1
|
Yang HL, Park SA, Lee HY, Lee H, Ryu HG. Feasibility of estimating tidal volume from electrocardiograph-derived respiration signal and respiration waveform. J Crit Care 2025; 85:154920. [PMID: 39316976 DOI: 10.1016/j.jcrc.2024.154920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE Estimating tidal volume (VT) from electrocardiography (ECG) can be quite useful during deep sedation or spinal anesthesia since it eliminates the need for additional monitoring of ventilation. This study aims to validate and compare VT estimation methodologies based on ECG-derived respiration (EDR) using real-world clinical data. MATERIALS AND METHODS We analyzed data from 90 critically ill patients for general analysis and two critically ill patients for constrained analysis. EDR signals were generated from ECG data, and VT was estimated using impedance-based respiration waveforms. Linear regression and deep learning models, both subject-independent and subject-specific, were evaluated using mean absolute error and Pearson correlation. RESULTS There was a strong short-term correlation between VT and the respiration waveform (r = 0.78 and 0.96), which weakened over longer periods (r = 0.23 and - 0.16). VT prediction models performed poorly in the general population (R2 = 0.17) but showed satisfactory performance in two constrained patient records using measured respiration waveforms (R2 = 0.84 to 0.94). CONCLUSION Although EDR-based VT estimation is promising, current methodologies are limited by noisy ICU ECG signals, but controlled environment data showed significant short-term correlations with measured respiration waveforms. Future studies should develop reliable EDR extraction procedures and improve predictive models to broaden clinical applications.
Collapse
Affiliation(s)
- Hyun-Lim Yang
- Office of Hospital Information, Seoul National University Hospital, Seoul, Republic of Korea; Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seong-A Park
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hong Yeul Lee
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeonhoon Lee
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ho-Geol Ryu
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Chen L, Yu K, Yang J, Han X, Liu L, Li T, Miao H. Electrical impedance tomography-guided positive end-expiratory pressure titration for perioperative oxygenation and postoperative pulmonary complications: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e40357. [PMID: 39969340 PMCID: PMC11688048 DOI: 10.1097/md.0000000000040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/15/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The electrical impedance tomography (EIT)-guided individual positive end-expiratory pressure (PEEP) approach is a noninvasive, radiation-free, and straightforward strategy. However, its validity to prevent postoperative complications remains unclear. To determine whether the EIT-guided PEEP titration in surgery has a higher oxygenation index and lower postoperative complications incidence in patients, we performed a meta-analysis to assess the efficacy. The study design is a systematic review and meta-analysis. METHODS Four databases (Cochrane, PubMed, Web of Science, and Embase) were searched from 2000 to November 2022 for this study. Randomized controlled trials of patients selected for general anesthesia were included. The main indicators of the study were oxygenation and postoperative pulmonary complications. Study quality was assessed using the Cochrane Risk and Bias Tool. RESULTS A total of 7 articles with 425 subjects were included and were eligible for analysis. Meta-analysis showed that patients had a higher oxygenation index (PaO2/FiO2) after EIT-guided individual PEEP titration compared with other modalities of PEEP titration (6 trials, 351 subjects, standardized mean check = 1.06, 95% confidence interval = 0.59-1.53). For subgroup analysis, the results were still statistically significant both in adult/elder groups and normal/obese groups. No significant advantage was found for the incidence of postoperative pulmonary complications between individual PEEP titration under EIT and other titration strategies (5 trials, 341 subjects, standardized mean check = 0.77, 95% confidence interval = 0.34-1.71). The same results were found in the subgroup analysis. CONCLUSION EIT-guided individual PEEP setting significantly improved perioperative oxygenation index compared with other modalities of PEEP ventilation strategies for patients, but no significant differences were found in the incidence of the postoperative pulmonary complications.
Collapse
Affiliation(s)
- Lifang Chen
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Kang Yu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Yang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xue Han
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Science and Technology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huihui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Savino S, Gaetano S. Functional Phenotyping: A New Role for Electrical Impedance Tomography. Am J Respir Crit Care Med 2024; 209:1291-1292. [PMID: 38457807 PMCID: PMC11146560 DOI: 10.1164/rccm.202402-0328ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Affiliation(s)
- Spadaro Savino
- Department of Translational Medicine University of Ferrara Ferrara, Italy
| | - Scaramuzzo Gaetano
- Department of Translational Medicine University of Ferrara Ferrara, Italy
| |
Collapse
|
4
|
Xiao Z, Yang L, Dai M, Lu W, Liu F, Frerichs I, Gao C, Sun X, Zhao Z. Regional ventilation distribution before and after laparoscopic lung parenchymal resection. Physiol Meas 2024; 45:015004. [PMID: 38176102 DOI: 10.1088/1361-6579/ad1b3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Objective.The aim of the present study was to evaluate the influence of one-sided pulmonary nodule and tumour on ventilation distribution pre- and post- partial lung resection.Approach.A total of 40 consecutive patients scheduled for laparoscopic lung parenchymal resection were included. Ventilation distribution was measured with electrical impedance tomography (EIT) in supine and surgery lateral positions 72 h before surgery (T1) and 48 h after extubation (T2). Left lung to global ventilation ratio (Fl), the global inhomogeneity index (GI), standard deviation of regional ventilation delay (RVDSD) and pendelluft amplitude (Apendelluft) were calculated to assess the spatial and temporal ventilation distribution.Main results.After surgery (T2), ventilation at the operated chest sides generally deteriorated compared to T1 as expected. For right-side resection, the differences were significant at both supine and left lateral positions (p< 0.001). The change of RVDSDwas in general more heterogeneous. For left-side resection, RVDSDwas worse at T2 compared to T1 at left lateral position (p= 0.002). The other EIT-based parameters showed no significant differences between the two time points. No significant differences were observed between supine and lateral positions for the same time points respectively.Significance.In the present study, we found that the surgery side influenced the ventilation distribution. When the resection was performed on the right lung, the postoperative ipsilateral ventilation was reduced and the right lung ratio fell significantly. When the resection was on the left lung, the ventilation delay was significantly increased.
Collapse
Affiliation(s)
- Zhibin Xiao
- Department of Anesthesiology, the 986th Air Force Hospital, Xijing hospital, the Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Lin Yang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, People's Republic of China
| | - Meng Dai
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, People's Republic of China
| | - Wenjun Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Feng Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre of Schleswig-Holstein Campus Kiel, Germany
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Li Z, Ding C, Deng Y, Zhao Z. Bedside electrical impedance tomography (EIT) for early assessment of lung function in liver transplantation. QJM 2023; 116:1033-1034. [PMID: 37462609 DOI: 10.1093/qjmed/hcad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/12/2023] [Indexed: 12/29/2023] Open
Affiliation(s)
- Z Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - C Ding
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Y Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Z Zhao
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
6
|
Li Y, Xu W, Cui Y, Sun Y, Wang C, Wen Z, An K. Effects of driving pressure-guided ventilation by individualized positive end-expiratory pressure on oxygenation undergoing robot-assisted laparoscopic radical prostatectomy: a randomized controlled clinical trial. J Anesth 2023; 37:896-904. [PMID: 37707572 DOI: 10.1007/s00540-023-03251-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Patients with robot-assisted laparoscopic radical prostatectomy (RALP) need to be placed in Trendelenburg position, which results in cranial displacement of the diaphragm and decreases functional residual capacity and pulmonary compliance. Positive end-expiratory pressure (PEEP) can increase ventilation in the dorsal area, reduce the occurrence of atelectasis and improve oxygenation. However, due to individual differences, inappropriate PEEP will cause lung injury and even hemodynamic instability. Therefore, our study is to evaluate the efficacy of individualized PEEP in RALP. METHODS We randomly recruited 48 patients and divided them into driving pressure-guided individualized PEEP group (P group, individualized PEEP) or traditional lung-protective ventilation strategy group (C group, tidal volume 8 mL/kg combined with PEEP of 5cmH2O). The primary outcome was the PaO2/FiO2 before extubation. The secondary outcomes included individualized PEEP values in the P group, the results of arterial blood gas analysis, respiratory mechanics parameters and vital sign parameters. Other measurements included intraoperative vasoactive drug dosage, length of stay, postoperative SpO2, leukocyte count, temperature, serum inflammatory factors and soluble receptor for advanced glycation end products (sRAGE). RESULTS Individualized PEEP improved the PaO2/FiO2 before extubation (P = 0.034) and decreased driving pressure (P = 0.011). The PEEP valued in the P group was 14 [10-14] cmH2O. The lung compliance of the P group was significantly higher than that in the C group (P = 0.013). There was no significant difference in other measurements. CONCLUSIONS Individualized PEEP could improve PaO2/FiO2 in patients who underwent RALP and do not increase the dosage of intraoperative vasoactive drug and the release of inflammatory factors. TRIAL REGISTRATION www.chictr.org.cn (registration no. ChiCTR2100047271).
Collapse
Affiliation(s)
- Youpei Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, China
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenwen Xu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, China
| | - Yingpeng Cui
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, China
| | - Chao Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, China
| | - Zhishuang Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, China
| | - Ke An
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Xuan L, Wang Y, Zheng Y, Chen S, Zhu L, Zheng X, Lin S, Zhong M. Delayed lung injury on the nonsurgical side increases mortality in patients after lung cancer surgery: a retrospective cohort study. J Thorac Dis 2023; 15:5574-5584. [PMID: 37969314 PMCID: PMC10636481 DOI: 10.21037/jtd-23-822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023]
Abstract
Background The incidence of pulmonary complications following lung cancer surgery has declined recently; however, postoperative acute lung injury (PALI) is still common. The present study aimed to assess the prognosis of PALI after lung cancer surgery on different injury sides, describe its clinical characteristics and identify risk factors. Methods This was a monocenter retrospective study conducted in a university surgical intensive care unit (SICU). Patients requiring respiratory support with severe hypoxemia after lung cancer surgery were included. Patients were categorized based on the radiographic assessment of lung edema (RALE) score ratio, which calculates the severity of surgical/nonsurgical side of lung injury [RRALE; RALE score of the surgical side (RALES) divided by RALE score of nonsurgical side (RALENS)], into two groups: the nonsurgical-side lung injury group (RRALE <1) and others (RRALE ≥1). The primary outcome was 90-day mortality, and secondary outcomes included in-hospital 28-day mortality, total intensive care unit (ICU) length of stay (LOS), hospital LOS and 6-month survival. Results Sixteen patients were enrolled in this study. Nine patients were included in the RRALE <1 group and seven patients were included in the RRALE ≥1 group. At 90 days, six patients in the RRALE <1 group had died, whereas none died in the RRALE ≥1 group (P=0.01). No significant difference was observed in in-hospital 28-day all-cause mortality (P=0.48) or ICU or hospital LOS (P=0.34 and P=0.36, respectively) between the two groups. Survival at 6 months was significantly lower in the RRALE <1 group (33.33%) than in the RRALE ≥1 group (100.00%) (P=0.009). Conclusions Patients with severe lung injury on the nonsurgical side after lung cancer surgery had high 90-day mortality rates. Large prospective studies and accurate monitoring data are needed in the future to identify the risk factors and therapy for such lung injury.
Collapse
Affiliation(s)
- Lizhen Xuan
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yuxian Wang
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yijun Zheng
- Department of Anaesthesia, Critical Care and Pain Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Song Chen
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Ling Zhu
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xin Zheng
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shengyao Lin
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| |
Collapse
|
8
|
Shu B, Zhang Y, Ren Q, Zheng X, Zhang Y, Liu Q, Li S, Chen J, Chen Y, Duan G, Huang H. Optimal positive end-expiratory pressure titration of intraoperative mechanical ventilation in different operative positions of female patients under general anesthesia. Heliyon 2023; 9:e20552. [PMID: 37822628 PMCID: PMC10562915 DOI: 10.1016/j.heliyon.2023.e20552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Objective This study aimed to compare the effectiveness and safety of different titrated methods used to determine individual positive end-expiratory pressure (PEEP) for intraoperative mechanical ventilation in female patients undergoing general anesthesia in different operative positions, and provide reference ranges of optimal PEEP values based on the titration. Methods A total of 123 female patients who underwent elective open abdominal surgery under general anesthesia were included in this study. After endotracheal intubation, patients' body position was adjusted to the supine position, Trendelenburg positions at 10° and 20° respectively. PEEP was titrated from 20 cmH2O to 4 cmH2O, decreasing by 2 cmH2O every 1 min. Electrical impedance tomography (EIT), hemodynamic and respiratory mechanics parameters were continuously monitored and recorded. Optimal PEEP values and reference ranges were respectively calculated based on optimal EIT parameters, mean arterial pressure (MAP), and lung dynamic compliance (Cdyn). Results EIT-guided optimal PEEP was found to have higher values than those of the MAP-guided and Cdyn-guided methods for all three body positions (P < 0.001), and it was observed to more significantly inhibit hemodynamics (P < 0.05). The variable coefficients of EIT-guided optimal PEEP values were smaller than those of the other two methods, and this technique could provide better ventilation uniformity for dorsal/ventral lung fields and better balance for pulmonary atelectasis/collapse. The 95% reference ranges of EIT-guided optimal PEEP values were 4.6-13.8 cmH2O, 7.0-15.0 cmH2O and 8.6-17.0 cmH2O for the supine position, Trendelenburg 10°, and Trendelenburg 20° positions, respectively. Conclusion EIT-guided optimal PEEP titration was found to be a superior method for lung protective ventilation in different operative positions under general anesthesia. The calculated reference ranges of PEEP values based on the EIT-guided method can be used as a reference for intraoperative mechanical ventilation.
Collapse
Affiliation(s)
- Bin Shu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qian Ren
- Department of Anesthesiology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Xuemei Zheng
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yamei Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qi Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Shiqi Li
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Jie Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yuanjing Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
9
|
Xiao L, Yu K, Yang JJ, Liu WT, Liu L, Miao HH, Li TZ. Effect of individualized positive end-expiratory pressure based on electrical impedance tomography guidance on pulmonary ventilation distribution in patients who receive abdominal thermal perfusion chemotherapy. Front Med (Lausanne) 2023; 10:1198720. [PMID: 37731718 PMCID: PMC10507689 DOI: 10.3389/fmed.2023.1198720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Background Electrical impedance tomography (EIT) has been shown to be useful in guiding individual positive end-expiratory pressure titration for patients with mechanical ventilation. However, the appropriate positive end-expiratory pressure (PEEP) level and whether the individualized PEEP needs to be adjusted during long-term surgery (>6 h) were unknown. Meanwhile, the effect of individualized PEEP on the distribution of pulmonary ventilation in patients who receive abdominal thermoperfusion chemotherapy is unknown. The primary aim of this study was to observe the effect of EIT-guided PEEP on the distribution of pulmonary ventilation in patients undergoing cytoreductive surgery (CRS) combined with hot intraperitoneal chemotherapy (HIPEC). The secondary aim was to analyze their effect on postoperative pulmonary complications. Methods A total of 48 patients were recruited and randomly divided into two groups, with 24 patients in each group. For the control group (group A), PEEP was set at 5 cm H2O, while in the EIT group (group B), individual PEEP was titrated and adjusted every 2 h with EIT guidance. Ventilation distribution, respiratory/circulation parameters, and PPC incidence were compared between the two groups. Results The average individualized PEEP was 10.3 ± 1.5 cm H2O, 10.2 ± 1.6 cm H2O, 10.1 ± 1.8 cm H2O, and 9.7 ± 2.1 cm H2O at 5 min, 2 h, 4 h, and 6 h after tracheal intubation during CRS + HIPEC. Individualized PEEP was correlated with ventilation distribution in the regions of interest (ROI) 1 and ROI 3 at 4 h mechanical ventilation and ROI 1 at 6 h mechanical ventilation. The ventilation distribution under individualized PEEP was back-shifted for 6 h but moved to the control group's ventral side under PEEP 5 cm H2O. The respiratory and circulatory function indicators were both acceptable either under individualized PEEP or PEEP 5 cm H2O. The incidence of total PPCs was significantly lower under individualized PEEP (66.7%) than PEEP 5 cm H2O (37.5%) for patients with CRS + HIPEC. Conclusion The appropriate individualized PEEP was stable at approximately 10 cm H2O during 6 h for patients with CRS + HIPEC, along with better ventilation distribution and a lower total PPC incidence than the fixed PEEP of 5 cm H2O.Clinical trial registration: identifier ChiCTR1900023897.
Collapse
Affiliation(s)
- Li Xiao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Kang Yu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jiao-Jiao Yang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen-Tao Liu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Science and Technology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui-Hui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tian-Zuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Grieco DL, Delle Cese L, Menga LS, Rosà T, Michi T, Lombardi G, Cesarano M, Giammatteo V, Bello G, Carelli S, Cutuli SL, Sandroni C, De Pascale G, Pesenti A, Maggiore SM, Antonelli M. Physiological effects of awake prone position in acute hypoxemic respiratory failure. Crit Care 2023; 27:315. [PMID: 37592288 PMCID: PMC10433569 DOI: 10.1186/s13054-023-04600-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. METHODS Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography. RESULTS Compared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99). CONCLUSIONS Prone position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Luca S. Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Gianmarco Lombardi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Valentina Giammatteo
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Giuseppe Bello
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Simone Carelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Salvatore L. Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Claudio Sandroni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Antonio Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Salvatore M. Maggiore
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy
- University Department of Innovative Technologies in Medicine and Dentistry, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| |
Collapse
|
11
|
Nose D, Matsui T, Otsuka T, Matsuda Y, Arimura T, Yasumoto K, Sugimoto M, Miura SI. Development of Machine Learning-Based Web System for Estimating Pleural Effusion Using Multi-Frequency Bioelectrical Impedance Analyses. J Cardiovasc Dev Dis 2023; 10:291. [PMID: 37504547 PMCID: PMC10380905 DOI: 10.3390/jcdd10070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Transthoracic impedance values have not been widely used to measure extravascular pulmonary water content due to accuracy and complexity concerns. Our aim was to develop a foundational model for a novel system aiming to non-invasively estimate the intrathoracic condition of heart failure patients. METHODS We employed multi-frequency bioelectrical impedance analysis to simultaneously measure multiple frequencies, collecting electrical, physical, and hematological data from 63 hospitalized heart failure patients and 82 healthy volunteers. Measurements were taken upon admission and after treatment, and longitudinal analysis was conducted. RESULTS Using a light gradient boosting machine, and a decision tree-based machine learning method, we developed an intrathoracic estimation model based on electrical measurements and clinical findings. Out of the 286 features collected, the model utilized 16 features. Notably, the developed model demonstrated high accuracy in discriminating patients with pleural effusion, achieving an area under the receiver characteristic curves (AUC) of 0.905 (95% CI: 0.870-0.940, p < 0.0001) in the cross-validation test. The accuracy significantly outperformed the conventional frequency-based method with an AUC of 0.740 (95% CI: 0.688-0.792, and p < 0.0001). CONCLUSIONS Our findings indicate the potential of machine learning and transthoracic impedance measurements for estimating pleural effusion. By incorporating noninvasive and easily obtainable clinical and laboratory findings, this approach offers an effective means of assessing intrathoracic conditions.
Collapse
Affiliation(s)
- Daisuke Nose
- Department of Cardiology, Fukuoka University Faculty of Medicine, Fukuoka 814-0180, Japan
- Department of Cardiology, Fukuoka Heartnet Hospital, Fukuoka 819-0002, Japan
- Research Institute for Advanced Medical Development for Heart Failure, Fukuoka University, Fukuoka 814-0180, Japan
| | - Tomokazu Matsui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 690-0101, Japan
| | - Takuya Otsuka
- Technical Sales Department, Dialysis Division, Toray Medical Company Limited, Tokyo 103-0023, Japan
| | - Yuki Matsuda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 690-0101, Japan
| | - Tadaaki Arimura
- Department of Cardiology, Fukuoka University Faculty of Medicine, Fukuoka 814-0180, Japan
| | - Keiichi Yasumoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 690-0101, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0035, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University Faculty of Medicine, Fukuoka 814-0180, Japan
- Research Institute for Advanced Medical Development for Heart Failure, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
12
|
Marrazzo F, Spina S, Zadek F, Forlini C, Bassi G, Giudici R, Bellani G, Fumagalli R, Langer T. PEEP Titration Is Markedly Affected by Trunk Inclination in Mechanically Ventilated Patients with COVID-19 ARDS: A Physiologic, Cross-Over Study. J Clin Med 2023; 12:3914. [PMID: 37373608 PMCID: PMC10299565 DOI: 10.3390/jcm12123914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Changing trunk inclination affects lung function in patients with ARDS. However, its impacts on PEEP titration remain unknown. The primary aim of this study was to assess, in mechanically ventilated patients with COVID-19 ARDS, the effects of trunk inclination on PEEP titration. The secondary aim was to compare respiratory mechanics and gas exchange in the semi-recumbent (40° head-of-the-bed) and supine-flat (0°) positions following PEEP titration. METHODS Twelve patients were positioned both at 40° and 0° trunk inclination (randomized order). The PEEP associated with the best compromise between overdistension and collapse guided by Electrical Impedance Tomography (PEEPEIT) was set. After 30 min of controlled mechanical ventilation, data regarding respiratory mechanics, gas exchange, and EIT parameters were collected. The same procedure was repeated for the other trunk inclination. RESULTS PEEPEIT was lower in the semi-recumbent than in the supine-flat position (8 ± 2 vs. 13 ± 2 cmH2O, p < 0.001). A semi-recumbent position with optimized PEEP resulted in higher PaO2:FiO2 (141 ± 46 vs. 196 ± 99, p = 0.02) and a lower global inhomogeneity index (46 ± 10 vs. 53 ± 11, p = 0.008). After 30 min of observation, a loss of aeration (measured by EIT) was observed only in the supine-flat position (-153 ± 162 vs. 27 ± 203 mL, p = 0.007). CONCLUSIONS A semi-recumbent position is associated with lower PEEPEIT and results in better oxygenation, less derecruitment, and more homogenous ventilation compared to the supine-flat position.
Collapse
Affiliation(s)
- Francesco Marrazzo
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Stefano Spina
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Francesco Zadek
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (F.Z.); (G.B.)
| | - Clarissa Forlini
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Gabriele Bassi
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Riccardo Giudici
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (F.Z.); (G.B.)
- Department of Anesthesia and Intensive Care 1, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy
| | - Roberto Fumagalli
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (F.Z.); (G.B.)
| | - Thomas Langer
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (F.Z.); (G.B.)
| |
Collapse
|
13
|
Liu F, Zhang W, Zhao Z, Xu X, Jian M, Han R. Effect of driving pressure on early postoperative lung gas distribution in supratentorial craniotomy: a randomized controlled trial. BMC Anesthesiol 2023; 23:176. [PMID: 37217882 DOI: 10.1186/s12871-023-02144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Neurosurgical patients represent a high-risk population for postoperative pulmonary complications (PPCs). A lower intraoperative driving pressure (DP) is related to a reduction in postoperative pulmonary complications. We hypothesized that driving pressure-guided ventilation during supratentorial craniotomy might lead to a more homogeneous gas distribution in the lung postoperatively. METHODS This was a randomized trial conducted between June 2020 and July 2021 at Beijing Tiantan Hospital. Fifty-three patients undergoing supratentorial craniotomy were randomly divided into the titration group or control group at a ratio of 1 to 1. The control group received 5 cmH2O PEEP, and the titration group received individualized PEEP targeting the lowest DP. The primary outcome was the global inhomogeneity index (GI) immediately after extubation obtained by electrical impedance tomography (EIT). The secondary outcomes were lung ultrasonography scores (LUSs), respiratory system compliance, the ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2) and PPCs within 3 days postoperatively. RESULTS Fifty-one patients were included in the analysis. The median (IQR [range]) DP in the titration group versus the control group was 10 (9-12 [7-13]) cmH2O vs. 11 (10-12 [7-13]) cmH2O, respectively (P = 0.040). The GI tract did not differ between groups immediately after extubation (P = 0.080). The LUSS was significantly lower in the titration group than in the control group immediately after tracheal extubation (1 [0-3] vs. 3 [1-6], P = 0.045). The compliance in the titration group was higher than that in the control group at 1 h after intubation (48 [42-54] vs. 41 [37-46] ml·cmH2O-1, P = 0.011) and at the end of surgery (46 [42-51] vs. 41 [37-44] ml·cmH2O-1, P = 0.029). The PaO2/FiO2 ratio was not significantly different between groups in terms of the ventilation protocol (P = 0.117). At the 3-day follow-up, no postoperative pulmonary complications occurred in either group. CONCLUSIONS Driving pressure-guided ventilation during supratentorial craniotomy did not contribute to postoperative homogeneous aeration, but it may lead to improved respiratory compliance and lower lung ultrasonography scores. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT04421976.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, China
- Department of Anesthesiology, Beijing Fangshan Liangxiang Hospital, Beijing, China
| | - Wei Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Zhanqi Zhao
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Xin Xu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Minyu Jian
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
14
|
Hennessey E, Bittner E, White P, Kovar A, Meuchel L. Intraoperative Ventilator Management of the Critically Ill Patient. Anesthesiol Clin 2023; 41:121-140. [PMID: 36871995 PMCID: PMC9985493 DOI: 10.1016/j.anclin.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Strategies for the intraoperative ventilator management of the critically ill patient focus on parameters used for lung protective ventilation with acute respiratory distress syndrome, preventing or limiting the deleterious effects of mechanical ventilation, and optimizing anesthetic and surgical conditions to limit postoperative pulmonary complications for patients at risk. Patient conditions such as obesity, sepsis, the need for laparoscopic surgery, or one-lung ventilation may benefit from intraoperative lung protective ventilation strategies. Anesthesiologists can use risk evaluation and prediction tools, monitor advanced physiologic targets, and incorporate new innovative monitoring techniques to develop an individualized approach for patients.
Collapse
Affiliation(s)
- Erin Hennessey
- Stanford University - School of Medicine Department of Anesthesiology, Perioperative and Pain Medicine, 300 Pasteur Drive, Room H3580, Stanford, CA 94305, USA.
| | - Edward Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peggy White
- University of Florida College of Medicine, Department of Anesthesiology, 1500 SW Archer Road, PO Box 100254, Gainesville, FL 32610, USA
| | - Alan Kovar
- Oregon Health and Science University, 3161 SW Pavilion Loop, Portland, OR 97239, USA
| | - Lucas Meuchel
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
15
|
Abstract
Advanced respiratory monitoring involves several mini- or noninvasive tools, applicable at bedside, focused on assessing lung aeration and morphology, lung recruitment and overdistention, ventilation-perfusion distribution, inspiratory effort, respiratory drive, respiratory muscle contraction, and patient-ventilator asynchrony, in dealing with acute respiratory failure. Compared to a conventional approach, advanced respiratory monitoring has the potential to provide more insights into the pathologic modifications of lung aeration induced by the underlying disease, follow the response to therapies, and support clinicians in setting up a respiratory support strategy aimed at protecting the lung and respiratory muscles. Thus, in the clinical management of the acute respiratory failure, advanced respiratory monitoring could play a key role when a therapeutic strategy, relying on individualization of the treatments, is adopted.
Collapse
|
16
|
Driving pressure-guided ventilation improves homogeneity in lung gas distribution for gynecological laparoscopy: a randomized controlled trial. Sci Rep 2022; 12:21687. [PMID: 36522433 PMCID: PMC9755264 DOI: 10.1038/s41598-022-26144-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
To investigate whether driving pressure-guided ventilation could contribute to a more homogeneous distribution in the lung for gynecological laparoscopy. Chinese patients were randomized, after pneumoperitoneum, to receive either positive end expiratory pressure (PEEP) of 5 cm H2O (control group), or individualized PEEP producing the lowest driving pressure (titration group). Ventilation homogeneity is quantified as the global inhomogeneity (GI) index based on electrical impedance tomography, with a lower index implying more homogeneous ventilation. The perioperative arterial oxygenation index and respiratory system mechanics were also recorded. Blood samples were collected for lung injury biomarkers including interleukin-10, neutrophil elastase, and Clara Cell protein-16. A total of 48 patients were included for analysis. We observed a significant increase in the GI index immediately after tracheal extubation compared to preinduction in the control group (p = 0.040) but not in the titration group (p = 0.279). Furthermore, the GI index was obviously lower in the titration group than in the control group [0.390 (0.066) vs 0.460 (0.074), p = 0.0012]. The oxygenation index and respiratory compliance were significantly higher in the titration group than in the control group. No significant differences in biomarkers or hemodynamics were detected between the two groups. Driving pressure-guided PEEP led to more homogeneous ventilation, as well as improved gas exchange and respiratory compliance for patients undergoing gynecological laparoscopy.Trial Registration: ClinicalTrials.gov NCT04374162; first registration on 05/05/2020.
Collapse
|
17
|
Liu W, Ding X, He H, Long Y, Cui N. Screening for the causes of refractory hypoxemia in critically ill patients: A case report. Front Med (Lausanne) 2022; 9:1065319. [PMID: 36579151 PMCID: PMC9790913 DOI: 10.3389/fmed.2022.1065319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Hypoxemia was a very common symptom in critical patients and should be treated immediately before resulting in permanent organ failure. Rapid diagnosis of the etiology of hypoxemia could be achieved by combining the use of various bedside and radiation-free techniques such as lung ultrasound, electrical impedance tomography and echocardiography. By presenting a case of serious acute refractory hypoxemia, we proposed an efficient protocol for diagnosing and treating hypoxemia in a safe and fast way.
Collapse
|
18
|
Grieco DL, Bongiovanni F, Dell’Anna AM, Antonelli M. Why compliance and driving pressure may be inappropriate targets for PEEP setting during ARDS. Crit Care 2022; 26:234. [PMID: 35918772 PMCID: PMC9345391 DOI: 10.1186/s13054-022-04109-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
|
19
|
Yu M, Deng Y, Cha J, Jiang L, Wang M, Qiao S, Wang C. PEEP titration by EIT strategies for patients with ARDS: A systematic review and meta-analysis. Med Intensiva 2022:S2173-5727(22)00207-7. [PMID: 36243630 DOI: 10.1016/j.medine.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To determine which method of Positive End-expiratory Pressure (PEEP) titration is more useful, and to establish an evidence base for the clinical impact of Electrical Impedance Tomography (EIT) based individual PEEP setting which appears to be a promising method to optimize PEEP in Acute Respiratory Distress Syndrome (ARDS) patients. DESIGN A systematic review and meta-analysis. SETTING 4 databases (PUBMED, EMBASE, Web Of Science, and the Cochrane Library) from 1980 to December 2020 were performed. PARTICIPANTS Randomized clinical trials patients with ARDS. MAIN VARIABLES PaO2/FiO2-ratio and respiratory system compliance. INTERVENSION The quality of the studies was assessed with the Cochrane risk and bias tool. RESULTS 8 trials, including a total of 222 participants, were eligible for analysis. Meta-analysis demonstrates a significantly EIT-based individual PEEP setting for patients receiving higher PaO2/FiO2 ratio as compared to other PEEP titration strategies [5 trials, 202 patients, SMD 0.636, (95% CI 0.364-0.908)]. EIT-drived PEEP titration strategy did not significantly increase respiratory system compliance when compared to other peep titration strategies, [7 trials, 202 patients, SMD -0.085, (95% CI -0.342 to 0.172)]. CONCLUSIONS The benefits of PEEP titration with EIT on clinical outcomes of ARDS in placebo-controlled trials probably result from the visible regional ventilation of EIT. These findings offer clinicians and stakeholders a comprehensive assessment and high-quality evidence for the safety and efficacy of the EIT-based individual PEEP setting as a superior option for patients who undergo ARDS.
Collapse
Affiliation(s)
- Mengnan Yu
- Faculty of Anesthesiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Yanjun Deng
- Faculty of Anesthesiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China; Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Jun Cha
- Faculty of Anesthesiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Lingyan Jiang
- Faculty of Anesthesiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Mingdeng Wang
- Faculty of Anesthesiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China; Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Shigang Qiao
- Faculty of Anesthesiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China; Institute of Clinical Medicine Research, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Chen Wang
- Faculty of Anesthesiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China; Institute of Clinical Medicine Research, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu Province, China.
| |
Collapse
|
20
|
Hirabayashi G, Yokose Y, Oshika H, Saito M, Maruyama K, Andoh T. Effects of volume-targeted pressure-controlled inverse ratio ventilation on functional residual capacity and dead space in obese patients undergoing robot-assisted laparoscopic radical prostatectomy. BJA OPEN 2022; 3:100020. [PMID: 37588587 PMCID: PMC10430846 DOI: 10.1016/j.bjao.2022.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/08/2022] [Indexed: 08/18/2023]
Abstract
Background The effect of inverse inspiration:expiration (I:E) ratio on functional residual capacity (FRC) during pneumoperitoneum is unclear. We hypothesised that volume-targeted pressure-controlled inverse ratio ventilation (vtPC-IRV) would increase FRC by increasing the level of auto-PEEP in low respiratory compliance situations. Methods During robot-assisted laparoscopic radical prostatectomy, 20 obese patients were sequentially ventilated with four different settings for 30 min in each setting: (1) control, I:E ratio of 1:2 and baseline airway pressure (BAP) of 5 cm H2O; (2) IRV2, I:E ratio of 2:1 and BAP off; (3) IRV3, I:E ratio of 3:1 and BAP off; and (4) IRV4, I:E ratio of 4:1 and BAP off. The changes in FRC were identified and compared among these settings. Results The FRC significantly increased as the I:E ratio increased. The FRC values expressed as median (inter-quartile range) during control, IRV2, IRV3, and IRV4 were 1149 (898-1386), 1485 (1018-1717), 1602 (1209-1775), and 1757 (1337-1955) ml, respectively. Auto-PEEP increased significantly as the I:E ratio increased and correlated with FRC (rho=0.303; P=0.006). Shunt and physiological dead space were significantly lower in all IRV groups than in the control group; however, there were no significant differences among the IRV groups. Conclusions vtPC-IRV with shortened expiratory time and increased auto-PEEP effectively increases FRC during robot-assisted laparoscopic radical prostatectomy in obese patients. FRC increases progressively as the I:E ratio increases from 1:2 to 4:1; however, an I:E ratio higher than 2:1 does not further improve the dead space. Clinical trial registration UMIN000038989.
Collapse
Affiliation(s)
- Go Hirabayashi
- Department of Anaesthesiology, Mizonokuchi Hospital Teikyo University School of Medicine, Kanagawa, Japan
| | - Yuuki Yokose
- Department of Anaesthesiology, Mizonokuchi Hospital Teikyo University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Oshika
- Department of Anaesthesiology, Mizonokuchi Hospital Teikyo University School of Medicine, Kanagawa, Japan
| | - Minami Saito
- Department of Anaesthesiology, Mizonokuchi Hospital Teikyo University School of Medicine, Kanagawa, Japan
| | - Koichi Maruyama
- Department of Anaesthesiology, Mizonokuchi Hospital Teikyo University School of Medicine, Kanagawa, Japan
| | - Tomio Andoh
- Department of Anaesthesiology, Mizonokuchi Hospital Teikyo University School of Medicine, Kanagawa, Japan
| |
Collapse
|
21
|
Rauseo M, Spinelli E, Sella N, Slobod D, Spadaro S, Longhini F, Giarratano A, Gilda C, Mauri T, Navalesi P. Expert opinion document: "Electrical impedance tomography: applications from the intensive care unit and beyond". JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE (ONLINE) 2022; 2:28. [PMID: 37386674 DOI: 10.1186/s44158-022-00055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 07/01/2023]
Abstract
Mechanical ventilation is a life-saving technology, but it can also inadvertently induce lung injury and increase morbidity and mortality. Currently, there is no easy method of assessing the impact that ventilator settings have on the degree of lung inssflation. Computed tomography (CT), the gold standard for visually monitoring lung function, can provide detailed regional information of the lung. Unfortunately, it necessitates moving critically ill patients to a special diagnostic room and involves exposure to radiation. A technique introduced in the 1980s, electrical impedance tomography (EIT) can non-invasively provide similar monitoring of lung function. However, while CT provides information on the air content, EIT monitors ventilation-related changes of lung volume and changes of end expiratory lung volume (EELV). Over the past several decades, EIT has moved from the research lab to commercially available devices that are used at the bedside. Being complementary to well-established radiological techniques and conventional pulmonary monitoring, EIT can be used to continuously visualize the lung function at the bedside and to instantly assess the effects of therapeutic maneuvers on regional ventilation distribution. EIT provides a means of visualizing the regional distribution of ventilation and changes of lung volume. This ability is particularly useful when therapy changes are intended to achieve a more homogenous gas distribution in mechanically ventilated patients. Besides the unique information provided by EIT, its convenience and safety contribute to the increasing perception expressed by various authors that EIT has the potential to be used as a valuable tool for optimizing PEEP and other ventilator settings, either in the operative room and in the intensive care unit. The effects of various therapeutic interventions and applications on ventilation distribution have already been assessed with the help of EIT, and this document gives an overview of the literature that has been published in this context.
Collapse
Affiliation(s)
- Michela Rauseo
- Department of Anesthesia and Intensive Care Medicine, University of Foggia, Policlinico Riuniti di Foggia, Foggia, Italy.
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico Milan, Milano, Italy
| | - Nicolò Sella
- Instiute of Anesthesia and Intensive Care, Padua University Hospital, Padova, Italy
| | - Douglas Slobod
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico Milan, Milano, Italy
- Department of Critical Care Medicine, McGill University, Montreal, Quebec, Canada
| | - Savino Spadaro
- Anesthesia and Intensive Care Unit, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" University Hospital, Catanzaro, Italy
| | - Antonino Giarratano
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), Section of Anaesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Cinnella Gilda
- Department of Anesthesia and Intensive Care Medicine, University of Foggia, Policlinico Riuniti di Foggia, Foggia, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico Milan, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Navalesi
- Instiute of Anesthesia and Intensive Care, Padua University Hospital, Padova, Italy
- Department of Medicine - DIMED, University of Padua, Padova, Italy
| |
Collapse
|
22
|
Gao L, Zhu Y, Pan C, Yin Y, Zhao Z, Yang L, Zhang J. A randomised trial evaluating mask ventilation using electrical impedance tomography during anesthetic induction: one-handed technique versus two-handed technique. Physiol Meas 2022; 43. [PMID: 35580595 DOI: 10.1088/1361-6579/ac70a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Mask positive pressure ventilation could lead to inhomogeneity of lung ventilation, potentially inducing lung function impairments, when compared with spontaneous breathing. The inhomogeneity of lung ventilation can be monitored by chest electrical impedance tomography (EIT), which could increase our understanding of mask ventilation-derived respiratory mechanics. We hypothesized that two-handed mask holding ventilation technique had better lung ventilation reflected by respiratory mechanics when compared with one-handed mask holding technique. APPROACH Elective surgical patients with healthy lungs were randomly assigned to receive either one-handed mask holding (one-handed group) or two-handed mask holding (two-handed group) ventilation. Mask ventilation was performed by certified registered anesthesiologists, during which the patients were mechanically ventilated with pressure-controlled mode. EIT was used to assess respiratory mechanics including: ventilation distribution, global and regional respiratory system compliance (CRS), expiratory tidal volume (TVe) and minute ventilation volume. Besides, hemodynamic parameters and PaO2-FiO2-ratio were also recorded. MAIN RESULTS Eighty adult patients were included in this study. Compared with spontaneous ventilation, mask positive pressure ventilation caused inhomogeneity of lung ventilation in both one-handed group (global inhomogeneity index: 0.40±0.07 vs. 0.50±0.15; P<0.001) and two-handed group (0.40±0.08 vs. 0.50±0.13; P<0.001). There were no differences of global inhomogeneity index (P = 0.948) between the one-handed group and two-handed group. Compared with one-handed group, two-handed group was associated with higher TVe (552.6±184.2 ml vs. 672.9±156.6 ml, P=0.002) and higher global CRS (46.5±16.4 ml/cmH2O vs. 53.5±14.5 ml/cmH2O, P=0.049). No difference of PaO2-FiO2-ratio was found between two groups (P=0.743). SIGNIFICANCE The two-handed mask holding technique could not improve the inhomogeneity of lung ventilation when monitored by EIT during mask ventilation although it obtained larger expiratory tidal volumes than one-handed mask holding technique.
Collapse
Affiliation(s)
- Lingling Gao
- Fudan University Shanghai Cancer Center, 270 Dong An Road, Xuhui, Shanghai, 200032, China, Shanghai, Shanghai, 200032, CHINA
| | - Yun Zhu
- Fudan University Shanghai Cancer Center, 270 Dong An Road, Xuhui, Shanghai, 200032, China, Shanghai, Shanghai, 200032, CHINA
| | - Congxia Pan
- Fudan University Shanghai Cancer Center, 270 Dong An Road, Xuhui, Shanghai, 200032, China, Shanghai, Shanghai, 200032, CHINA
| | - Yuehao Yin
- Fudan University Shanghai Cancer Center, 270 Dong An Road, Xuhui, Shanghai, 200032, China, Shanghai, Shanghai, 200032, CHINA
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China, Xi'an, 710032, CHINA
| | - Li Yang
- Fudan University Shanghai Cancer Center, Department of Anesthesiology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Xuhui, Shanghai, 200032, China, Shanghai, 200032, CHINA
| | - Jun Zhang
- Fudan University Shanghai Cancer Center, 270 Dong An Road, Xuhui, Shanghai, 200032, China, Shanghai, Shanghai, 200032, CHINA
| |
Collapse
|
23
|
Lung Recruitability and Positive End-Expiratory Pressure Setting in ARDS Caused by COVID-19. Chest 2022; 161:869-871. [PMID: 35396041 PMCID: PMC8980520 DOI: 10.1016/j.chest.2021.12.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
|
24
|
Li Z, Qin S, Chen C, Mei S, Yao Y, Zhao Z, Li W, Deng Y, Gao Y. Emerging Trends and Hot Spots of Electrical Impedance Tomography Applications in Clinical Lung Monitoring. Front Med (Lausanne) 2022; 8:813640. [PMID: 35174185 PMCID: PMC8841839 DOI: 10.3389/fmed.2021.813640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Objective This study explores the emerging trends and hot topics concerning applications on electrical impedance tomography (EIT) in clinical lung monitoring. Methods Publications on EIT applications in clinical lung monitoring in 2001–2021 were extracted from the Web of Science Core Collection (WoSCC). The search strategy was “electrical impedance tomography” and “lung.” CiteSpace, a VOS viewer was used to study the citation characteristics, cooperation, and keyword co-occurrence. Moreover, co-cited reference clustering, structural variation analysis (SVA), and future research trends were presented. Results Six hundred and thirty-six publications were included for the final analysis. The global annual publications on clinical lung monitoring gradually increased in the last two decades. Germany contributes 32.2% of total global publications. University Medical Center Schleswig-Holstein (84 publications, cited frequency 2,205), Physiological Measurement (105 publications, cited frequency 2,056), and Inéz Frerichs (116 articles, cited frequency 3,609) were the institution, journal, and author with the largest number of article citations in the research field. “Electrical impedance tomography” (occurrences, 304), “mechanical ventilation” (occurrences, 99), and “acute respiratory distress syndrome” (occurrences, 67) were the top most three frequent keywords, “noninvasive monitoring” (Avg, pub, year: 2008.17), and “extracorporeal membrane oxygenation” (Avg, pub, year: 2019.60) were the earliest and latest keywords. The keywords “electrical impedance tomography” (strength 7.88) and co-cited reference “Frerichs I, 2017, THORAX” (strength 47.45) had the highest burst value. “Driving pressure,” “respiratory failure,” and “titration” are the three keywords still maintaining a high brush value until now. The largest and smallest cluster of the co-cited references are “obstructive lung diseases” (#0, size: 97) and “lung perfusion” (#20, size: 5). Co-cited reference “Frerichs I, 2017, THORAX” (modularity change rate: 98.49) has the highest structural variability. Categories with most and least interdisciplinary crossing are “ENGINEERING” and “CRITICAL CARE MEDICINE.” Conclusions EIT is a valuable technology for clinical lung monitoring, gradually converting from imaging techniques to the clinic. Research hot spots may continue monitoring techniques, the ventilation distribution of acute respiratory distress syndrome (ARDS), and respiratory therapy strategies. More diversified lung function monitoring studies, such as lung perfusion and interdisciplinary crossing, are potentially emerging research trends.
Collapse
Affiliation(s)
- Zhe Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaojie Qin
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Chen
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuya Mei
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yulong Yao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Wen Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wen Li
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Yuxiao Deng
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Yuan Gao
| |
Collapse
|
25
|
Song X, Yang D, Yang M, Bai Y, Qin B, Tian S, Song G, Guo X, Dong R, Men Y, Liu Z, Liu X, Wang C. Effect of Electrical Impedance Tomography-Guided Early Mobilization in Patients After Major Upper Abdominal Surgery: Protocol for a Prospective Cohort Study. Front Med (Lausanne) 2021; 8:710463. [PMID: 34957133 PMCID: PMC8695759 DOI: 10.3389/fmed.2021.710463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary complications are common in patients after upper abdominal surgery, resulting in poor clinical outcomes and increased costs of hospitalization. Enhanced Recovery After Surgery Guidelines strongly recommend early mobilization post-operatively; however, the quality of the evidence is poor, and indicators for quantifying the effectiveness of early mobilization are lacking. This study will evaluate the effectiveness of early mobilization in patients undergoing an upper abdominal surgery using electrical impedance tomography (EIT). Specifically, we will use EIT to assess and compare the lung ventilation distribution among various regions of interest (ROI) before and after mobilization in this patient population. Additionally, we will assess the temporal differences in the distribution of ventilation in various ROI during mobilization in an effort to develop personalized activity programs for this patient population. Methods: In this prospective, single-center cohort study, we aim to recruit 50 patients after upper abdominal surgery between July 1, 2021 and June 30, 2022. This study will use EIT to quantify the ventilation distribution among different ROI. On post-operative day 1, the nurses will assist the patient to sit on the chair beside the bed. Patient's heart rate, blood pressure, oxygen saturation, respiratory rate, and ROI 1-4 will be recorded before the mobilization as baseline. These data will be recorded again at 15, 30, 60, 90, and 120 min after mobilization, and the changes in vital signs and ROI 1-4 values at each time point before and after mobilization will be compared. Ethics and Dissemination: The study protocol has been approved by the Institutional Review Board of Liaocheng Cardiac Hospital (2020036). The trial is registered at chictr.org.cn with identifier ChiCTR2100042877, registered on January 31, 2021. The results of the study will be presented at relevant national and international conferences and submitted to international peer-reviewed journals. There are no plans to communicate results specifically to participants. Important protocol modifications, such as changes to eligibility criteria, outcomes, or analyses, will be communicated to all relevant parties (including investigators, Institutional Review Board, trial participants, trial registries, journals, and regulators) as needed via email or in-person communication.
Collapse
Affiliation(s)
- Xuan Song
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Daqiang Yang
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Maopeng Yang
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Yahu Bai
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Bingxin Qin
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Shoucheng Tian
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Gangbing Song
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Xiuyan Guo
- Education Department, Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Ranran Dong
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Yuanyuan Men
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Ziwei Liu
- Internal Medicine, Qingdao University, Qingdao, China
| | - Xinyan Liu
- Intensive Care Unit (ICU), Liaocheng Cardiac Hospital, Liaocheng, China.,Intensive Care Unit (ICU), Dong E Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Chunting Wang
- Intensive Care Unit (ICU), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| |
Collapse
|
26
|
Hossein F, Materazzi M, Lettieri P, Angeli P. Application of acoustic techniques to fluid-particle systems – A review. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Fogagnolo A, Montanaro F, Al-Husinat L, Turrini C, Rauseo M, Mirabella L, Ragazzi R, Ottaviani I, Cinnella G, Volta CA, Spadaro S. Management of Intraoperative Mechanical Ventilation to Prevent Postoperative Complications after General Anesthesia: A Narrative Review. J Clin Med 2021; 10:jcm10122656. [PMID: 34208699 PMCID: PMC8234365 DOI: 10.3390/jcm10122656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Mechanical ventilation (MV) is still necessary in many surgical procedures; nonetheless, intraoperative MV is not free from harmful effects. Protective ventilation strategies, which include the combination of low tidal volume and adequate positive end expiratory pressure (PEEP) levels, are usually adopted to minimize the ventilation-induced lung injury and to avoid post-operative pulmonary complications (PPCs). Even so, volutrauma and atelectrauma may co-exist at different levels of tidal volume and PEEP, and therefore, the physiological response to the MV settings should be monitored in each patient. A personalized perioperative approach is gaining relevance in the field of intraoperative MV; in particular, many efforts have been made to individualize PEEP, giving more emphasis on physiological and functional status to the whole body. In this review, we summarized the latest findings about the optimization of PEEP and intraoperative MV in different surgical settings. Starting from a physiological point of view, we described how to approach the individualized MV and monitor the effects of MV on lung function.
Collapse
Affiliation(s)
- Alberto Fogagnolo
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
- Correspondence:
| | - Federica Montanaro
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Lou’i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Cecilia Turrini
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Michela Rauseo
- Department of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy; (M.R.); (L.M.); (G.C.)
| | - Lucia Mirabella
- Department of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy; (M.R.); (L.M.); (G.C.)
| | - Riccardo Ragazzi
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Irene Ottaviani
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Gilda Cinnella
- Department of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy; (M.R.); (L.M.); (G.C.)
| | - Carlo Alberto Volta
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Savino Spadaro
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| |
Collapse
|
28
|
Spinelli E, Kircher M, Stender B, Ottaviani I, Basile MC, Marongiu I, Colussi G, Grasselli G, Pesenti A, Mauri T. Unmatched ventilation and perfusion measured by electrical impedance tomography predicts the outcome of ARDS. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:192. [PMID: 34082795 PMCID: PMC8173510 DOI: 10.1186/s13054-021-03615-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/21/2021] [Indexed: 12/30/2022]
Abstract
Background In acute respiratory distress syndrome (ARDS), non-ventilated perfused regions coexist with non-perfused ventilated regions within lungs. The number of unmatched regions might reflect ARDS severity and affect the risk of ventilation-induced lung injury. Despite pathophysiological relevance, unmatched ventilation and perfusion are not routinely assessed at the bedside. The aims of this study were to quantify unmatched ventilation and perfusion at the bedside by electrical impedance tomography (EIT) investigating their association with mortality in patients with ARDS and to explore the effects of positive end-expiratory pressure (PEEP) on unmatched ventilation and perfusion in subgroups of patients with different ARDS severity based on PaO2/FiO2 and compliance. Methods Prospective observational study in 50 patients with mild (36%), moderate (46%), and severe (18%) ARDS under clinical ventilation settings. EIT was applied to measure the regional distribution of ventilation and perfusion using central venous bolus of saline 5% during end-inspiratory pause. We defined unmatched units as the percentage of only ventilated units plus the percentage of only perfused units. Results Percentage of unmatched units was significantly higher in non-survivors compared to survivors (32[27–47]% vs. 21[17–27]%, p < 0.001). Percentage of unmatched units was an independent predictor of mortality (OR 1.22, 95% CI 1.07–1.39, p = 0.004) with an area under the ROC curve of 0.88 (95% CI 0.79–0.97, p < 0.001). The percentage of ventilation to the ventral region of the lung was higher than the percentage of ventilation to the dorsal region (32 [27–38]% vs. 18 [13–21]%, p < 0.001), while the opposite was true for perfusion (28 [22–38]% vs. 36 [32–44]%, p < 0.001). Higher percentage of only perfused units was correlated with lower dorsal ventilation (r = − 0.486, p < 0.001) and with lower PaO2/FiO2 ratio (r = − 0.293, p = 0.039). Conclusions EIT allows bedside assessment of unmatched ventilation and perfusion in mechanically ventilated patients with ARDS. Measurement of unmatched units could identify patients at higher risk of death and could guide personalized treatment.
Collapse
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michael Kircher
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Irene Ottaviani
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Maria C Basile
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Ines Marongiu
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Colussi
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
29
|
Spadaro S, Fogagnolo A. How much positive end expiratory pressure during one lung ventilation? An unresolvable question. Minerva Anestesiol 2021; 87:153-155. [PMID: 33432801 DOI: 10.23736/s0375-9393.20.15428-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Savino Spadaro
- Section of Anesthesia and Intensive Care, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy -
| | - Alberto Fogagnolo
- Section of Anesthesia and Intensive Care, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
30
|
Sang L, Zhao Z, Lin Z, Liu X, Zhong N, Li Y. A narrative review of electrical impedance tomography in lung diseases with flow limitation and hyperinflation: methodologies and applications. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1688. [PMID: 33490200 PMCID: PMC7812189 DOI: 10.21037/atm-20-4984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrical impedance tomography (EIT) is a functional radiation-free imaging technique that measures regional lung ventilation distribution by calculating the impedance changes in the corresponding regions. The aim of the present review was to summarize the current literature concerning the methodologies and applications of EIT in lung diseases with flow limitation and hyperinflation. PubMed was searched up to May 2020 to identify studies investigating the use of EIT in patients with asthma, bronchiectasis, bronchitis, bronchiolitis, chronic obstructive pulmonary disease, and cystic fibrosis. The extracted data included study design, EIT methodologies, interventions, validation and comparators, population characteristics, and key findings. Of the 44 included studies, seven were related to simulation, animal experimentation, or reconstruction algorithm development with evaluation on patients; 27 studies had the primary objective of validating EIT technique and measures including regional ventilation distribution, regional EIT-spirometry parameters, end-expiratory lung impedance, and regional time constants; and 10 studies had the primary objective of applying EIT to monitor the response to therapeutic interventions, including various ventilation supports, patient repositioning, and airway suctioning. In pediatric and adult patients, EIT has been successfully validated for assessing spatial and temporal ventilation distribution, measuring changes in lung volume and flow, and studying regional respiratory mechanics. EIT has also demonstrated potential as an alternative or supplement to well-established measurement modalities (e.g., conventional pulmonary function testing) to monitor the progression of obstructive lung diseases, although the existing literature lacks prediction values as references and lacks clinical outcome evidence.
Collapse
Affiliation(s)
- Ling Sang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.,Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Zhimin Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, the First Affiliated Hospital of Guangzhou Medical University, Department of Crit Care Med, Guangzhou, China
| |
Collapse
|
31
|
Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, Tubiolo D, Tagliabue P, Zanella A, Grasselli G, Pesenti A. Potential for Lung Recruitment and Ventilation-Perfusion Mismatch in Patients With the Acute Respiratory Distress Syndrome From Coronavirus Disease 2019. Crit Care Med 2020; 48:1129-1134. [PMID: 32697482 PMCID: PMC7188034 DOI: 10.1097/ccm.0000000000004386] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Severe cases of coronavirus disease 2019 develop the acute respiratory distress syndrome, requiring admission to the ICU. This study aimed to describe specific pathophysiological characteristics of acute respiratory distress syndrome from coronavirus disease 2019. DESIGN Prospective crossover physiologic study. SETTING ICU of a university-affiliated hospital from northern Italy dedicated to care of patients with confirmed diagnosis of coronavirus disease 2019. PATIENTS Ten intubated patients with acute respiratory distress syndrome and confirmed diagnosis of coronavirus disease 2019. INTERVENTIONS We performed a two-step positive end-expiratory pressure trial with change of 10 cm H2O in random order. MEASUREMENTS AND MAIN RESULTS At each positive end-expiratory pressure level, we assessed arterial blood gases, respiratory mechanics, ventilation inhomogeneity, and potential for lung recruitment by electrical impedance tomography. Potential for lung recruitment was assessed by the recently described recruitment to inflation ratio. In a subgroup of seven paralyzed patients, we also measured ventilation-perfusion mismatch at lower positive end-expiratory pressure by electrical impedance tomography. At higher positive end-expiratory pressure, respiratory mechanics did not change significantly: compliance remained relatively high with low driving pressure. Oxygenation and ventilation inhomogeneity improved but arterial CO2 increased despite unchanged respiratory rate and tidal volume. The recruitment to inflation ratio presented median value higher than previously reported in acute respiratory distress syndrome patients but with large variability (median, 0.79 [0.53-1.08]; range, 0.16-1.40). The FIO2 needed to obtain viable oxygenation at lower positive end-expiratory pressure was significantly correlated with the recruitment to inflation ratio (r = 0.603; p = 0.05). The ventilation-perfusion mismatch was elevated (median, 34% [32-45%] of lung units) and, in six out of seven patients, ventilated nonperfused units represented a much larger proportion than perfused nonventilated ones. CONCLUSIONS In patients with acute respiratory distress syndrome from coronavirus disease 2019, potential for lung recruitment presents large variability, while elevated dead space fraction may be a specific pathophysiological trait. These findings may guide selection of personalized mechanical ventilation settings.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Scotti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Colussi
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Cristina Basile
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Crotti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Tubiolo
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Tagliabue
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Scaramuzzo G, Spadaro S, Dalla Corte F, Waldmann AD, Böhm SH, Ragazzi R, Marangoni E, Grasselli G, Pesenti A, Volta CA, Mauri T. Personalized Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome: Comparison Between Optimal Distribution of Regional Ventilation and Positive Transpulmonary Pressure. Crit Care Med 2020; 48:1148-1156. [PMID: 32697485 DOI: 10.1097/ccm.0000000000004439] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Different techniques exist to select personalized positive end-expiratory pressure in patients affected by the acute respiratory distress syndrome. The positive end-expiratory transpulmonary pressure strategy aims to counteract dorsal lung collapse, whereas electrical impedance tomography could guide positive end-expiratory pressure selection based on optimal homogeneity of ventilation distribution. We compared the physiologic effects of positive end-expiratory pressure guided by electrical impedance tomography versus transpulmonary pressure in patients affected by acute respiratory distress syndrome. DESIGN Cross-over prospective physiologic study. SETTING Two academic ICUs. PATIENTS Twenty ICU patients affected by acute respiratory distress syndrome undergoing mechanical ventilation. INTERVENTION Patients monitored by an esophageal catheter and a 32-electrode electrical impedance tomography monitor underwent two positive end-expiratory pressure titration trials by randomized cross-over design to find the level of positive end-expiratory pressure associated with: 1) positive end-expiratory transpulmonary pressure (PEEPPL) and 2) proportion of poorly or nonventilated lung units (Silent Spaces) less than or equal to 15% (PEEPEIT). Each positive end-expiratory pressure level was maintained for 20 minutes, and afterward, lung mechanics, gas exchange, and electrical impedance tomography data were collected. MEASUREMENTS AND MAIN RESULTS PEEPEIT and PEEPPL differed in all patients, and there was no correlation between the levels identified by the two methods (Rs = 0.25; p = 0.29). PEEPEIT determined a more homogeneous distribution of ventilation with a lower percentage of dependent Silent Spaces (p = 0.02), whereas PEEPPL was characterized by lower airway-but not transpulmonary-driving pressure (p = 0.04). PEEPEIT was significantly higher than PEEPPL in subjects with extrapulmonary acute respiratory distress syndrome (p = 0.006), whereas the opposite was true for pulmonary acute respiratory distress syndrome (p = 0.03). CONCLUSIONS Personalized positive end-expiratory pressure levels selected by electrical impedance tomography- and transpulmonary pressure-based methods are not correlated at the individual patient level. PEEPPL is associated with lower dynamic stress, whereas PEEPEIT may help to optimize lung recruitment and homogeneity of ventilation. The underlying etiology of acute respiratory distress syndrome could deeply influence results from each method.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Francesca Dalla Corte
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Stephan H Böhm
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Riccardo Ragazzi
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Elisabetta Marangoni
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carlo Alberto Volta
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Marongiu I, Spinelli E, Mauri T. Cardio-respiratory physiology during one-lung ventilation: complex interactions in need of advanced monitoring. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:524. [PMID: 32411747 PMCID: PMC7214898 DOI: 10.21037/atm.2020.03.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ines Marongiu
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
34
|
Wang YM, Sun XM, Zhou YM, Chen JR, Cheng KM, Li HL, Yang YL, Zhang L, Zhou JX. Use of Electrical Impedance Tomography (EIT) to Estimate Global and Regional Lung Recruitment Volume (VREC) Induced by Positive End-Expiratory Pressure (PEEP): An Experiment in Pigs with Lung Injury. Med Sci Monit 2020; 26:e922609. [PMID: 32172276 PMCID: PMC7094060 DOI: 10.12659/msm.922609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Electrical impedance tomography (EIT) is a real-time tool used to monitor lung volume change at the bedside, which could be used to measure lung recruitment volume (VREC) for setting positive end-expiratory pressure (PEEP). We assessed and compared the agreement in VREC measurement with the EIT method versus the flow-derived method. Material/Methods In 12 Bama pigs, lung injury was induced by tracheal instillation of hydrochloric acid and verified by an arterial partial pressure of oxygen to inspired oxygen fraction ratio below 200 mmHg. During the end-expiratory occlusion, an airway release maneuver was conduct at 5 and 15 cmH2O of PEEP. VREC was measured by flow-integrated PEEP-induced lung volume change (flow-derived method) and end-expiratory lung impedance change (EIT-derived method). Linear regression and Bland-Altman analysis were used to test the correlation and agreement between these 2 measures. Results Lung injury was successfully induced in all the animals. EIT-derived VREC was significantly correlated with flow-derived VREC (R2=0.650, p=0.002). The bias (the lower and upper limits of agreement) was −19 (−182 to 144) ml. The median (interquartile range) of EIT-derived VREC was 322 (218–469) ml, with 110 (59–142) ml and 194 (157–307) ml in dependent and nondependent lung regions, respectively. Global and regional respiratory system compliance increased significantly at high PEEP compared to those at low PEEP. Conclusions Close correlation and agreement were found between EIT-derived and flow-derived VREC measurements. The advantages of EIT-derived recruitability assessment included the avoidance of ventilation interruption and the ability to provide regional recruitment information.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Xiu-Mei Sun
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jing-Ran Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Kun-Ming Cheng
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Hong-Liang Li
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
35
|
Fogagnolo A, Spadaro S. Can regional lung mechanics evaluation represent the next step towards precision medicine in respiratory care? Minerva Anestesiol 2020; 86:124-125. [DOI: 10.23736/s0375-9393.19.14314-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Spinelli E, Dellino EM, Mauri T. Understanding an unusual capnography waveform using electrical impedance tomography. Can J Anaesth 2019; 67:141-142. [PMID: 31571116 DOI: 10.1007/s12630-019-01496-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/01/2022] Open
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Enzo M Dellino
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
37
|
Spinelli E, Mauri T, Fogagnolo A, Scaramuzzo G, Rundo A, Grieco DL, Grasselli G, Volta CA, Spadaro S. Correction to: Electrical impedance tomography in perioperative medicine: careful respiratory monitoring for tailored interventions. BMC Anesthesiol 2019; 19:172. [PMID: 31481006 PMCID: PMC6724346 DOI: 10.1186/s12871-019-0840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Following publication of the original article [1], the authors reported that one of the co-authors has a mistake in the author name; the middle name and surname are switched. This is the correct information.
Collapse
Affiliation(s)
- Elena Spinelli
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli studi di Milano, Milan, Italy
| | - Tommaso Mauri
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli studi di Milano, Milan, Italy
| | - Alberto Fogagnolo
- Department Morphology, Surgery and Experimental medicine, Anesthesia and Intensive care section, University of Ferrara, Azienda Ospedaliera- Universitaria Sant'Anna, 8, Aldo Moro, Ferrara, Italy
| | - Gaetano Scaramuzzo
- Department Morphology, Surgery and Experimental medicine, Anesthesia and Intensive care section, University of Ferrara, Azienda Ospedaliera- Universitaria Sant'Anna, 8, Aldo Moro, Ferrara, Italy
| | - Annalisa Rundo
- UOC Anestesia e Rianimazione, Polo ospedaliero Belcolle ASL, Viterbo, Italy
| | - Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione "Policlinico Universitario A. Gemelli", Rome, Italy
| | - Giacomo Grasselli
- Dipartimento di Anestesia, Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli studi di Milano, Milan, Italy
| | - Carlo Alberto Volta
- Department Morphology, Surgery and Experimental medicine, Anesthesia and Intensive care section, University of Ferrara, Azienda Ospedaliera- Universitaria Sant'Anna, 8, Aldo Moro, Ferrara, Italy
| | - Savino Spadaro
- Department Morphology, Surgery and Experimental medicine, Anesthesia and Intensive care section, University of Ferrara, Azienda Ospedaliera- Universitaria Sant'Anna, 8, Aldo Moro, Ferrara, Italy.
| |
Collapse
|