1
|
Yang L, Wang X, Wang S, Shen J, Li Y, Wan S, Xiao Z, Wu Z. Targeting lipid metabolism in regulatory T cells for enhancing cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189259. [PMID: 39798823 DOI: 10.1016/j.bbcan.2025.189259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
As immunosuppressive cells, Regulatory T cells (Tregs) exert their influence on tumor immune escape within the tumor microenvironment (TME) by effectively suppressing the activity of other immune cells, thereby significantly impeding the anti-tumor immune response. In recent years, the metabolic characteristics of Tregs have become a focus of research, especially the important role of lipid metabolism in maintaining the function of Tregs. Consequently, targeted interventions aimed at modulating lipid metabolism in Tregs have been recognized as an innovative and promising approach to enhance the effectiveness of tumor immunotherapy. This review presents a comprehensive overview of the pivotal role of lipid metabolism in regulating the function of Tregs, with a specific focus on targeting Tregs lipid metabolism as an innovative approach to augment anti-tumor immune responses. Furthermore, we discuss potential opportunities and challenges associated with this strategy, aiming to provide novel insights for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Liu Yang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaling Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Böttrich T, Bauer P, Gröβer V, Huber M, Raifer H, Frech T, Nolte S, Dombrowski T, Cemic F, Sommer N, Ringseis R, Eder K, Krüger K, Weyh C. Subpopulations of regulatory T cells are associated with subclinical atherosclerotic plaques, levels of LDL, and cardiorespiratory fitness in the elderly. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:288-296. [PMID: 37951470 PMCID: PMC11117006 DOI: 10.1016/j.jshs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Atherosclerosis forms the pathological basis for the development of cardiovascular disease. Since pathological processes initially develop without clinically relevant symptoms, the identification of early markers in the subclinical stage plays an important role for initiating early interventions. There is evidence that regulatory T cells (Tregs) are involved in the development of atherosclerosis. Therefore, the present study aimed to identify and investigate associations with Tregs and their subsets in a cohort of healthy elderly individuals with and without subclinical atherosclerotic plaques (SAP). In addition, various lifestyle and risk factors, such as cardiorespiratory fitness, were investigated as associated signatures. METHODS A cross-sectional study was performed in 79 participants (male: n = 50; age = 63.6 ± 3.7 years; body mass index = 24.9 ± 3.1 kg/m²; mean ± SD) who had no previous diagnosis of chronic disease and were not taking medication. Ultrasound of the carotids to identify SAP, cardiovascular function measurement for vascular assessment and a cardiorespiratory fitness test to determine peak oxygen uptake were performed. Additionally, tests were conducted to assess blood lipids and determine glucose levels. Immunophenotyping of Tregs and their subtypes (resting (rTregs) and effector/memory (mTregs)) was performed by 8-chanel flow cytometry. Participants were categorized according to atherosclerotic plaque status. Linear and logistic regression models were used to analyze associations between parameters. RESULTS SAP was detected in a total of 29 participants. The participants with plaque were older (64.8 ± 3.6 years vs. 62.9 ± 3.5 years) and had higher peripheral systolic blood pressure (133.8 ± 14.7 mmHg vs. 125.8 ± 10.9 mmHg). The participants with SAP were characterized by a lower percentage of rTregs (28.8% ± 10.7% vs. 34.6% ± 10.7%) and a higher percentage of mTregs (40.3% ± 14.7% vs. 30.0% ± 11.9%). Multiple logistic regression identified age (odds ratio (OR) = 1.20 (95% confidence interval (95%CI): 1.01-1.42)) and mTregs (OR = 1.05 (95%CI: 1.02-1.10)) as independent risk factors for SAP. Stepwise linear regression could reveal an association of peak oxygen uptake (β = 0.441), low-density lipoprotein (LDL) (β = -0.096), and SAP (β = 6.733) with mTregs and LDL (β = 0.104) with rTregs. CONCLUSION While at an early stage of SAP, the total proportion of Tregs gives no indication of vascular changes, this is indicated by a shift in the Treg subgroups. Factors such as serum LDL or cardiopulmonary fitness may be associated with this shift and may also be additional diagnostic indicators. This could be used to initiate lifestyle-based preventive measures at an early stage, which may have a protective effect against disease progression.
Collapse
Affiliation(s)
- Tim Böttrich
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| | - Pascal Bauer
- Department of Cardiology and Angiology, Justus-Liebig-University Giessen, Giessen 35392, Germany
| | - Vincent Gröβer
- Department of Cardiology and Angiology, Justus-Liebig-University Giessen, Giessen 35392, Germany
| | - Magdalena Huber
- Department of Cardiology and Angiology, Justus-Liebig-University Giessen, Giessen 35392, Germany
| | - Hartmann Raifer
- Institute for Systems Immunology, Center for Tumor und Immunology, Marburg 35032, Germany
| | - Torsten Frech
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| | - Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| | - Theresa Dombrowski
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| | - Franz Cemic
- TH Mittelhessen, Department of Computer Science, University of Applied Sciences Giessen, Giessen 35390, Germany
| | - Natascha Sommer
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen 35394, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen 35394, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen 35390, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen 35390, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany.
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University, Giessen 35394, Germany
| |
Collapse
|
3
|
Xiong X, Duan Z, Zhou H, Huang G, Niu L, Luo Z, Li W. Correlation of apolipoprotein A-I with T cell subsets and interferon-ү in coronary artery disease. Immun Inflamm Dis 2023; 11:e797. [PMID: 36988256 PMCID: PMC10013138 DOI: 10.1002/iid3.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND The association of Apolipoprotein A-I (APOAI) with T cell subsets and interferon-ү (IFN-γ) in patients with coronary artery disease (CAD) has been not reported. Thus, this study aimed to investigate the association of APOAI with T cell subsets and IFN-γ in CAD. METHODS This study included a total of 107 patients with CAD including acute coronary syndrome and chronic coronary syndrome. T cell subsets, and CD3-CD56+ natural killer cells were quantified by flow cytometric analysis. The serum concentrations of IFN-ү were measured by enzyme-linked immunosorbent assay. Lipid profiles, C-reactive protein (CRP), and fibrinogen were measured in the clinical laboratory. Clinical data was obtained duration hospitalization. RESULTS The CD4+ T cells were higher in patients of the low-APOAI group ( .05). The high-density lipoprotein cholesterol (HDL-C) was also inversely associated with CD4+ T cells (p < .05), and positively associated with CD8+ T cells (p < .05). Lastly, APOA1 and HDL-C did not correlated with fibrinogen and CRP (p > .05). CONCLUSION The present study demonstrated the correlation of APOAI with T cell subsets and IFN-γ in CAD. These results provided novel information for the regulatory action between APOAI and T cell subsets and inflammatory immunity in CAD.
Collapse
Affiliation(s)
- Xinlin Xiong
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
- Department of cardiologyClinical Medical College& Affiliated Hospital of Chengdu UniversityChengdu citySichuan ProvincePeople's Republic of China
| | - Zonggang Duan
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Haiyan Zhou
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Guangwei Huang
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Li Niu
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Zhenhua Luo
- Department of Central Lab, Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's HospitalThe Affiliated People's Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
- Guizhou University School of MedicineGuiyang cityGuizhou ProvincePeople's Republic of China
| | - Wei Li
- Department of cardiologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyang cityGuizhou ProvincePeople's Republic of China
| |
Collapse
|
4
|
ANGPTL3 deficiency associates with the expansion of regulatory T cells with reduced lipid content. Atherosclerosis 2022; 362:38-46. [PMID: 36253169 DOI: 10.1016/j.atherosclerosis.2022.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Angiopoietin-like 3 (ANGPTL3) regulates lipid and glucose metabolism. Loss-of-function mutations in its gene, leading to ANGPTL3 deficiency, cause in humans the familial combined hypolipidemia type 2 (FHBL2) phenotype, characterized by very low concentrations of circulating lipoproteins and reduced risk of atherosclerotic cardiovascular disease. Whether this condition is accompanied by immune dysfunctions is unknown. Regulatory T cells (Tregs) are CD4 T lymphocytes endowed with immune suppressive and atheroprotective functions and sensitive to metabolic signals. By investigating FHBL2, we explored the hypothesis that Tregs expand in response to extreme hypolipidemia, through a modulation of the Treg-intrinsic lipid metabolism. METHODS Treg frequency, phenotype, and intracellular lipid content were assessed ex vivo from FHBL2 subjects and age- and sex-matched controls, through multiparameter flow cytometry. The response of CD4 T cells from healthy controls to marked hypolipidemia was tested in vitro in low-lipid culture conditions. RESULTS The ex vivo analysis revealed that FHBL2 subjects showed higher percentages of Tregs with a phenotype undistinguishable from controls and with a lower lipid content, which directly correlated with the concentrations of circulating lipoproteins. In vitro, lipid restriction induced the upregulation of genes of the mevalonate pathway, including those involved in isoprenoid biosynthesis, and concurrently increased the expression of the Treg markers FOXP3 and Helios. The latter event was found to be prenylation-dependent, and likely related to increased IL-2 production and signaling. CONCLUSIONS Our study demonstrates that FHBL2 is characterized by high Treg frequencies, a feature which may concur to the reduced atherosclerotic risk in this condition. Mechanistically, hypolipidemia may directly favor Treg expansion, through the induction of the mevalonate pathway and the prenylation of key signaling proteins.
Collapse
|
5
|
Gerhardt T, Haghikia A, Stapmanns P, Leistner DM. Immune Mechanisms of Plaque Instability. Front Cardiovasc Med 2022; 8:797046. [PMID: 35087883 PMCID: PMC8787133 DOI: 10.3389/fcvm.2021.797046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation crucially drives atherosclerosis from disease initiation to the emergence of clinical complications. Targeting pivotal inflammatory pathways without compromising the host defense could compliment therapy with lipid-lowering agents, anti-hypertensive treatment, and lifestyle interventions to address the substantial residual cardiovascular risk that remains beyond classical risk factor control. Detailed understanding of the intricate immune mechanisms that propel plaque instability and disruption is indispensable for the development of novel therapeutic concepts. In this review, we provide an overview on the role of key immune cells in plaque inception and progression, and discuss recently identified maladaptive immune phenomena that contribute to plaque destabilization, including epigenetically programmed trained immunity in myeloid cells, pathogenic conversion of autoreactive regulatory T-cells and expansion of altered leukocytes due to clonal hematopoiesis. From a more global perspective, the article discusses how systemic crises such as acute mental stress or infection abruptly raise plaque vulnerability and summarizes recent advances in understanding the increased cardiovascular risk associated with COVID-19 disease. Stepping outside the box, we highlight the role of gut dysbiosis in atherosclerosis progression and plaque vulnerability. The emerging differential role of the immune system in plaque rupture and plaque erosion as well as the limitations of animal models in studying plaque disruption are reviewed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Stapmanns
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
| | - David Manuel Leistner
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: David Manuel Leistner
| |
Collapse
|
6
|
Xu DM, Li Q, Yi JX, Cai XJ, Xie L, Fang W, Qiu JF, Xu CW, He CL, Xu XR, Xu JS, Yin J. Investigation of Lymphocyte Subsets in Peripheral Blood of Patients with Dyslipidemia. Int J Gen Med 2021; 14:5573-5579. [PMID: 34548808 PMCID: PMC8449637 DOI: 10.2147/ijgm.s326628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
Objective In order to evaluate the effect of dyslipidemia on cellular or humoral immunity in patients, changes in the absolute number of lymphocyte subsets were detected. Methods Flow cytometry was applied to determine the absolute value of lymphocyte subsets: B cell, NK cell, CD4+ T cell including the functional subset (CD4+CD28+), native subset (CD4+CD45RA+CD62L+), memory T cell subset (CD4+CD45RA-), CD8+ T cell including the functional subset (CD8+CD28+) and activated subsets (CD8+CD38+ and CD8+DR+). The relationship between lymphocyte subsets and hypercholesterolemia and hypertriglyceridemia was analyzed. Results The absolute values of CD19+ B cell, CD3+ T cell, CD4+ Th cell, CD4+CD28+ cell, naive CD4+ T cell and memory CD4+ T cell in patients with dyslipidemia were markedly higher than those in healthy controls (P<0.05). There was no significant difference between healthy controls and dyslipidemia patients in other lymphocyte subsets (P>0.05). The absolute values of CD3+ T cell and naive CD4+ T cell were significantly positively correlated with hypercholesterolemia in peripheral blood (r=0.291 and 0.306, respectively, all P<0.05). There was no significant correlation between hypertriglyceridemia and lymphocyte subsets (P>0.05). Conclusion Dyslipidemia has potential effects on immune profiles in lymphocytes subsets, and changes in lymphocyte subsets in dyslipidemia patients may lead to immune dysfunction.
Collapse
Affiliation(s)
- Da-Ming Xu
- Division of Urological Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Qian Li
- Division of Hematology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Jing-Xing Yi
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xin-Jian Cai
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Long Xie
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Wei Fang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Jin-Feng Qiu
- Division of Respirology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Cheng-Wei Xu
- Department of Blood Purification, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Chun-Ling He
- Department of Pathology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xian-Ru Xu
- Division of Interventional Ultrasonic Therapeutics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Jie-Song Xu
- Department of Electroencephalogram, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Jun Yin
- Division of Hematology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.,Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Ghamar Talepoor A, Khosropanah S, Doroudchi M. Frequency of Efficient Circulating Follicular Helper T Cells Correlates with Dyslipidemia and WBC Count in Atherosclerosis. IRANIAN BIOMEDICAL JOURNAL 2021; 25:117-31. [PMID: 33465845 PMCID: PMC7921518 DOI: 10.29252/ibj.25.2.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background The significance of cTfh cells and their subsets in atherosclerosis is not well understood. We measured the frequency of cTfh subsets in patients with different degrees of stenosis using flow-cytometry. Methods Participants included high (≥50%; n = 12) and low (<50%; n = 12) stenosis groups, as well as healthy controls (n = 6). Results The frequency of CCR7loPD-1hiefficient-cTfh was significantly higher in patients with high stenosis compared to healthy controls (p = 0.003) and correlated with low-density lipoprotein (LDL; p = 0.043), cholesterol (p = 0.043), triglyceride (p = 0.019), neutrophil count (p = 0.032), platelet count (p = 0.024), neutrophil/lymphocyte ratio (NLR; p = 0.046), and platelet/lymphocyte ratio (PLR; p = 0.025) in high stenosis group. The frequency of CCR7hiPD-1lo quiescent-cTfh was higher in healthy controls compared to the high-stenosis group (p = 0.001) and positively correlated with high-density lipoprotein (p = 0.046). The frequency of efficient-cTfh cells was correlated with platelet count (p = 0.043), NLR (p = 0.036), and PLR (p P = 0.035) in low-stenosis group, while that of quiescent-cTfh cells was negatively correlated with LDL (p = 0.034), cholesterol (p = 0.047), platelet count (p = 0.032), and PLR (p = 0.041). Conclusion High percentages of cTfh and efficient-cTfh cells in patients with advanced atherosclerosis and their correlation with dyslipidemia and white blood cell counts suggest an ongoing cTfh subset deviation, towards efficient phenotype in the milieu of inflammation and altered lipid profile. Efficient cTfh cells have an effector phenotype and could in turn contribute to atherosclerosis progression.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
The Effect of Lipid Metabolism on CD4 + T Cells. Mediators Inflamm 2021; 2021:6634532. [PMID: 33505215 PMCID: PMC7806377 DOI: 10.1155/2021/6634532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cells play a vital role in the adaptive immune system and are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. As an important mechanism for energy storage, a lot of researches have clarified that metabolism imbalance interacts with immune disorder, and one leads to the other. Lipid metabolism has close relationship with CD4+ T cells. In this review, we discuss fatty acid, cholesterol, prostaglandin, and phospholipid metabolism in CD4+ T cell subsets. Fatty acid β-oxidation (FAO) is activated in Th17 cell to support the proinflammatory function. Cholesterol promotes Th1, Th2, and Treg cell differentiation. In addition to glucose metabolism, lipid metabolism is also very important for immunity. Here, it is highlighted that lipid metabolism regulates CD4+ T cell differentiation and function and is related to diseases.
Collapse
|
9
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Janyst M, Kaleta B, Janyst K, Zagożdżon R, Kozlowska E, Lasek W. Comparative Study of Immunomodulatory Agents to Induce Human T Regulatory (Treg) Cells: Preferential Treg-Stimulatory Effect of Prednisolone and Rapamycin. Arch Immunol Ther Exp (Warsz) 2020; 68:20. [PMID: 32533319 PMCID: PMC7292810 DOI: 10.1007/s00005-020-00582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Abstract
T regulatory (Treg) cells play a critical role in the maintenance of self-tolerance, as well as in inhibition of inflammation and exaggerated immune response against exogenous antigens. They develop in the thymus (tTreg cells) but also may be generated at the peripheral tissues, including tumor microenvironment (pTreg cells), or induced in vitro in the presence of transforming growth factor (TGF)-β (iTreg cells). Since tTreg cells constitute a minor fraction of peripheral blood lymphocytes in physiological conditions, an alternative way to obtain high number of functional Treg cells for therapeutic purposes is their generation in vitro from conventional T cells. In our studies, we compared effectiveness of several pharmacological agents with suggested immunomodulatory effects on Treg development (rapamycin, prednisolone, inosine pranobex, glatiramer acetate, sodium butyrate, and atorvastatin) to optimize Treg-inducing protocols. All but one (atorvastatin) immunomodulators augmented induction of polyclonal Treg cells in cultures. They were effective both in increasing the number of CD4+CD25highFoxp3high cells and Foxp3 expression. Rapamycin and prednisolone were found the most effective. Both drugs prolonged also phenotypic stability of Treg cells and induced fully active Treg cells in a functional assay. In the assay, prednisolone appeared superior versus rapamycin. The results, on the one hand, may be helpful in planning optimal protocols for generation of Treg cells for clinical application and, on the other hand, shed some light on mechanisms of the immunomodulatory activity of some tested agents observed in vivo.
Collapse
Affiliation(s)
- Michał Janyst
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Janyst
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Kozlowska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Witold Lasek
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
11
|
Abstract
There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We discuss some limitations of animal models and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment.
Collapse
Affiliation(s)
- Dennis Wolf
- From the Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (D.W.).,Faculty of Medicine, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
12
|
Shahbaz SK, Sadeghi M, Koushki K, Penson PE, Sahebkar A. Regulatory T cells: Possible mediators for the anti-inflammatory action of statins. Pharmacol Res 2019; 149:104469. [PMID: 31577918 DOI: 10.1016/j.phrs.2019.104469] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
Statins beside their main effect on reducing the progression of cardiovascular disease through pharmacological inhibition of the endogenous cholesterol synthesis, have additional pleiotropic effects including antiinflammatory effects mediated through the induction of suppressor regulatory T cells (Tregs). Statin-induced expansion of Tregs reduces chronic inflammation and may have beneficial effects in autoimmune diseases. However, statins could represent a double-edged sword in immunomodulation. Drugs that act by increasing the concentration of Tregs could enhance the risk of cancers, particularly in the elderly and may have adverse effects in neurodegenerative disorders and infectious diseases. In the present paper, we review the experimental studies that evaluate the effects of statins on Treg cells in autoimmune and inflammatory diseases and we discuss potential therapeutic applications of statins in this setting.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadije Koushki
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Rivera-Franco MM, León-Rodríguez E, Gómez-Martín D. Correlation of T Cell Subsets and Hypercholesterolemia of the Donor and Its Association with Acute Graft-versus-Host Disease. Int J Hematol Oncol Stem Cell Res 2019; 13:183-188. [PMID: 31871592 PMCID: PMC6925362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Acute graft-versus-host disease (aGVHD) is an important cause of death following allogeneic hematopoietic stem cell transplantation (allo-HSCT). The association between cholesterol and aGVHD was previously described potentially, resulting from pro-inflammatory responses associated with hypercholesterolemia. The aim of this study was to correlate T cell subsets in donor bone marrow (BM) samples with their levels of cholesterol and associate these results with recipients who developed aGVHD and those who did not. Materials and Methods: A prospective study was performed in 39 donor samples. T cell subsets were analyzed by flow cytometry. Results: Eleven (28%) donors had hypercholesterolemia. Donor samples with hypercholesterolemia had less Tregs compared to donors with normal levels of cholesterol (22.69 (IQR=30.6) cells/µL vs 52.62 (IQR=44.68) cells/µL, p=0.04). Among all individuals in the cohort, aGVHD was observed in 21%: 36% from donors with hypercholesterolemia versus 14% from donors with normal levels of cholesterol. Conclusion: As we described the association between hypercholesterolemia and diminished Tregs, our results might suggest that normalizing the levels of total cholesterol in the donor, prior performing allo-HSCT, might be an effective approach to diminish the risk of the receptor to develop aGVHD.
Collapse
Affiliation(s)
- MM Rivera-Franco
- Stem Cell Transplantation Program, Department of Hematology and Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Eucario León-Rodríguez
- Stem Cell Transplantation Program, Department of Hematology and Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
14
|
Abstract
There is now overwhelming experimental and clinical evidence that arteriosclerosis is a chronic inflammatory disease. Lessons learned from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice models and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb arteriosclerosis. This article summarizes and discusses the pathogenesis of arteriosclerosis with a focus on the role of the adaptive immune system. Some limitations of animal models are discussed and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment are emphasized.
Collapse
Affiliation(s)
- D Wolf
- Abteilung für Kardiologie und Angiologie I, Universitäts-Herzzentrum Freiburg, Freiburg, Deutschland
- Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - K Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, 92037, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Rodríguez-Perea AL, Rojas M, Velilla-Hernández PA. High concentrations of atorvastatin reduce in-vitro function of conventional T and regulatory T cells. Clin Exp Immunol 2019; 196:237-248. [PMID: 30638266 DOI: 10.1111/cei.13260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Regulatory T cells (Tregs ) modulate the magnitude of immune responses and possess therapeutic potential in an array of immune diseases. Statins reduce the activation and proliferation of conventional T cells (Tcons ), and they seem to up-regulate the frequency and function of Tregs . However, there is a lack of simultaneous evaluation of the in-vitro effect of statins on the functional profile of Tregs versus Tcons . Herein, magnetically purified Tcons and Tregs were stimulated with CD3/CD28/interleukin (IL)-2 in the presence of atorvastatin (ATV) at 1 or 10 µM. The suppressive function of Tregs , the expression of markers associated with Treg function, activation levels, cytokine production and calcium flux in both subpopulations were assessed by flow cytometry. ATV had no cytotoxic effect on T cells at the concentrations used. Interestingly, 10 µM ATV hampered the suppressive capacity of Tregs . Moreover, this higher concentration reduced the expression of forkhead box protein 3 (FoxP3), cytotoxic T lymphocyte antigen (CTLA-4) and programmed death 1 (PD-1). In Tcons , ATV at 10 µM decreased PD-1 and CD45RO expression. The expression of CD25, CD69, CD95, CD38, CD62L, CCR7 and perforin was not affected in both subpopulations or at any ATV concentrations. Remarkably, 10 µM ATV increased the percentage of tumour necrosis factor (TNF)-α-producing Tregs . Although there was a reduction of calcium flux in Tcons and Tregs , it was only significant in 10 µM ATV-treated Tcons . These results suggested that 10 µM ATV affects the cellular functions of both populations; however, this concentration particularly affected several aspects of Treg biology: its suppressive function, cytokine production and expression of Treg -specific markers.
Collapse
Affiliation(s)
- A L Rodríguez-Perea
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Grupo Bacterias & Cáncer, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - M Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Citometría, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - P A Velilla-Hernández
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
16
|
CCR5-Δ32 polymorphism is a genetic risk factor associated with dyslipidemia in patients with type 1 diabetes. Cytokine 2019; 114:81-85. [DOI: 10.1016/j.cyto.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
|
17
|
Veronesi G, Maresca AM. Cardiovascular disease in the youngest: is it time for precision prevention? ANNALS OF TRANSLATIONAL MEDICINE 2019; 6:S74. [PMID: 30613649 DOI: 10.21037/atm.2018.10.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giovanni Veronesi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andrea M Maresca
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
18
|
Bietz A, Zhu H, Xue M, Xu C. Cholesterol Metabolism in T Cells. Front Immunol 2017; 8:1664. [PMID: 29230226 PMCID: PMC5711771 DOI: 10.3389/fimmu.2017.01664] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/13/2017] [Indexed: 01/10/2023] Open
Abstract
Compartmentalization and spatial control of biochemical reactions is the foundation of cell-based life on earth. The lipid bilayer system employed by eukaryote cells not only keeps them separate from the environment but also provides a platform for key receptors to sense and interact with outside factors. Arguably one of the cell types most reliant on interactions of this kind, immune cells depend on their membrane to keep functioning properly. In this review, the influence of variation in cholesterol levels, a key component of lipid bilayer stability, on T cells will be discussed in detail. In comparison to other cells, T cells must be able to undergo rapid activation followed by proliferation. Furthermore, receptor colocalization is an important mechanism in this activation process. The impact of cholesterol availability on the processes of T cell proliferation and receptor sensitivity, as well as its potential for immunomodulation in disease treatment will be considered.
Collapse
Affiliation(s)
- Andreas Bietz
- State Key Laboratory of Molecular Biology, Chinese Academy Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,University of Heidelberg, Heidelberg, Germany
| | - Hengyu Zhu
- State Key Laboratory of Molecular Biology, Chinese Academy Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Manman Xue
- State Key Laboratory of Molecular Biology, Chinese Academy Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Chinese Academy Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
19
|
Lipid Profile in Tuberculosis Patients with and without Human Immunodeficiency Virus Infection. Int J Chronic Dis 2017; 2017:3843291. [PMID: 29226217 PMCID: PMC5687143 DOI: 10.1155/2017/3843291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/24/2022] Open
Abstract
Background Understanding whether the preceding low lipid profile leads to active tuberculosis (TB) or active TB leads to low lipid profile is crucial. Methods Lipid profile concentrations were determined from 159 study participants composed of 93 active TB patients [44 HIV coinfected (HIV+TB+) and 49 HIV negative (HIV−TB+)], 41 tuberculin skin test (TST) positive cases [17 HIV coinfected (HIV+TST+) and 24 HIV negative (HIV−TST+)], and 25 healthy controls (HIV−TST−). Cobas Integra 400 Plus was used to determine lipid profiles concentration level. Results The concentrations of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in HIV−TB+ patients were significantly lower compared to HIV−TST+ and to HIV−TST− individuals. Similarly, the concentrations of the TC, LDL-C, and HDL-C in HIV+TB+ were significantly lower compared to HIV−TB+ patients. After the 6 months of anti-TB treatment (ATT), the concentration levels of TC, LDL-C, and HDL-C in HIV−TB+ patients were higher compared to the baseline concentration levels, while they were not significantly different compared to that of HIV−TST+ concentration. Conclusion The low concentration of lipid profiles in TB patients may be a consequence of the disease and significantly increased in TB patients after treatment.
Collapse
|
20
|
Activation-induced FOXP3 isoform profile in peripheral CD4+ T cells is associated with coronary artery disease. Atherosclerosis 2017; 267:27-33. [PMID: 29100058 DOI: 10.1016/j.atherosclerosis.2017.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS The expression of FOXP3 isoforms affects regulatory T (Treg) cell function. Reduced Treg cell function has been associated with coronary artery disease (CAD). However, alternative splicing of FOXP3 in CAD has not been investigated. METHODS FOXP3 splice variants and IL17A transcripts in peripheral blood mononuclear cells from stable CAD patients and healthy controls were quantified, and FOXP3 isoform expression in response to T cell receptor (TCR) stimulation or LDL was analyzed by flow cytometry. RESULTS Compared to healthy controls, CAD patients expressed significantly more FOXP3 transcripts that included exon 2, whereas alternative splicing of exon 7 in correlation with IL17A expression was reduced. Moreover, TCR stimulation, as well as exposure to LDL, decreased alternative splicing of FOXP3 in CD4+ T cells in vitro. CONCLUSIONS Our results demonstrate that blood mononuclear cells in stable CAD patients express a ratio of FOXP3 isoforms that is characteristic for activated CD4+ T cells.
Collapse
|
21
|
Guasti L, Gaudio G, Lupi A, D'Avino M, Sala C, Mugellini A, Vulpis V, Felis S, Sarzani R, Vanasia M, Maffioli P, Derosa G. Ambulatory blood pressure parameters after canrenone addition to existing treatment regimens with maximum tolerated dose of angiotensin-converting enzyme inhibitors/angiotensin II type 1 receptor blockers plus hydrochlorothiazide in uncontrolled hypertensive patients. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2293-2300. [PMID: 28831241 PMCID: PMC5552154 DOI: 10.2147/dddt.s134826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Blockade of the renin-angiotensin-aldosterone system is a cornerstone in cardiovascular disease prevention and hypertension treatment. The relevance of ambulatory blood pressure monitoring (ABPM) has been widely confirmed for both increasing the accuracy of blood pressure (BP) measurements, particularly in pharmacological trials, and focusing on 24 h BP prognostic parameters. The aim of this study was to assess the effects of canrenone addition on ambulatory BP in uncontrolled hypertensive patients already treated with the highest tolerated dose of angiotensin-converting enzyme (ACE) inhibitors or angiotensin II type 1 receptor (AT1R) antagonists plus hydrochlorothiazide (HCT). METHODS ABPM was performed at baseline and after 3 months of combination therapy in 158 outpatients with stage 1 or 2 hypertension who were randomized to add canrenone (50 or 100 mg) to the pre-existing therapy with ACE inhibitors or AT1R antagonists plus HCT. Twenty-four-hour systolic and diastolic BPs were considered normalized when the values were <130 and <80 mmHg, respectively. RESULTS The addition of canrenone was associated with a reduction in systolic and diastolic BPs (24 h and daytime and nighttime; P<0.001), mean arterial pressures (P<0.001), and pulse pressures (P<0.01). The Δ 24 h systolic/diastolic BPs were -13.5±11.2/-8±8 mmHg and -16.1±13.5/-11.2±8.3 mmHg (50 and 100 mg/day, respectively). In the 50 mg arm, the 24 h systolic and diastolic BPs were normalized in 67.5% and 74% of the patients, respectively, and in 61.6% and 68.5% of the patients in the 100 mg arm, respectively (P<0.05; P= not significant for 50 vs 100 mg). The percentage of patients whose nocturnal decrease was >10% with respect to diurnal values did not change during combination therapy. CONCLUSION Canrenone addition to ACE inhibitors or AT1R antagonists plus HCT was associated with a significant reduction of 24 h BP and to an increased number of patients meeting 24 h ABPM targets in a clinical setting of uncontrolled stage 1 or 2 hypertension.
Collapse
Affiliation(s)
- Luigina Guasti
- Research Center on Dyslipidemia, Internal Medicine 1, University of Insubria, Varese, Italy
| | - Giovanni Gaudio
- Internal Medicine Division, Ospedale Angelo Bellini, ASST Valle Olona Somma, Varese, Italy
| | - Alessandro Lupi
- Cardiology Unit, ASL VCO Verbania-Domodossola, Verbania, Italy
| | - Marinella D'Avino
- Unit for the Treatment of Arterial Hypertension, Ospedale Cardarelli, Napoli, Italy
| | - Carla Sala
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy.,Cardiovascular Unit, Fondazione IRCCSS Policlinico, Milano, Italy
| | - Amedeo Mugellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Vito Vulpis
- Unit for the Diagnosis and Treatment of Arterial Hypertension, Department of Internal Medicine, Policlinico di Bari, Bari, Italy
| | | | - Riccardo Sarzani
- ESH Center of Hypertension, Internal Medicine and Geriatrics, University Politecnica delle Marche, Ancona, Italy.,IRCCS-INRCA, Ancona, Italy
| | | | - Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|