1
|
Tang W, Liu X, Liang X, Liu H, Yu K, He P, McAdam S, Zhao H, Ye Q. Hydraulic vulnerability difference between branches and roots increases with environmental aridity. Oecologia 2024; 205:177-190. [PMID: 38772916 DOI: 10.1007/s00442-024-05562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
The vulnerability of plant xylem to embolism can be described as the water potential at which xylem conductivity is lost by 50% (P50). According to the traditional hypothesis of hydraulic vulnerability segmentation, the difference in vulnerability to embolism between branches and roots is positive (P50 root-branch > 0). It is not clear whether this occurs broadly across species or how segmentation might vary across aridity gradients. We compiled hydraulic and anatomical datasets from branches and roots across 104 woody species (including new measurements from 10 species) in four biomes to investigate the relationships between P50 root-branch and environmental factors associated with aridity. We found a positive P50 root-branch relationship across species, and evidence that P50 root-branch increases with aridity. Branch xylem hydraulic conductivity transitioned from more efficient (e.g., wider conduit, higher hydraulic conductivity) to safer (e.g., narrower conduit, more negative P50) in response to the increase of aridity, while root xylem hydraulic conductivity remained unchanged across aridity gradients. Our results demonstrate that the hydraulic vulnerability difference between branches and roots is more positive in species from arid regions, largely driven by modifications to branch traits.
Collapse
Affiliation(s)
- Weize Tang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaorong Liu
- Sichuan University of Arts and Science, Tashi Road 519, Dazhou, 635000, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Kailiang Yu
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Scott McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Han Zhao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China.
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Yang JY, Wang HB, Zhang DC. Response of the root anatomical structure of Carex moorcroftii to habitat drought in the Western Sichuan Plateau of China. PLANTA 2024; 259:131. [PMID: 38652171 PMCID: PMC11039561 DOI: 10.1007/s00425-024-04412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION The anatomical structures of Carex moorcroftii roots showing stronger plasticity during drought had a lower coefficient of variation in cell size in the same habitats, while those showing weaker plasticity had a higher coefficient of variation. The complementary relationship between these factors comprises the adaptation mechanism of the C. moorcroftii root to drought. To explore the effects of habitat drought on root anatomy of hygrophytic plants, this study focused on roots of C. moorcroftii. Five sample plots were set up along a soil moisture gradient in the Western Sichuan Plateau to collect experimental materials. Paraffin sectioning was used to obtain root anatomy, and one-way ANOVA, correlation analysis, linear regression analysis, and RDA ranking were applied to analyze the relationship between root anatomy and soil water content. The results showed that the root transverse section area, thickness of epidermal cells, exodermis and Casparian strips, and area of aerenchyma were significantly and positively correlated with soil moisture content (P < 0.01). The diameter of the vascular cylinder and the number and total area of vessels were significantly and negatively correlated with the soil moisture content (P < 0.01). The plasticity of the anatomical structures was strong for the diameter and area of the vascular cylinder and thickness of the Casparian strip and epidermis, while it was weak for vessel diameter and area. In addition, there was an asymmetrical relationship between the functional adaptation of root anatomical structure in different soil moisture and the variation degree of root anatomical structure in the same soil moisture. Therefore, the roots of C. moorcroftii can shorten the water transport distance from the epidermis to the vascular cylinder, increase the area of the vascular cylinder and the number of vessels, and establish a complementary relationship between the functional adaptation of root anatomical structure in different habitats and the variation degree of root anatomical structure in the same habitat to adapt to habitat drought. This study provides a scientific basis for understanding the response of plateau wetland plants to habitat changes and their ecological adaptation strategies. More scientific experimental methods should be adopted to further study the mutual coordination mechanisms of different anatomical structures during root adaptation to habitat drought for hygrophytic plants.
Collapse
Affiliation(s)
- Jia-Ying Yang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China
| | - Hong-Bin Wang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China
| | - Da-Cai Zhang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Southwest China, Southwest Forestry University, Bailongsi 300#, Kunming, Yunnan, 650224, China.
| |
Collapse
|
3
|
Zhang G, Mao Z, Maillard P, Brancheriau L, Gérard B, Engel J, Fortunel C, Heuret P, Maeght JL, Martínez-Vilalta J, Stokes A. Functional trade-offs are driven by coordinated changes among cell types in the wood of angiosperm trees from different climates. THE NEW PHYTOLOGIST 2023; 240:1162-1176. [PMID: 37485789 DOI: 10.1111/nph.19132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
Wood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates. Regardless of climate, clear trade-offs occurred among cellular fractions, but did not translate into specific functional trade-offs. Wood density was negatively related to hydraulic conductivity (Kth ) in stems and roots, but was not linked to nonstructural carbohydrates (NSC), implying a functional trade-off between mechanical integrity and transport but not with storage. NSC storage capacity was positively associated with Kth in stems and negatively in roots, reflecting a potential role for NSC in the maintenance of hydraulic integrity in stems but not in roots. Results of phylogenetic analyses suggest that evolutionary histories cannot explain covariations among traits. Trade-offs occur among cellular fractions, without necessarily modifying trade-offs in function. However, functional trade-offs are driven by coordinated changes among xylem cell types depending on the dominant role of each cell type in stems and roots.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Zhun Mao
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Loïc Brancheriau
- CIRAD, UPR BioWooEB, Montpellier, 34000, France
- BioWooEB, University of Montpellier, CIRAD, Montpellier, 34000, France
| | - Bastien Gérard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Julien Engel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Claire Fortunel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Patrick Heuret
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jean-Luc Maeght
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- Universitat Autònoma Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Alexia Stokes
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| |
Collapse
|
4
|
Kühnhammer K, van Haren J, Kübert A, Bailey K, Dubbert M, Hu J, Ladd SN, Meredith LK, Werner C, Beyer M. Deep roots mitigate drought impacts on tropical trees despite limited quantitative contribution to transpiration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164763. [PMID: 37308023 PMCID: PMC10331952 DOI: 10.1016/j.scitotenv.2023.164763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Deep rooting is considered a central drought-mitigation trait with vast impact on ecosystem water cycling. Despite its importance, little is known about the overall quantitative water use via deep roots and dynamic shifts of water uptake depths with changing ambient conditions. Knowledge is especially sparse for tropical trees. Therefore, we conducted a drought, deep soil water labeling and re-wetting experiment at Biosphere 2 Tropical Rainforest. We used in situ methods to determine water stable isotope values in soil and tree water in high temporal resolution. Complemented by soil and stem water content and sap flow measurements we determined percentages and quantities of deep-water in total root water uptake dynamics of different tree species. All canopy trees had access to deep-water (max. uptake depth 3.3 m), with contributions to transpiration ranging between 21 % and 90 % during drought, when surface soil water availability was limited. Our results suggest that deep soil is an essential water source for tropical trees that delays potentially detrimental drops in plant water potentials and stem water content when surface soil water is limited and could hence mitigate the impacts of increasing drought occurrence and intensity as a consequence of climate change. Quantitatively, however, the amount of deep-water uptake was low due to the trees' reduction of sap flow during drought. Total water uptake largely followed surface soil water availability and trees switched back their uptake depth dynamically, from deep to shallow soils, following rainfall. Total transpiration fluxes were hence largely driven by precipitation input.
Collapse
Affiliation(s)
- Kathrin Kühnhammer
- IGOE, Environmental Geochemistry, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany; Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany.
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ 85623, USA; Honors College, University of Arizona, 1101 E. Mabel St., Tucson, AZ 85719, USA
| | - Angelika Kübert
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Institute for Atmospheric and Earth System Research, University of Helsinki, P.O. Box 68, Pietari Kalmin katu 5, 00014 Helsinki, Finland
| | - Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - Maren Dubbert
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Isotope Biogeochemistry and Gasfluxes, ZALF, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - S Nemiah Ladd
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany; Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056 Basel, Switzerland
| | - Laura K Meredith
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ 85623, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA
| | - Christiane Werner
- Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - Matthias Beyer
- IGOE, Environmental Geochemistry, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| |
Collapse
|