquiring enzyme activities and microbial biomass P concentrations compared to CC. Soil bacterial and fungal diversity (Shannon index) were lower in CG and Cir2 compared to CC, while the richness (Chao1 index) was lower in CG, CR, Cir1 and Cir2. Most maize rotations notably augmented the relative abundance of soil bacteria, including Chloroflexi, Gemmatimonadetes and Rokubacteria, while not necessarily decreasing the abundance of soil fungi like Basidiomycota, Mortierellomycota and Anthophyta. Redundancy analysis indicated that nitrate-N, ammonium-N and microbial biomass N concentrations had a large impact on soil bacterial communities, whereas nitrate-N and ammonium-N, available P, soil organic C and microbial biomass C concentrations had a greater effect on soil fungal communities. In conclusion, maize rotations with garlic, rape and ryegrass distinctly modify soil properties and microbial compositions. Thus, we advocate for garlic and annual ryegrass as maize cover crops and recommend a two-year rotation for perennial ryegrass in Southwest China.
Collapse
Affiliation(s)
- Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (P.W.); (Y.G.); (J.L.)
| | - Wenhui Xie
- College of Animal Science, Guizhou University, Guiyang 550025, China; (W.X.); (Y.Z.)
| | - Leilei Ding
- Guizhou Institute of Prataculture, Guiyang 550006, China;
| | - Yingping Zhuo
- College of Animal Science, Guizhou University, Guiyang 550025, China; (W.X.); (Y.Z.)
| | - Yang Gao
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (P.W.); (Y.G.); (J.L.)
| | - Junqin Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (P.W.); (Y.G.); (J.L.)
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (W.X.); (Y.Z.)
| |
Collapse
|
8
|
Li W, Zhang Q, Fan Y, Cheng Z, Lu X, Luo B, Long C. Traditional management of ancient Pu'er teagardens in Jingmai Mountains in Yunnan of China, a designated Globally Important Agricultural Heritage Systems site. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:26. [PMID: 37393284 DOI: 10.1186/s13002-023-00598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Pu'er Traditional Tea Agroecosystem is one of the projects included in the United Nations' Globally Important Agricultural Heritage Systems (GIAHS) since 2012. Against the background of having rich biodiversity and a long history of tea culture, the ancient tea trees in Pu'er have experienced from wild-transition-cultivation for thousands of years, and the local people's knowledge about the management of ancient teagardens has not been rigorously recorded. For this reason, it is important to study and record the traditional management knowledge of Pu'er ancient teagardens and the influence on the formation of tea trees and communities. This study focuses on the traditional management knowledge of ancient teagardens in Jingmai Mountains, Pu'er, and monoculture teagardens (monoculture and intensively managed planting base for tea cultivation) were used as the control, through the community structure, composition and biodiversity of ancient teagardens to respond to the influence of traditional management, and this work with a view to providing a reference for further research on the stability and sustainable development of tea agroecosystem. METHODS From 2021 to 2022, information on traditional management of ancient teagardens was obtained through semi-structured interviews with 93 local people in the Jingmai Mountains area of Pu'er. Informed consent was obtained from each participant before conducting the interview process. The communities, tea trees and biodiversity of Jingmai Mountains ancient teagardens (JMATGs) and monoculture teagardens (MTGs) were examined through field surveys, measurements and biodiversity survey methods. The Shannon-Weiner (H), Pielou (E) and Margalef (M) indices were calculated for the biodiversity of the teagardens within the unit sample, using monoculture teagardens as a control. RESULTS The tea tree morphology, community structure and composition of Pu'er ancient teagardens are significantly different from those of monoculture teagardens, and the biodiversity is significantly higher than that of monoculture teagardens. The local people mainly manage the ancient tea trees mainly using several methods, including weeding (96.8%), pruning (48.4%) and pest control (33.3%). The pest control mainly relies on the removal of diseased branches. JMATGs annual gross output is approximately 6.5 times that of MTGs. The traditional management of ancient teagardens is through setting up forest isolation zones as protected areas, planting tea trees in the understory on the sunny side, keeping tea trees 1.5-7 m apart, as well as consciously protecting forest animals such as spiders, birds and bees, and reasonably rearing livestock in the teagardens. CONCLUSIONS This study shows that local people have rich traditional knowledge and experience in the management of ancient teagardens in Pu'er, and that this traditional management knowledge has impacted the growth of ancient tea trees, enriched the structure and composition of tea plantation communities and actively protected the biodiversity within ancient teagardens.
Collapse
Affiliation(s)
- Wanlin Li
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanxiao Fan
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiaoping Lu
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Binsheng Luo
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Lushan, 332900, Jiangxi, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas, (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
9
|
Yue C, Li W, Li C, Wang Z, Peng H, Yang P. Differential characterization of volatile components and aroma sensory properties of different types of Hehong tea (Congou black tea). FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cuinan Yue
- Jiangxi Cash Crops Research Institute Nanchang China
- Jiangxi Key Laboratory of Tea Quality and Safety Control Nanchang China
- Jiangxi Sericulture and Tea Research Institute Nanchang China
| | - Wenjin Li
- Jiangxi Cash Crops Research Institute Nanchang China
- Jiangxi Key Laboratory of Tea Quality and Safety Control Nanchang China
- Jiangxi Sericulture and Tea Research Institute Nanchang China
| | - Chen Li
- Jiangxi Cash Crops Research Institute Nanchang China
- Jiangxi Key Laboratory of Tea Quality and Safety Control Nanchang China
- Jiangxi Sericulture and Tea Research Institute Nanchang China
| | - Zhihui Wang
- Jiangxi Cash Crops Research Institute Nanchang China
- Jiangxi Key Laboratory of Tea Quality and Safety Control Nanchang China
- Jiangxi Sericulture and Tea Research Institute Nanchang China
| | - Hua Peng
- Jiangxi Cash Crops Research Institute Nanchang China
- Jiangxi Key Laboratory of Tea Quality and Safety Control Nanchang China
- Jiangxi Sericulture and Tea Research Institute Nanchang China
| | - Puxiang Yang
- Jiangxi Cash Crops Research Institute Nanchang China
- Jiangxi Key Laboratory of Tea Quality and Safety Control Nanchang China
- Jiangxi Sericulture and Tea Research Institute Nanchang China
| |
Collapse
|