1
|
Chen H, Liu X, Mao J, Qi X, Chen S, Feng J, Jin Y, Ahmad MZ, Sun M, Deng Y. Comparative transcriptomic and physiological analyses reveal the key role of abscisic acid in hydrangea macrophylla responding to Corynespora cassiicola. BMC PLANT BIOLOGY 2024; 24:1066. [PMID: 39533189 PMCID: PMC11555933 DOI: 10.1186/s12870-024-05770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Bigleaf hydrangea (Hydrangea macrophylla) is a widely cultivated ornamental plant species. Leaf spot disease, caused by Corynespora cassiicola, poses a significant threat to the ornamental quality and economic value of hydrangeas. However, the disease resistance breeding of hydrangea is limited due to the lacking of resistant varieties and genes. RESULTS This study evaluated ten hydrangea varieties for their resistance to leaf spot disease. Among them, 'White Angel' and 'Ocean Heart' were screened out as representative varieties for resistance and susceptibility, respectively, on the basis of evaluation. Physiological and biochemical indices, phytohormones, and transcriptomic changes were measured in the leaves of both varieties at 0 and 24 h post inoculation with C. cassiicola. The results showed that C. cassiicola infection significantly increased abscisic acid (ABA) contents in both varieties; however, the increase was significantly higher in the susceptible variety 'Ocean Heart' compared to the resistant variety 'White Angel' (p < 0.05). Moreover, exogenous ABA (100 µM) decreased the leaves' resistance to C. cassiicola of both varieties, underscoring its key role in reduced disease resistance. Transcriptome profiling revealed 17,087 differentially expressed genes (DEGs) responding to C. cassiicola between the two varieties. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated significant enrichment of DEGs in "Plant hormone signal transduction", particularly related to ABA signaling (HmPP2C and HmABFs). In addition, the expression of ABA biosynthesis genes (HmZEP3, HmABA2, and HmAAO3) was upregulated in both varieties. Meanwhile, the ABA catabolism gene (HmCYP707A4) exhibited significantly upregulated expression in the resistant variety 'White Angel' and downregulated expression in the susceptible variety 'Ocean Heart'. Intriguingly, the expression of HmCYP707A4 was 15-fold higher in 'White Angel' than in 'Ocean Heart'. CONCLUSION In summary, these findings highlight the crucial role of ABA in the resistance of bigleaf hydrangea to leaf spot disease and provide valuable genetic resources for breeding programs to enhance the disease resistance in hydrangeas.
Collapse
Affiliation(s)
- Huijie Chen
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xintong Liu
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jundan Mao
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- School of Architecture and Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Xiangyu Qi
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shuangshuang Chen
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Feng
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yuyan Jin
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Muhammad Zulfiqar Ahmad
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Yanming Deng
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Meng C, Peng X, Zhang Y, Pedro GC, Li Y, Zhang Y, Duan Y, Sun X. Transcriptomic profiling of Poa pratensis L. under treatment of various phytohormones. Sci Data 2024; 11:297. [PMID: 38491031 PMCID: PMC10942976 DOI: 10.1038/s41597-024-03119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Poa pratensis L. (Poaceae) is a valuable grass across the north hemisphere, inhabiting diverse environments with wide altitudinal span, where ubiquitous various kinds of stresses. Phytohormones would be helpful to improve tolerance to abiotic and biotic stresses, but the responses of transcriptome regulation of P. pratensis to exogenous phytohormones application remain unclear. In this study, we explored the alteration of plant physiological responses by the application of phytohormones. Aiming to achieve this knowledge, we got full-length transcriptome data 42.76 Gb, of which 74.9% of transcripts were completed. Then used 27 samples representing four treatments conducted at two time points (1 h and 6 h after application) to generate RNA-seq data. 371 and 907 common DEGs were identified in response to four phytohormones application, respectively, these DEGs were involved in "plant hormone signal transduction", "carbon metabolism" and "plant-pathogen interaction". Finally, P. pratensis basic research can gain valuable information regarding the responses to exogenous application of phytohormones in physiological indicators and transcriptional regulations in order to facilitate the development of new cultivars.
Collapse
Affiliation(s)
- Chen Meng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education and School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Peng
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yumeng Li
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanni Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education and School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Yuanwen Duan
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xudong Sun
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Jia M, Ni Y, Zhao H, Liu X, Yan W, Zhao X, Wang J, He B, Liu H. Full-length transcriptome and RNA-Seq analyses reveal the resistance mechanism of sesame in response to Corynespora cassiicola. BMC PLANT BIOLOGY 2024; 24:64. [PMID: 38262910 PMCID: PMC10804834 DOI: 10.1186/s12870-024-04728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. RESULTS The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. CONCLUSIONS This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
Collapse
Affiliation(s)
- Min Jia
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Hui Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Wenqing Yan
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xinbei Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Jing Wang
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Bipo He
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Hongyan Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
4
|
Xiaoyang S, Wenqi D, Yiwei J, Yanchao Z, Can Z, Xinru L, Jian C, Jinmin F. Morphology, photosynthetic and molecular mechanisms associated with powdery mildew resistance in Kentucky bluegrass. PHYSIOLOGIA PLANTARUM 2024; 176:e14186. [PMID: 38351885 DOI: 10.1111/ppl.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Kentucky bluegrass (Poa pratensis L.), one of the most widely used cool-season turfgrasses around the world, is sensitive to powdery mildew (PM; Blumeria graminis). The PM strain identification and regulation mechanisms of Kentucky bluegrass in response to pathogens still remain unclear. Through morphological and molecular analyses, we identified that the pathogen in Kentucky bluegrass was B. graminis f. sp. poae. The infection of B. graminis led to a reduction of the sclerenchyma area, expansion of vesicular cells and movement of chloroplasts. The infected leaves had significantly lower values in net photosynthesis, stomatal conductance and transpiration rate, maximal quantum yield of PSII photochemistry, photochemical quenching and non-regulated energy dissipation compared to mock-inoculated leaves. Expressions of light-harvesting antenna protein genes LHCA and LHCB and photosynthetic electron transport genes petE and petH decreased significantly in infected leaves. Furthermore, upregulations of genes involved in plant-pathogen interaction, such as HSP90, RBOH, and RPM and downregulations of EDS, RPS and WRKY were observed in infected leaves. The findings may help design a feasible approach to effectively control the PM disease in Kentucky bluegrass and other related perennial grass species.
Collapse
Affiliation(s)
- Sun Xiaoyang
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| | - Ding Wenqi
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Jiang Yiwei
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Zhu Yanchao
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| | - Zhu Can
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| | - Li Xinru
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| | - Cui Jian
- School of Architecture and Civil Engineering, University of Adelaide, Adelaide, South Australia, Australia
| | - Fu Jinmin
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| |
Collapse
|
5
|
Zhang J, Wang S, Wang H, He P, Chang Y, Zheng W, Tang X, Li L, Wang C, He X. Metabolome and Transcriptome Profiling Reveals the Function of MdSYP121 in the Apple Response to Botryosphaeria dothidea. Int J Mol Sci 2023; 24:16242. [PMID: 38003432 PMCID: PMC10671699 DOI: 10.3390/ijms242216242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The vesicular transport system is important for substance transport in plants. In recent years, the regulatory relationship between the vesicular transport system and plant disease resistance has received widespread attention; however, the underlying mechanism remains unclear. MdSYP121 is a key protein in the vesicular transport system. The overexpression of MdSYP121 decreased the B. dothidea resistance of apple, while silencing MdSYP121 resulted in the opposite phenotype. A metabolome and transcriptome dataset analysis showed that MdSYP121 regulated apple disease resistance by significantly affecting sugar metabolism. HPLC results showed that the levels of many soluble sugars were significantly higher in the MdSYP121-OE calli. Furthermore, the expression levels of genes related to sugar transport were significantly higher in the MdSYP121-OE calli after B. dothidea inoculation. In addition, the relationships between the MdSYP121 expression level, the soluble sugar content, and apple resistance to B. dothidea were verified in an F1 population derived from a cross between 'Golden Delicious' and 'Fuji Nagafu No. 2'. In conclusion, these results suggested that MdSYP121 negatively regulated apple resistance to B. dothidea by influencing the soluble sugar content. These technologies and methods allow us to investigate the molecular mechanism of the vesicular transport system regulating apple resistance to B. dothidea.
Collapse
Affiliation(s)
- Jiahu Zhang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Sen Wang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Haibo Wang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Ping He
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Yuansheng Chang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Wenyan Zheng
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Xiao Tang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Linguang Li
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Xiaowen He
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| |
Collapse
|