1
|
Yang Z, Li Y, Huang M, Li X, Fan X, Yan C, Meng Z, Liao B, Hamdani N, El-Battrawy I, Yang X, Zhou X, Akin I. Small conductance calcium-activated potassium channel contributes to stress induced endothelial dysfunctions. Microvasc Res 2024; 155:104699. [PMID: 38901735 DOI: 10.1016/j.mvr.2024.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024]
Abstract
Patients with Takotsubo syndrome displayed endothelial dysfunction, but underlying mechanisms have not been fully clarified. This study aimed to explore molecular signalling responsible for catecholamine excess induced endothelial dysfunction. Human cardiac microvascular endothelial cells were challenged by epinephrine to mimic catecholamine excess. Patch clamp, FACS, ELISA, PCR, and immunostaining were employed for the study. Epinephrine (Epi) enhanced small conductance calcium-activated potassium channel current (ISK1-3) through activating α1 adrenoceptor. Phenylephrine enhanced edothelin-1 (ET-1) and reactive oxygen species (ROS) production, and the effects involved contribution of ISK1-3. H2O2 enhanced ISK1-3 and ET-1 production. Enhancing ISK1-3 caused a hyperpolarization, which increases ROS and ET-1 production. BAPTA partially reduced phenylephrine-induced enhancement of ET-1 and ROS, suggesting that α1 receptor activation can enhance ROS/ET-1 generation in both calcium-dependent and calcium-independent ways. The study demonstrates that high concentration catecholamine can activate SK1-3 channels through α1 receptor-ROS signalling and increase ET-1 production, facilitating vasoconstriction.
Collapse
Affiliation(s)
- Zhen Yang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167 Mannheim, Germany; Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Yingrui Li
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167 Mannheim, Germany
| | - Mengying Huang
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167 Mannheim, Germany
| | - Xin Li
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167 Mannheim, Germany
| | - Xuehui Fan
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167 Mannheim, Germany
| | - Chen Yan
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167 Mannheim, Germany
| | - Zenghui Meng
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167 Mannheim, Germany
| | - Bin Liao
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, 646000, Sichuan, China
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Institut für Forschung und Lehre (IFL), Ruhr-University Bochum, Bochum, Germany
| | - Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Ruhr University, Bochum, Germany; Institut für Forschung und Lehre (IFL), Department of Molecular and Experimental Cardiology, Ruhr-University Bochum, Bochum, Germany
| | - Xiaoli Yang
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China.
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167 Mannheim, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Germany; Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000, Sichuan, China.
| | - Ibrahim Akin
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167 Mannheim, Germany; European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Germany
| |
Collapse
|
2
|
Sarkar A, Fanous KI, Marei I, Ding H, Ladjimi M, MacDonald R, Hollenberg MD, Anderson TJ, Hill MA, Triggle CR. Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights. Vasc Health Risk Manag 2024; 20:255-288. [PMID: 38919471 PMCID: PMC11198029 DOI: 10.2147/vhrm.s391808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Imad Fanous
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Moncef Ladjimi
- Department of Biochemistry & Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ross MacDonald
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center & Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chris R Triggle
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| |
Collapse
|
3
|
Xing H, Sabe SA, Shi G, Harris DD, Liu Y, Sellke FW, Feng J. Role of Protein Kinase C in Metabolic Regulation of Coronary Endothelial Small Conductance Calcium-Activated Potassium Channels. J Am Heart Assoc 2024; 13:e031028. [PMID: 38293916 PMCID: PMC11056132 DOI: 10.1161/jaha.123.031028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Small conductance calcium-activated potassium (SK) channels are largely responsible for endothelium-dependent coronary arteriolar relaxation. Endothelial SK channels are downregulated by the reduced form of nicotinamide adenine dinucleotide (NADH), which is increased in the setting of diabetes, yet the mechanisms of these changes are unclear. PKC (protein kinase C) is an important mediator of diabetes-induced coronary endothelial dysfunction. Thus, we aimed to determine whether NADH signaling downregulates endothelial SK channel function via PKC. METHODS AND RESULTS SK channel currents of human coronary artery endothelial cells were measured by whole cell patch clamp method in the presence/absence of NADH, PKC activator phorbol 12-myristate 13-acetate, PKC inhibitors, or endothelial PKCα/PKCβ knockdown by using small interfering RNA. Human coronary arteriolar reactivity in response to the selective SK activator NS309 was measured by vessel myography in the presence of NADH and PKCβ inhibitor LY333531. NADH (30-300 μmol/L) or PKC activator phorbol 12-myristate 13-acetate (30-300 nmol/L) reduced endothelial SK current density, whereas the selective PKCᵦ inhibitor LY333531 significantly reversed the NADH-induced SK channel inhibition. PKCβ small interfering RNA, but not PKCα small interfering RNA, significantly prevented the NADH- and phorbol 12-myristate 13-acetate-induced SK inhibition. Incubation of human coronary artery endothelial cells with NADH significantly increased endothelial PKC activity and PKCβ expression and activation. Treating vessels with NADH decreased coronary arteriolar relaxation in response to the selective SK activator NS309, and this inhibitive effect was blocked by coadministration with PKCβ inhibitor LY333531. CONCLUSIONS NADH-induced inhibition of endothelial SK channel function is mediated via PKCβ. These findings may provide insight into novel therapeutic strategies to preserve coronary microvascular function in patients with metabolic syndrome and coronary disease.
Collapse
Affiliation(s)
- Hang Xing
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Sharif A. Sabe
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Guangbin Shi
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Dwight D. Harris
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Yuhong Liu
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| | - Jun Feng
- Division of Cardiothoracic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRI
| |
Collapse
|
4
|
Chaurasiya V, Pham DD, Harju J, Juuti A, Penttilä A, Emmagouni SKG, Nguyen VD, Zhang B, Perttunen S, Keskitalo S, Zhou Y, Pietiläinen KH, Haridas PAN, Olkkonen VM. Human visceral adipose tissue microvascular endothelial cell isolation and establishment of co-culture with white adipocytes to analyze cell-cell communication. Exp Cell Res 2023; 433:113819. [PMID: 37852349 DOI: 10.1016/j.yexcr.2023.113819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Communication between adipocytes and endothelial cells (EC) is suggested to play an important role in the metabolic function of white adipose tissue. In order to generate tools to investigate in detail the physiology and communication of EC and adipocytes, a method for isolation of adipose microvascular EC from visceral adipose tissue (VAT) biopsies of subjects with obesity was developed. Moreover, mature white adipocytes were isolated from the VAT biopsies by a method adapted from a previously published Membrane aggregate adipocytes culture (MAAC) protocol. The identity and functionality of the cultivated and isolated adipose microvascular EC (AMvEC) was validated by imaging their morphology, analyses of mRNA expression, fluorescence activated cell sorting (FACS), immunostaining, low-density lipoprotein (LDL) uptake, and in vitro angiogenesis assays. Finally, we established a new trans filter co-culture system (membrane aggregate adipocyte and endothelial co-culture, MAAECC) for the analysis of communication between the two cell types. EC-adipocyte communication in this system was validated by omics analyses, revealing several altered proteins belonging to pathways such as metabolism, intracellular transport and signal transduction in adipocytes co-cultured with AMvEC. In reverse experiments, induction of several pathways including endothelial development and functions was found in AMvEC co-cultured with adipocytes. In conclusion, we developed a robust method to isolate EC from small quantities of human VAT. Furthermore, the MAAECC system established during the study enables one to study the communication between primary white adipocytes and EC or vice-versa and could also be employed for drug screening.
Collapse
Affiliation(s)
- Vaishali Chaurasiya
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland; Doctoral Programme in Biomedicine, University of Helsinki, Finland.
| | - Dan Duc Pham
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Jukka Harju
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Penttilä
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Birong Zhang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Salla Keskitalo
- Molecular Systems Biology Research Group & Proteomics Unit, HiLIFE Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Finland
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
5
|
Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Baradaran Rahimi V, Heidari R, Askari VR. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother 2023; 165:115263. [PMID: 37541178 DOI: 10.1016/j.biopha.2023.115263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
In addition to the anti-diabetic effect of metformin, a growing number of studies have shown that metformin has some exciting properties, such as anti-oxidative capabilities, anticancer, genomic stability, anti-inflammation, and anti-fibrosis, which have potent, that can treat other disorders other than diabetes mellitus. We aimed to describe and review the protective and antidotal efficacy of metformin against biologicals, chemicals, natural, medications, pesticides, and radiation-induced toxicities. A comprehensive search has been performed from Scopus, Web of Science, PubMed, and Google Scholar databases from inception to March 8, 2023. All in vitro, in vivo, and clinical studies were considered. Many studies suggest that metformin affects diseases other than diabetes. It is a radioprotective and chemoprotective drug that also affects viral and bacterial diseases. It can be used against inflammation-related and apoptosis-related abnormalities and against toxins to lower their effects. Besides lowering blood sugar, metformin can attenuate the effects of toxins on body weight, inflammation, apoptosis, necrosis, caspase-3 activation, cell viability and survival rate, reactive oxygen species (ROS), NF-κB, TNF-α, many interleukins, lipid profile, and many enzymes activity such as catalase and superoxide dismutase. It also can reduce the histopathological damages induced by many toxins on the kidneys, liver, and colon. However, clinical trials and human studies are needed before using metformin as a therapeutic agent against other diseases.
Collapse
Affiliation(s)
- Amirhossein Malaekeh-Nikouei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Shokri-Naei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobhan Karbasforoushan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Qian LL, Liu XY, Li XY, Yang F, Wang RX. Effects of Electrical Remodeling on Atrial Fibrillation in Diabetes Mellitus. Rev Cardiovasc Med 2023; 24:3. [PMID: 39076858 PMCID: PMC11270397 DOI: 10.31083/j.rcm2401003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/31/2024] Open
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias in medical practice. Diabetes mellitus (DM) is one of the independent risk factors for atrial fibrillation. The increased morbility of atrial fibrillation in diabetes mellitus is related to both structural and electrical remodeling of atrium. Based on studies of atrial electrophysiological changes in diabetes mellitus, this article focuses on the electrical remodeling of atrial cardiomyocytes, including remodeling of sodium channels, calcium channels, potassium channels and other channels, to provide the basis for the clinical management of antiarrhythmic drugs in diabetic patients with atrial fibrillation.
Collapse
Affiliation(s)
- Ling-ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Xiao-yu Liu
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Xiao-yan Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Fan Yang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Weiss M, Nikisher B, Haran H, Tefft K, Adams J, Edwards JG. High throughput screen of small molecules as potential countermeasures to galactic cosmic radiation induced cellular dysfunction. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:76-87. [PMID: 36336373 DOI: 10.1016/j.lssr.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
Space travel increases galactic cosmic ray exposure to flight crews and this is significantly elevated once travel moves beyond low Earth orbit. This includes combinations of high energy protons and heavy ions such as 56Fe or 16O. There are distinct differences in the biological response to low-energy transfer (x-rays) or high-energy transfer (High-LET). However, given the relatively low fluence rate of exposure during flight operations, it might be possible to manage these deleterious effects using small molecules currently available. Virtually all reports to date examining small molecule management of radiation exposure are based on low-LET challenges. To that end an FDA approved drug library (725 drugs) was used to perform a high throughput screen of cultured cells following exposure to galactic cosmic radiation. The H9c2 myoblasts, ES-D3 pluripotent cells, and Hy926 endothelial cell lines were exposed to a single exposure (75 cGy) using the 5-ion GCRsim protocol developed at the NASA Space Radiation Laboratory (NSRL). Following GCR exposure cells were maintained for up to two weeks. For each drug (@10µM), a hierarchical cumulative score was developed incorporating measures of mitochondrial and cellular function, oxidant stress and cell senescence. The top 160 scores were retested following a similar protocol using 1µM of each drug. Within the 160 drugs, 33 are considered to have an anti-inflammatory capacity, while others also indirectly suppressed pro-inflammatory pathways or had noted antioxidant capacity. Lead candidates came from different drug classes that included angiotensin converting enzyme inhibitors or AT1 antagonists, COX2 inhibitors, as well as drugs mediated by histamine receptors. Surprisingly, different classes of anti-diabetic medications were observed to be useful including sulfonylureas and metformin. Using a hierarchical decision structure, we have identified several lead candidates. That no one drug or even drug class was completely successful across all parameters tested suggests the complexity of managing the consequences of galactic cosmic radiation exposure.
Collapse
Affiliation(s)
- M Weiss
- Department of Physiology, New York Medical College, Valhalla, New York
| | - B Nikisher
- Department of Physiology, New York Medical College, Valhalla, New York
| | - H Haran
- Department of Physiology, New York Medical College, Valhalla, New York
| | - K Tefft
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J Adams
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York.
| |
Collapse
|
8
|
Schranc Á, Fodor GH, Südy R, Tolnai J, Babik B, Peták F. Exaggerated Ventilator-Induced Lung Injury in an Animal Model of Type 2 Diabetes Mellitus: A Randomized Experimental Study. Front Physiol 2022; 13:889032. [PMID: 35733997 PMCID: PMC9207264 DOI: 10.3389/fphys.2022.889032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Although ventilator-induced lung injury (VILI) often develops after prolonged mechanical ventilation in normal lungs, pulmonary disorders may aggravate the development of adverse symptoms. VILI exaggeration can be anticipated in type 2 diabetes mellitus (T2DM) due to its adverse pulmonary consequences. Therefore, we determined whether T2DM modulates VILI and evaluated how T2DM therapy affects adverse pulmonary changes. Rats were randomly assigned into the untreated T2DM group receiving low-dose streptozotocin with high-fat diet (T2DM, n = 8), T2DM group supplemented with metformin therapy (MET, n = 8), and control group (CTRL, n = 8). In each animal, VILI was induced by mechanical ventilation for 4 h with high tidal volume (23 ml/kg) and low positive end-expiratory pressure (0 cmH2O). Arterial and venous blood samples were analyzed to measure the arterial partial pressure of oxygen (PaO2), oxygen saturation (SaO2), and the intrapulmonary shunt fraction (Qs/Qt). Airway and respiratory tissue mechanics were evaluated by forced oscillations. Lung histology samples were analyzed to determine injury level. Significant worsening of VILI, in terms of PaO2, SaO2, and Qs/Qt, was observed in the T2DM group, without differences in the respiratory mechanics. These functional changes were also reflected in lung injury score. The MET group showed no difference compared with the CTRL group. Gas exchange impairment without significant mechanical changes suggests that untreated diabetes exaggerates VILI by augmenting the damage of the alveolar–capillary barrier. Controlled hyperglycemia with metformin may reduce the manifestations of respiratory defects during prolonged mechanical ventilation.
Collapse
Affiliation(s)
- Álmos Schranc
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Gergely H. Fodor
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Roberta Südy
- Unit for Anesthesiological Investigations, Department of Acute Medicine, University of Geneva, Geneva, Switzerland
| | - József Tolnai
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Barna Babik
- Department of Anesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- *Correspondence: Ferenc Peták,
| |
Collapse
|
9
|
Metabolic regulation and dysregulation of endothelial small conductance calcium activated potassium channels. Eur J Cell Biol 2022; 101:151208. [DOI: 10.1016/j.ejcb.2022.151208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
|
10
|
Schranc A, Fodor GH, Sudy R, Ballok B, Kulcsar R, Tolnai J, Babik B, Petak F. LUNG AND CHEST WALL MECHANICAL PROPERTIES IN METFORMIN-TREATED AND UNTREATED MODELS OF TYPE 2 DIABETES. J Appl Physiol (1985) 2022; 132:1115-1124. [PMID: 35297689 DOI: 10.1152/japplphysiol.00724.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adverse respiratory consequences of type-2 diabetes mellitus (T2DM) may reflect compromised lung function and/or alterations of the chest wall because of skeletal muscle stiffening. We assessed the separate contributions of these compartments to respiratory complications in diabetes and explored the effects of metformin on respiratory abnormalities. Experiments were performed in untreated rats (control, n=7), high-fat diet-fed rats receiving streptozotocin (T2DM, n=7), and metformin-treated diabetic rats (MET, n=6). Newtonian resistance, tissue damping, and elastance were separately assessed for lung and chest wall components by measuring the esophageal pressure during forced oscillations at low (0 cmH2O), medium (3 cmH2O), and high positive end-expiratory pressure (PEEP) (6 cmH2O). Tissue hysteresivity was calculated as damping/elastance. Blood gas parameters were used to assess gas exchange, and lung histology was performed to characterize collagen expression. T2DM at low PEEP compromised airway and lung tissue mechanics in association with gas-exchange defects and collagen overexpression. Abnormal chest wall mechanics in T2DM was indicated only by decreased tissue hysteresivity. No difference in lung or chest wall mechanics, gas exchange, or lung histology was observed between the MET and control groups. These findings suggest the primary involvement of the pulmonary system in the respiratory consequences of T2DM, with chest wall properties only disturbed by a shift toward the dominance of elastic forces at low PEEP. The adequacy of metformin to treat the adverse respiratory consequences of diabetes was also revealed, in addition to its well-established beneficial effects on other organs.
Collapse
Affiliation(s)
- Almos Schranc
- Department of Medical Physics and Informatics, grid.9008.1University of Szeged, Szeged, Hungary
| | - Gergely H Fodor
- Department of Medical Physics and Informatics, grid.9008.1University of Szeged, Szeged, Hungary
| | - Roberta Sudy
- Department of Medical Physics and Informatics, grid.9008.1University of Szeged, Switzerland
| | - Bence Ballok
- Department of Medical Physics and Informatics, grid.9008.1University of Szeged, Szeged, Hungary
| | - Richard Kulcsar
- Department of Medical Physics and Informatics, grid.9008.1University of Szeged, Szeged, Hungary
| | - József Tolnai
- Department of Medical Physics and Informatics, grid.9008.1University of Szeged, Szeged, Hungary
| | - Barna Babik
- Department of Anesthesiology and Intensive Therapy, grid.9008.1University of Szeged, Szeged, Hungary
| | - Ferenc Petak
- Department of Medical Physics and Informatics, grid.9008.1University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Saeedi M, Mehranfar F, Ghorbani F, Eskandari M, Ghorbani M, Babaeizad A. Review of pharmaceutical and therapeutic approaches for type 2 diabetes and related disorders. Recent Pat Biotechnol 2022; 16:188-213. [PMID: 35088682 DOI: 10.2174/1872208316666220128102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
One of the essential diseases that are increasing in the world is type 2 diabetes (T2D), which many people around the world live with this disease. Various studies have revealed that insulin resistance, lessened insulin production has been associated with T2D, and they also show that this disease can have a genetic origin and is associated with different genes such as KCNQ1, PPAR-γ, calpain-10, ADIPOR2, TCF7L2 that can be utilized as a therapeutic target. Different therapeutic approaches and strategies such as exercise and diet, pharmacological approaches, and utilization of nanoparticles in drug delivery and gene therapy can be effective in the treatment and control of T2D. Glucagon-like peptide 1 (GLP-1) and sodium glucose cotransporter-2 (SGLT2) have both been considered as drug classes in the treatment of T2D and T2D-related diseases such as cardiovascular disease and renal disease, and have considerable influences such as diminished cardiovascular mortality in individuals with T2D, ameliorate postprandial glycaemia, ameliorate fasting glycaemia, and diminish body weight on disease treatment and improvement process. In the present review article, we have made an attempt to explore the risk factors, Genes, and diseases associated with T2D, therapeutic approaches in T2D, the influences of drugs such as Dapagliflozin, Metformin, Acarbose, Januvia (Sitagliptin), and Ertugliflozin on T2D in clinical trials and animal model studies. Research in clinical trials has promising results that support the role of these drug approaches in T2D prophylaxis and ameliorate safety even though additional clinical research is still obligatory.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Department of Hematology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehranfar
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fateme Ghorbani
- Department of immunology, Semnan university of Medical sciences, Semnan, Iran
| | - Mohammadali Eskandari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ghorbani
- Department of Hematology, Mashhad University of Medical sciences, Mashhad, Iran
| | - Ali Babaeizad
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
12
|
Zhao L, Li Y, Xu T, Lv Q, Bi X, Liu X, Fu G, Zou Y, Ge J, Chen Z, Zhang W. Dendritic cell-mediated chronic low-grade inflammation is regulated by the RAGE-TLR4-PKCβ 1 signaling pathway in diabetic atherosclerosis. Mol Med 2022; 28:4. [PMID: 35062863 PMCID: PMC8780245 DOI: 10.1186/s10020-022-00431-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background The unique mechanism of diabetic atherosclerosis has been a central research focus. Previous literature has reported that the inflammatory response mediated by dendritic cells (DCs) plays a vital role in the progression of atherosclerosis. The objective of the study was to explore the role of DCs in diabetes mellitus complicated by atherosclerosis. Methods ApoE−/− mice and bone marrow-derived DCs were used for in vivo and in vitro experiments, respectively. Masson’s staining and Oil-red-O staining were performed for atherosclerotic lesion assessment. The content of macrophages and DCs in plaque was visualized by immunohistochemistry. The expression of CD83 and CD86 were detected by flow cytometry. The fluctuations in the RNA levels of cytokines, chemokines, chemokine receptors and adhesions were analyzed by quantitative RT-PCR. The concentrations of IFN-γ and TNF-α were calculated using ELISA kits and the proteins were detected using western blot. Coimmunoprecipitation was used to detect protein–protein interactions. Results Compared with the ApoE−/− group, the volume of atherosclerotic plaques in the aortic root of diabetic ApoE−/− mice was significantly increased, numbers of macrophages and DCs were increased, and the collagen content in plaques decreased. The expression of CD83 and CD86 were significantly upregulated in splenic CD11c+ DCs derived from mice with hyperglycemia. Increased secretion of cytokines, chemokines, chemokine receptors, intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) also were observed. The stimulation of advanced glycation end products plus oxidized low-density lipoprotein, in cultured BMDCs, further activated toll-like receptor 4, protein kinase C and receptor of AGEs, and induced immune maturation of DCs through the RAGE-TLR4-PKCβ1 signaling pathway that was bound together by intrinsic structures on the cell membrane. Administering LY333531 significantly increased the body weight of diabetic ApoE−/− mice, inhibited the immune maturation of spleen DCs, and reduced atherosclerotic plaques in diabetic ApoE−/− mice. Furthermore, the number of DCs and macrophages in atherosclerotic plaques was significantly reduced in the LY333531 group, and the collagen content was increased. Conclusions Diabetes mellitus aggravates chronic inflammation, and promotes atherosclerotic plaques in conjunction with hyperlipidemia, which at least in part through inducing the immune maturation of DCs, and its possible mechanism of action is through the RAGE-TLR4-pPKCβ1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00431-6.
Collapse
Affiliation(s)
- Liding Zhao
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ya Li
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Tian Xu
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Qingbo Lv
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xukun Bi
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xianglan Liu
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Guosheng Fu
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Zhaoyang Chen
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, 350001, People's Republic of China.
| | - Wenbin Zhang
- Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No 3 East of Qinchun Road, Hangzhou, Zhejiang, 310000, People's Republic of China. .,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Kubasov IV, Stepanov AV, Panov AA, Chistyakova OV, Sukhov IB, Dobretsov MG. Role of Potassium Currents in the Formation of After-Hyperpolarization Phase of Extracellular Action Potentials Recorded from the Control and Diabetic Rat Heart Ventricular Myocytes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Nong A, Li Q, Huang Z, Xu Y, He K, Jia Y, Cen Z, Liao L, Huang Y. MicroRNA miR-126 attenuates brain injury in septic rats via NF-κB signaling pathway. Bioengineered 2021; 12:2639-2648. [PMID: 34115555 PMCID: PMC8806573 DOI: 10.1080/21655979.2021.1937905] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to investigate the impact and mechanism of microRNA miR-126 on brain injury induced by blood-brain barrier (BBB) damage in septic rats. We used cecal ligation and perforation (CLP) to create a rat model of sepsis. The experimental rats were randomly divided into Control group, CLP group, CLP + miR-NC group, CLP + miR-126 group and CLP + miR-126 + NF-κB pathway agonist (PMA) group. MiR-126 expressed in the brain tissue of CLP rats was down-regulated by qRT-PCR. Upregulation of miR-126 in CLP rats could improve brain injury and BBB marker protein level, reduce brain water content, Evans blue extravasation, inflammation, and excessive oxidative stress. This could also result in an inhibition of NF-κB signaling pathway activity. In conclusion, miR-126 overexpression can prevent brain injury caused by BBB damage via the inhibition of NF-κB signaling pathway activity.
Collapse
Affiliation(s)
- Anna Nong
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Qingfeng Li
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Zhijing Huang
- Department of Pediatric Internal Medicine Ward 1, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Yunan Xu
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Kebin He
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Yuying Jia
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Zhenyi Cen
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Lianghua Liao
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Yueyan Huang
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi China
| |
Collapse
|
15
|
Chen X, Ma J, Yao Y, Zhu J, Zhou Z, Zhao R, Dong X, Gao W, Zhang S, Huang S, Chen L. Metformin prevents BAFF activation of Erk1/2 from B-cell proliferation and survival by impeding mTOR-PTEN/Akt signaling pathway. Int Immunopharmacol 2021; 96:107771. [PMID: 34004440 DOI: 10.1016/j.intimp.2021.107771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
B-cell activating factor (BAFF) is an essential cytokine for B-cell maturation, differentiation and survival, and excess BAFF induces aggressive or neoplastic B-cell disorders and contributes to development of autoimmune diseases. Metformin, an anti-diabetic drug, has recently garnered a great attention due to its anti-proliferative and immune-modulatory features. However, little is known regarding the effect of metformin on BAFF-stimulated B cells. Here, we show that metformin attenuated human soluble BAFF (hsBAFF)-induced cell proliferation and survival by blocking the Erk1/2 pathway in normal and B-lymphoid (Raji) cells. Pretreatment with U0126, knockdown of Erk1/2, or expression of dominant negative MKK1 strengthened metformin's inhibition of hsBAFF-activated Erk1/2 and B-cell proliferation/viability, whereas expression of constitutively active MKK1 rendered high resistance to metformin. Further investigation found that overexpression of wild type PTEN or ectopic expression of dominant negative Akt potentiated metformin's suppression of hsBAFF-induced Erk1/2 activation and proliferation/viability in Raji cells, implying a PTEN/Akt-dependent mechanism involved. Furthermore, we noticed that metformin hindered hsBAFF-activated mTOR pathway in B cells. Inhibition of mTOR with rapamycin or knockdown of mTOR enhanced metformin's suppression of hsBAFF-induced phosphorylation of S6K1, PTEN, Akt, and Erk1/2, as well as B-cell proliferation/viability. These results indicate that metformin prevents BAFF activation of Erk1/2 from cell proliferation and survival by impeding mTOR-PTEN/Akt signaling pathway in normal and neoplastic B-lymphoid cells. Our findings support that metformin has a great potential for prevention of excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Jing Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Yajie Yao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiawei Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wei Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shuangquan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
16
|
Cai X, He L, Zhou G, Li S, Liao X. Mogroside IIe Ameliorates Cardiomyopathy by Suppressing Cardiomyocyte Apoptosis in a Type 2 Diabetic Model. Front Pharmacol 2021; 12:650193. [PMID: 34012399 PMCID: PMC8128068 DOI: 10.3389/fphar.2021.650193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
Mogroside IIe is primarily present in the unripe fruit of Siraitia grosvenorii (Swingle) C. Jeffrey, and it is the predominant saponin component. The purpose of this study was to investigate the effects of mogroside IIe (MGE IIe) on myocardial cell apoptosis in diabetic cardiomyopathy (DCM) rats by establishing a high-sugar and high-fat diet–induced model of type 2 diabetes (T2D) in SD rats and a homocysteine (Hcy)-induced apoptotic model in rat H9c2 cardiomyocytes. The results showed that MGE IIe decreased the levels of fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) levels, but increased the levels of high-density lipoprotein (HDL) in the SD rat model. Furthermore, MGE IIe decreased the levels of lactate dehydrogenase 2 (LDH2), creatine phosphokinase isoenzyme (CKMB), and creatine kinase (CK), and improved heart function. Additionally, MGE IIe inhibited the secretion of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α), improved myocardial morphology, and reduced myocardial apoptosis in the SD rat model. Furthermore, MGE IIe inhibited the mRNA and protein expression of active-caspase-3, -8, -9, -12, and Bax and Cyt-C, and promoted the mRNA and protein expression of Bcl-2 in the SD rat model. Furthermore, MGE IIe suppressed homocysteine-induced apoptosis of H9c2 cells by inhibiting the activity of caspases-3, -8, -9, and -12. In conclusion, MGE IIe inhibits the apoptotic pathway, thereby relieving DCM in vivo and in vitro.
Collapse
Affiliation(s)
- Xin Cai
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Lingmin He
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Guoao Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shenghua Li
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xinghua Liao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Sun T, Liu J, Xie C, Yang J, Zhao L, Yang J. Metformin attenuates diabetic renal injury via the AMPK-autophagy axis. Exp Ther Med 2021; 21:578. [PMID: 33850550 PMCID: PMC8027752 DOI: 10.3892/etm.2021.10010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a clinical condition characterized by kidney damage that is observed in patients with diabetes. DN is the main cause of end-stage renal disease (ESRD), which is the final stage of chronic kidney disease. Increasing evidence suggests that metformin, a characteristic oral hypoglycemic drug used for treating diabetes, exerts beneficial effects on various medical conditions and diseases, including cancer, cardiovascular diseases and thyroid-related disorders. However, the impact of metformin on DN remains unknown. The present study investigated whether metformin could attenuate the inflammatory response, fibrosis and increased oxidative stress observed during DN in diabetic/dyslipidemic (db/db) mice. The kidneys of the mice (12-16 weeks) were isolated for immunohistochemistry and western blotting. The results demonstrated that metformin significantly reduced the oxidative damage and fibrosis in the kidneys of db/db mice. Furthermore, metformin treatment significantly inhibited the generation of inflammatory cytokines, including TNF-α and IL-1β in db/db mice. These effects were induced by the activation of the AMP-activated protein kinase (AMPK) pathway, which was mediated by increased phosphorylation of AMPK and mammalian target of rapamycin (mTOR), resulting in autophagy and the simultaneous decrease in reactive oxygen species production, cell apoptosis and inflammatory response. These findings suggested that metformin may reduce DN damage via regulation of the AMPK-mTOR-autophagy axis and indicated that metformin may be considered as a potential target in the treatment of DN.
Collapse
Affiliation(s)
- Tingli Sun
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Jizhang Liu
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Changying Xie
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Jun Yang
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Lijie Zhao
- Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Jingbo Yang
- Department of Nephrology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| |
Collapse
|
18
|
Qi MM, Qian LL, Wang RX. Modulation of SK Channels: Insight Into Therapeutics of Atrial Fibrillation. Heart Lung Circ 2021; 30:1130-1139. [PMID: 33642173 DOI: 10.1016/j.hlc.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 11/19/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in the world. Although much technological progress in the treatment of AF has been made, there is an urgent need for better treatment of AF due to its high rates of morbidity and mortality. The anti-arrhythmic drugs currently approved for marketing have significant limitations and side effects such as life-threatening ventricular arrhythmias and hypotension. The small conductance Ca2+-activated K+ channels (SK channels) are dependent on intracellular Ca2+ concentrations, which tightly integrate with membrane potential. Given the predominant expression in the atria of many species, including humans, they are now emerging as a therapeutic target for treating AF. This review aimed to illustrate the characteristics and function of SK channels. Moreover, it discussed the regulation of SK channels and their potential as a therapeutic target of AF.
Collapse
Affiliation(s)
- Miao-Miao Qi
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
19
|
Ostropolets A, Elias PA, Reyes MV, Wan EY, Pajvani UB, Hripcsak G, Morrow JP. Metformin Is Associated With a Lower Risk of Atrial Fibrillation and Ventricular Arrhythmias Compared With Sulfonylureas: An Observational Study. Circ Arrhythm Electrophysiol 2021; 14:e009115. [PMID: 33554609 DOI: 10.1161/circep.120.009115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Administration, Oral
- Atrial Fibrillation/diagnosis
- Atrial Fibrillation/etiology
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/prevention & control
- Databases, Factual
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/drug therapy
- Drug Therapy, Combination
- Humans
- Hypoglycemic Agents/administration & dosage
- Metformin/administration & dosage
- Retrospective Studies
- Risk Assessment
- Risk Factors
- Sulfonylurea Compounds/administration & dosage
- Tachycardia, Ventricular/diagnosis
- Tachycardia, Ventricular/etiology
- Tachycardia, Ventricular/physiopathology
- Tachycardia, Ventricular/prevention & control
- Time Factors
- Treatment Outcome
- Ventricular Fibrillation/diagnosis
- Ventricular Fibrillation/etiology
- Ventricular Fibrillation/physiopathology
- Ventricular Fibrillation/prevention & control
Collapse
Affiliation(s)
- Anna Ostropolets
- Department of Biomedical Informatics (A.O., G.H.), College of Physicians and Surgeons of Columbia University, NY
| | - Pierre A Elias
- Department of Medicine (P.A.E., M.V.R., E.Y.W., U.B.P., G.H., J.P.M.), College of Physicians and Surgeons of Columbia University, NY
| | - Michael V Reyes
- Department of Medicine (P.A.E., M.V.R., E.Y.W., U.B.P., G.H., J.P.M.), College of Physicians and Surgeons of Columbia University, NY
| | - Elain Y Wan
- Department of Medicine (P.A.E., M.V.R., E.Y.W., U.B.P., G.H., J.P.M.), College of Physicians and Surgeons of Columbia University, NY
| | - Utpal B Pajvani
- Department of Medicine (P.A.E., M.V.R., E.Y.W., U.B.P., G.H., J.P.M.), College of Physicians and Surgeons of Columbia University, NY
| | - George Hripcsak
- Department of Biomedical Informatics (A.O., G.H.), College of Physicians and Surgeons of Columbia University, NY
- Department of Medicine (P.A.E., M.V.R., E.Y.W., U.B.P., G.H., J.P.M.), College of Physicians and Surgeons of Columbia University, NY
| | - John P Morrow
- Department of Medicine (P.A.E., M.V.R., E.Y.W., U.B.P., G.H., J.P.M.), College of Physicians and Surgeons of Columbia University, NY
| |
Collapse
|
20
|
Zhang S, Li Y, Tu Y. Lidocaine attenuates CFA-induced inflammatory pain in rats by regulating the MAPK/ERK/NF-κB signaling pathway. Exp Ther Med 2021; 21:211. [PMID: 33500701 PMCID: PMC7818540 DOI: 10.3892/etm.2021.9643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Lidocaine is a commonly used local anesthetic that also confers analgesic effects, resistance to hyperalgesia and anti-inflammatory properties. The present study aimed to explore the effects of lidocaine on complete Freund's adjuvant (CFA)-induced inflammatory pain. In the present study, rats were subcutaneously injected with CFA to investigate the molecular mechanisms associated with lidocaine in an inflammation-induced pain model. Firstly, CFA was subcutaneously injected into the paws of Sprague-Dawley rats, following which lidocaine or saline and the ERK agonist recombinant human epidermal growth factor (rh-EGF) were injected via the tail vein. Rat behavior was then assessed at 0 and 4 h, 1, 4, 7 and 14 days after CFA treatment. Proinflammatory cytokine levels in the serum were measured using ELISA. Western blotting was performed to detect the protein levels of phosphorylated (p)-ERK1/2, ERK1/2 and NF-κB subunits p-p65 and p65. Reverse transcription-quantitative PCR was used to measure the mRNA expression of ERK1/2 and p65 in rat spinal cord tissues. The results showed that injection of CFA significantly reduced the mechanical withdrawal threshold, thermal withdrawal latency and the frequency of responses to cold stimulation in rats, whilst promoting tumor necrosis factor-α, interleukin (IL)-1β, IL-6 levels in addition to ERK1/2, p65 protein phosphorylation. These effects were alleviated by lidocaine treatment. Furthermore, treatment with rh-EGF reversed the protective effects of lidocaine on inflammatory pain caused by CFA. In conclusion, lidocaine inhibits the inflammatory response and pain through the MAPK/ERK/NF-κB pathway in a rat model of pain induced by CFA.
Collapse
Affiliation(s)
- Shuli Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yan Li
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yingjun Tu
- Department of Orthopaedics, Yili Friendship Hospital, Yining, Xinjiang 835000, P.R. China
| |
Collapse
|
21
|
The regulation of the small-conductance calcium-activated potassium current and the mechanisms of sex dimorphism in J wave syndrome. Pflugers Arch 2021; 473:491-506. [PMID: 33411079 DOI: 10.1007/s00424-020-02500-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Apamin-sensitive small-conductance calcium-activated potassium (SK) current (IKAS) plays an important role in cardiac repolarization under a variety of physiological and pathological conditions. The regulation of cardiac IKAS relies on SK channel expression, intracellular Ca2+, and interaction between SK channel and intracellular Ca2+. IKAS activation participates in multiple types of arrhythmias, including atrial fibrillation, ventricular tachyarrhythmias, and automaticity and conduction abnormality. Recently, sex dimorphisms in autonomic control have been noticed in IKAS activation, resulting in sex-differentiated action potential morphology and arrhythmogenesis. This review provides an update on the Ca2+-dependent regulation of cardiac IKAS and the role of IKAS on arrhythmias, with a special focus on sex differences in IKAS activation. We propose that sex dimorphism in autonomic control of IKAS may play a role in J wave syndrome.
Collapse
|
22
|
Xian S, Zeng Z. Signalling pathways implicated in the pathogenesis of rheumatic heart disease (Review). Exp Ther Med 2020; 21:76. [PMID: 33365076 PMCID: PMC7716644 DOI: 10.3892/etm.2020.9508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Rheumatic heart disease (RHD) is frequently encountered in underdeveloped areas and primarily affects patients under the age of 40 years old. The pathogenesis of RHD has yet to be fully elucidated and surgical treatment remains the only option, which is expensive and technically demanding for patients in less developed areas. Signalling pathways are crucial for the occurrence and development of several diseases, and researchers worldwide have made progress in elucidating the signalling pathways associated with the pathogenesis of RHD. The aim of the present review was to discuss 6 signalling pathways implicated in the pathogenesis of RHD, summarize the methods and progress of these studies and propose future research directions. Important information on the pathogenesis of RHD according to the current progress of signalling pathway studies was also summarized, in the hope that this review may serve as a reference for future research on the signalling pathways involved in the pathogenesis of RHD.
Collapse
Affiliation(s)
- Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention and Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention and Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
23
|
Li X, Wang L, Yang X, Huang C. Metformin Attenuates Ischemia-reperfusion Injury of Fatty Liver in Rats Through Inhibition of the TLR4/NF-κB Axis. Balkan Med J 2020; 37:196-202. [PMID: 32270948 PMCID: PMC7285667 DOI: 10.4274/balkanmedj.galenos.2020.2019.9.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Donor organs for liver transplantation may often have fatty liver disease, which confers a higher sensitivity to ischemia/reperfusion injury. At present, there is no effective treatment for the condition. Evidence has suggested that metformin, the first-line medication for diabetes, has protective effects against many disorders. However, the potential role of metformin in ischemia/reperfusion injury in fatty liver disease remains unclear. Aims To examine the effect of metformin treatment during ischemia/reperfusion injury in fatty liver and determine the possible mechanisms. Study Design Animal experimentation. Methods Sprague-Dawley male rats were fed a high-fat diet (520 kcal/100 g) for 14 weeks and then were subjected to the orthotopic autologous liver transplantation model. Sections of liver tissue were stained with hematoxylin and eosin to visualize the damage. Blood and liver samples were used to analyze the related proteins and components involved in the inflammatory signaling pathway. Results We found that metformin significantly ameliorated the ischemia/reperfusion injury of the fatty liver through a reduction in alanine aminotransferase/aspartate aminotransferase concentrations in the serum and a decrease in dead cells, as shown by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay (p<0.05). In addition, metformin significantly attenuated interleukin (IL)-6, IL-1β, and tumor necrosis factor-α production and increased the expression of active caspase-3 and Bax in the liver (p<0.05). Mechanistically, metformin suppressed the activation of toll-like receptor 4 (TLR4)/NF-κB signaling (p<0.05), resulting in a decreased inflammatory response and apoptosis. Conclusion Our findings demonstrated that metformin attenuated ischemia/reperfusion injury in fatty liver disease via the TLR4/NF-κB axis, suggesting that metformin could have potential therapeutic applications in ischemia/reperfusion injury associated with liver transplantation.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of General Surgery, Affiliated Hospital of Jiujiang University Jiangxi, China
| | - Liangliang Wang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiangxi, China
| | - Xiaoguang Yang
- Department of Ultrasonic, Affiliated Hospital of Jiujiang University, Jiangxi, China
| | - Chunyan Huang
- Department of Hospitality, Affiliated Hospital of Jiujiang University, Jiangxi, China
| |
Collapse
|
24
|
Yesilyurt ZE, Erdogan BR, Karaomerlioglu I, Muderrisoglu AE, Michel MC, Arioglu-Inan E. Urinary Bladder Weight and Function in a Rat Model of Mild Hyperglycemia and Its Treatment With Dapagliflozin. Front Pharmacol 2019; 10:911. [PMID: 31474866 PMCID: PMC6706456 DOI: 10.3389/fphar.2019.00911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
Hypertrophy and dysfunction of the urinary bladder are consistently observed in animal models of type 1 and less consistently in those of type 2 diabetes. We have tested the effects of mild hyperglycemia (n = 10 per group) in a randomized, blinded study and, in a blinded pilot study, of type 2 diabetes (n = 6 per group) and its treatment with dapagliflozin (1 mg/kg per day) on weight, contraction, and relaxation of the rat bladder. Based on a combination of high-fat diet and a low dose of streptozotocin, animals in the main study reached a mean peak blood glucose level of about 300 mg/dl, which declined to 205 mg/dl at study end. This was associated with a small, if any, increase in bladder weight. In a pooled analysis of all animals of the main and the pilot study, we detected a correlation of moderate strength between blood glucose and bladder weight (r2 = 0.2013; P = 0.0003 for Pearson correlation coefficient). Neither the main nor the pilot study found evidence for an altered contractility (responses to carbachol or KCl) or relaxation (responses to isoprenaline, fenoterol, CL 316,243, or forskolin). Treatment with dapagliflozin in the absence of hyperglycemia increased diuresis in the main study by 43% relative to control and increased bladder weight by 15% in the pooled groups of both studies (post hoc analysis). We conclude that mild hyperglycemia has no major effects on bladder hypertrophy or function.
Collapse
Affiliation(s)
| | - Betül Rabia Erdogan
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | - Irem Karaomerlioglu
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | | | | | - Ebru Arioglu-Inan
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|