1
|
Wang ZJ, Lin TH. A competing risk model analysis of dexmedetomidine of in-hospital mortality in subarachnoid hemorrhage patients. Sci Rep 2024; 14:29590. [PMID: 39609577 PMCID: PMC11604967 DOI: 10.1038/s41598-024-81025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe cerebrovascular disorder characterized by the sudden influx of blood into the subarachnoid space. The use of sedatives may be associated with the prognosis of SAH patients. We obtained SAH data from the MIMIC-IV database. The receiver operating characteristic curve, Delong test, and decision curve analysis were used to assess the predictive value of sedatives. Propensity score matching (PSM) method was applied to match samples at a 1:1 ratio. Logistic regression analysis, generalized linear regression analysis, and stratified analysis were used to investigate the association of the sedative with in-hospital mortality and length of hospital stay (LOS). Finally, a competing risk analysis was performed to evaluate the survival probability with two potential outcomes. Dexmedetomidine had a better prognosis value than Propofol and Midazolam. After PSM analysis, the Dexmedetomidine and the non-Dexmedetomidine groups had 248 samples each. The application of Dexmedetomidine reduced the risk of in-hospital mortality but might prolong the LOS. When considering in-hospital mortality as a competing risk factor for LOS, Dexmedetomidine was a protective factor for in-hospital mortality but had no significant relationship with LOS. In conclusion, treatment of Dexmedetomidine could reduce the risk of in-hospital mortality with satisfactory predictive efficiency.
Collapse
Affiliation(s)
- Zong-Jie Wang
- Department of Anesthesiology, Longyan First Hospital Affiliated to Fujian Medical University, No.105, Jiuyi North Road, Xinluo District, Longyan, 364000, Fujian, China
| | - Tian-Hua Lin
- Department of Anesthesiology, Longyan First Hospital Affiliated to Fujian Medical University, No.105, Jiuyi North Road, Xinluo District, Longyan, 364000, Fujian, China.
| |
Collapse
|
2
|
Kanamaru H, Zhu S, Dong S, Takemoto Y, Huang L, Sherchan P, Suzuki H, Tang J, Zhang JH. UDP-Glucose/P2Y14 Receptor Signaling Exacerbates Neuronal Apoptosis After Subarachnoid Hemorrhage in Rats. Stroke 2024; 55:1381-1392. [PMID: 38525592 PMCID: PMC11039370 DOI: 10.1161/strokeaha.123.044422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe subtype of stroke with poor outcomes. Abnormal glucose metabolism often occurs after SAH, but the strict control of blood glucose levels is not always beneficial. This study aimed to investigate the contribution of uridine diphosphate glucose (UDP-G), an intermediate of glucose/glycogen metabolism, and its receptor P2Y14 (P2Y purinoceptor 14) to SAH pathology and explored the potential targeted treatments in rats. METHODS A total of 218 Sprague-Dawley male rats were used. SAH was induced by endovascular perforation. Brain expressions of P2Y14, uridine diphosphate glucose (UDP-G), and its converting enzyme UGP2 (UDP-G pyrophosphorylase-2) were evaluated. Exogenous UDP-G or selective P2Y14 inhibitor was administered intranasally at 1 hour after SAH to explore their potential effects. Intranasal Ugp2 or P2ry14 siRNA was delivered 24 hours before SAH for mechanistic evaluation. Primary neuron culture and hemoglobin stimulation were used as in vitro model of SAH. Post-SAH evaluation included liquid chromatography-mass spectrometry measurement of brain endogenous UDP-G level, neurobehavioral assessments, Western blotting, immunohistochemistry, TUNEL staining, and Nissl staining. RESULTS There was an acute elevation of endogenous brain UDP-G and UGP2 after SAH, and P2Y14 was expressed in neurons. Although P2Y14 inhibitor decreased neurological dysfunction, neuronal apoptosis, and proapoptotic molecules, exogenous UDP-G exacerbated these outcomes at 24 hours after SAH. Early inhibition of P2Y14 preserved long-term neuronal survival in the hippocampus, amygdala, and cortex with improved neurocognition and depressive-like behavior. In addition, in vivo knockdown of Ugp2- and P2ry14-reduced neurological deficits and proapoptotic molecules at 24 hours after SAH, and furthermore in vitro knockdown of P2ry14-reduced apoptosis in hemoglobin stimulated primary neuron. CONCLUSIONS These findings suggest a detrimental role of brain UDP-G/P2Y14 signaling in SAH, as a part of glucose metabolic pathology at the tissue level. P2Y14 inhibitor 4-[4-(4-piperidinyl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthalenecarboxylic acid hydrochloride may serve as a potential therapeutic target in treating patients with SAH.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan (H.K., H.S.)
| | - Shiyi Zhu
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - Siyuan Dong
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - Yushin Takemoto
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Department of Neurosurgery, Kumamoto University School of Medicine, Japan (Y.T.)
| | - Lei Huang
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Neurosurgery, (L.H., J.H.Z.), Loma Linda University, CA
| | - Prativa Sherchan
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan (H.K., H.S.)
| | - Jiping Tang
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - John H Zhang
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Neurosurgery, (L.H., J.H.Z.), Loma Linda University, CA
- Anesthesiology (J.H.Z.), Loma Linda University, CA
| |
Collapse
|
3
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
4
|
Hanson AJ, Banks WA, Bettcher LF, Pepin R, Raftery D, Navarro SL, Craft S. Cerebrospinal Fluid Metabolomics: Pilot Study of Using Metabolomics to Assess Diet and Metabolic Interventions in Alzheimer's Disease and Mild Cognitive Impairment. Metabolites 2023; 13:569. [PMID: 37110227 PMCID: PMC10145981 DOI: 10.3390/metabo13040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Brain glucose hypometabolism is an early sign of Alzheimer's disease (AD), and interventions which offset this deficit, such as ketogenic diets, show promise as AD therapeutics. Conversely, high-fat feeding may exacerbate AD risk. We analyzed the metabolomic profile of cerebrospinal fluid (CSF) in a pilot study of older adults who underwent saline and triglyceride (TG) infusions. Older adults (12 cognitively normal (CN), age 65.3 ± 8.1, and 9 with cognitive impairment (CI), age 70.9 ± 8.6) underwent a 5 h TG or saline infusion on different days using a random crossover design; CSF was collected at the end of infusion. Aqueous metabolites were measured using a targeted mass spectroscopy (MS) platform focusing on 215 metabolites from over 35 different metabolic pathways. Data were analyzed using MetaboAnalyst 4.0 and SAS. Of the 215 targeted metabolites, 99 were detectable in CSF. Only one metabolite significantly differed by treatment: the ketone body 3-hydroxybutyrate (HBA). Post hoc analyses showed that HBA levels were associated with age and markers of metabolic syndrome and demonstrated different correlation patterns for the two treatments. When analyzed by cognitive diagnosis group, TG-induced increases in HBA were over 3 times higher for those with cognitive impairment (change score CN +9.8 uM ± 8.3, CI +32.4 ± 7.4, p = 0.0191). Interestingly, individuals with cognitive impairment had higher HBA levels after TG infusion than those with normal cognition. These results suggest that interventions that increase plasma ketones may lead to higher brain ketones in groups at risk for AD and should be confirmed in larger intervention studies.
Collapse
Affiliation(s)
- Angela J. Hanson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - William A. Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98102, USA
| | - Lisa F. Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
| |
Collapse
|
5
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|