1
|
DiMaria S, Mangano N, Bruzzese A, Bartula B, Parikh S, Costa A. Genetic Variation and Sex-Based Differences: Current Considerations for Anesthetic Management. Curr Issues Mol Biol 2025; 47:202. [PMID: 40136457 PMCID: PMC11941548 DOI: 10.3390/cimb47030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Biomedical sciences have made immense progress and numerous discoveries aimed at improving the quality of life and life expectancy in modern times. Anesthesiology is typically tailored to individual patients as its clinical effects depend on multiple factors, including a patient's physiological and pathological states, age, environmental exposures, and genetic variations. Sex differences are also paramount for a complete understanding of the effects of specific anesthetic medications on men and women. However, women-specific research and the inclusion of women in clinical trials, specifically during child-bearing years, remain disproportionately low compared to the general population at large. This review describes and summarizes genetic variations, including sex differences, that affect responses to common anesthetic medications such as volatile anesthetics, induction agents, neuromuscular blocking drugs, opioids, and local anesthetics. It also discusses the influence of genetic variations on anesthesia outcomes, such as postoperative nausea and vomiting, allergic reactions, pain, depth of anesthesia, awareness under anesthesia and recall, and postoperative delirium.
Collapse
Affiliation(s)
- Stephen DiMaria
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Nicholas Mangano
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Adam Bruzzese
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.B.); (B.B.)
| | - Benjamin Bartula
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.B.); (B.B.)
| | - Shruti Parikh
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Ana Costa
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| |
Collapse
|
2
|
Xu F, Liu T, Liu H, Deng J, He S, Lu Z, Zhang H, Dong H. Effect of remote ischemic preconditioning on perioperative neurocognitive disorder in elderly patients undergoing major surgery and associated genetic variant analysis: a randomized clinical trial. Perioper Med (Lond) 2025; 14:15. [PMID: 39910541 DOI: 10.1186/s13741-025-00497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE To investigate whether remote ischemic preconditioning (RIPC) could reduce the incidence of perioperative neurocognitive disorder (PND) in elderly patients undergoing major surgery (> 2 h), to assess the potential of myeloid differentiation factor 2 (MD2) and cystatin C as biomarkers and to identify key genetic variants associated with PND. METHODS From August 2020, 250 patients scheduled for major surgeries under general anesthesia were screened and 120 patients were randomly assigned to the control group or the RIPC group. After anesthesia induction, patients in the RIPC group received a blood pressure cuff around their right upper limb, which was pressurized to 200 mmHg to induce ischemia, whereas the cuff in the control group was pressurized to only 60 mmHg. A total of five cycles were repeated with ischemia for five minutes and reperfusion for five minutes. Six neurological tests were performed before and after the surgery to assess the incidence of PND. Serum levels of myeloid differentiation factor 2 (MD2) and Cystatin C and PND-associated single nucleotide polymorphisms were analyzed by ELISA and whole genome sequencing, respectively. This study adhered to CONSORT research guidelines. RESULTS In the RIPC group, the incidence of PND (44%) was comparable to that in the control group (44%, P = 0.982). There was no significant difference in the concentrations of MD2 or cystatin C between the NPND and PND groups. A total of 3877 mutated genes were exclusively identified in PND patients. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these mutated genes are enriched in synapse function. Notably, a Shank3 variant (SNP rs4824145) was included. CONCLUSIONS RIPC had little effect on the incidence of PND in elderly patients who underwent major surgery (> 2 h). MD2 and cystatin C were unable to predict the occurrence of PND. Patients harboring rs4824145 in the Shank3 gene may be more susceptible to PND. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2000035020(07/28/2020)).
Collapse
Affiliation(s)
- Feifei Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University; Key Laboratory of Anesthesiology (FMMU), Ministry of Education; Shaanxi Provincial Clinical Research Center for Anesthesiology Medicine, Xi'an, 710032, China
| | - Tingting Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University; Key Laboratory of Anesthesiology (FMMU), Ministry of Education; Shaanxi Provincial Clinical Research Center for Anesthesiology Medicine, Xi'an, 710032, China
| | - Huiqing Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University; Key Laboratory of Anesthesiology (FMMU), Ministry of Education; Shaanxi Provincial Clinical Research Center for Anesthesiology Medicine, Xi'an, 710032, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University; Key Laboratory of Anesthesiology (FMMU), Ministry of Education; Shaanxi Provincial Clinical Research Center for Anesthesiology Medicine, Xi'an, 710032, China
| | - Shan He
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University; Key Laboratory of Anesthesiology (FMMU), Ministry of Education; Shaanxi Provincial Clinical Research Center for Anesthesiology Medicine, Xi'an, 710032, China
| | - Zhihong Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University; Key Laboratory of Anesthesiology (FMMU), Ministry of Education; Shaanxi Provincial Clinical Research Center for Anesthesiology Medicine, Xi'an, 710032, China.
| | - Haopeng Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University; Key Laboratory of Anesthesiology (FMMU), Ministry of Education; Shaanxi Provincial Clinical Research Center for Anesthesiology Medicine, Xi'an, 710032, China.
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University; Key Laboratory of Anesthesiology (FMMU), Ministry of Education; Shaanxi Provincial Clinical Research Center for Anesthesiology Medicine, Xi'an, 710032, China.
| |
Collapse
|
3
|
Douville NJ, Mathis M, Kheterpal S, Heung M, Schaub J, Naik A, Kretzler M. Perioperative Acute Kidney Injury: Diagnosis, Prediction, Prevention, and Treatment. Anesthesiology 2025; 142:180-201. [PMID: 39527650 PMCID: PMC11620328 DOI: 10.1097/aln.0000000000005215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024]
Abstract
In this review, the authors define acute kidney injury in the perioperative setting, describe the epidemiologic burden, discuss procedure-specific risk factors, detail principles of management, and highlight areas of ongoing controversy and research.
Collapse
Affiliation(s)
- Nicholas J. Douville
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, Michigan; Institute of Healthcare Policy & Innovation, University of Michigan, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Michael Mathis
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, Michigan; Institute of Healthcare Policy & Innovation, University of Michigan, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan
| | - Sachin Kheterpal
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, Michigan
| | - Michael Heung
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jennifer Schaub
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Abhijit Naik
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Matthias Kretzler
- Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan; Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Siew ED, Hellwege JN, Hung AM, Birkelo BC, Vincz AJ, Parr SK, Denton J, Greevy RA, Robinson-Cohen C, Liu H, Susztak K, Matheny ME, Velez Edwards DR. Genome-wide association study of hospitalized patients and acute kidney injury. Kidney Int 2024; 106:291-301. [PMID: 38797326 PMCID: PMC11260539 DOI: 10.1016/j.kint.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024]
Abstract
Acute kidney injury (AKI) is a common and devastating complication of hospitalization. Here, we identified genetic loci associated with AKI in patients hospitalized between 2002-2019 in the Million Veteran Program and data from Vanderbilt University Medical Center's BioVU. AKI was defined as meeting a modified KDIGO Stage 1 or more for two or more consecutive days or kidney replacement therapy. Control individuals were required to have one or more qualifying hospitalizations without AKI and no evidence of AKI during any other observed hospitalizations. Genome-wide association studies (GWAS), stratified by race, adjusting for sex, age, baseline estimated glomerular filtration rate (eGFR), and the top ten principal components of ancestry were conducted. Results were meta-analyzed using fixed effects models. In total, there were 54,488 patients with AKI and 138,051 non-AKI individuals included in the study. Two novel loci reached genome-wide significance in the meta-analysis: rs11642015 near the FTO locus on chromosome 16 (obesity traits) (odds ratio 1.07 (95% confidence interval, 1.05-1.09)) and rs4859682 near the SHROOM3 locus on chromosome 4 (glomerular filtration barrier integrity) (odds ratio 0.95 (95% confidence interval, 0.93-0.96)). These loci colocalized with previous studies of kidney function, and genetic correlation indicated significant shared genetic architecture between AKI and eGFR. Notably, the association at the FTO locus was attenuated after adjustment for BMI and diabetes, suggesting that this association may be partially driven by obesity. Both FTO and the SHROOM3 loci showed nominal evidence of replication from diagnostic-code-based summary statistics from UK Biobank, FinnGen, and Biobank Japan. Thus, our large GWA meta-analysis found two loci significantly associated with AKI suggesting genetics may explain some risk for AKI.
Collapse
Affiliation(s)
- Edward D Siew
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA.
| | - Jacklyn N Hellwege
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adriana M Hung
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Bethany C Birkelo
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Andrew J Vincz
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Sharidan K Parr
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Jason Denton
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA
| | - Robert A Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cassianne Robinson-Cohen
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Hongbo Liu
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael E Matheny
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Digna R Velez Edwards
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Wang L, Wang C, Sun Z, Du A, Shan F, Sun Z. Knockdown of Mmu-circ-0001380 Attenuates Myocardial Ischemia/Reperfusion Injury via Modulating miR-106b-5p/Phlpp2 Axis. J Cardiovasc Transl Res 2023; 16:1064-1077. [PMID: 37474690 DOI: 10.1007/s12265-023-10383-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/22/2023] [Indexed: 07/22/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury induces myocardial damage and dysfunction. Increasing evidence has confirmed that circular RNAs (circRNAs) play crucial roles in regulating MI/R. Mmu-circ-0001380 has identified to be highly expressed in myocardium of MI/R mouse model. However, its biological function and molecular mechanism in MI/R injury are still unclear. Here, we demonstrated that knockdown of cric-0001380 attenuated myocardial injury of MI/R mice. In vitro, silence of circ-0001380 significantly enhanced viability, and inhibited apoptosis and oxidative stress in HL-1 cells under oxygen-glucose deprivation/reoxygenation (OGD/R). Mmu-miR-106b-5p interacted with circ-0001380, and suppressed the expression of pleckstrin homology domain and leucine rich repeat protein phosphatase 2 (Phlpp2). The miR-106b-5p/Phlpp2 axis mediated the effect of circ-0001380 on OGD/R-induced apoptosis through regulating the phosphorylation of p38, and further involved in regulating the viability and oxidative stress of HL-1 cells. In conclusion, circ-0001380 downregulation relieves MI/R injury via regulating the miR-106b-5p/Phlpp2 axis. The present study indicates that mmu-circ-0001380 exacerbates the myocardial ischemia/reperfusion injury through modulating the miR-106b-5p/Phlpp2 axis in vitro and in vivo.
Collapse
Affiliation(s)
- Li Wang
- Department of Cardiology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, Liaoning, China.
| | - Chuanhe Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang, Liaoning, China
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang, Liaoning, China
| | - Aolin Du
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang, Liaoning, China
| | - Fei Shan
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang, Liaoning, China
| | - Zhijun Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Vasunilashorn SM, Dillon ST, Marcantonio ER, Libermann TA. Application of Multiple Omics to Understand Postoperative Delirium Pathophysiology in Humans. Gerontology 2023; 69:1369-1384. [PMID: 37722373 PMCID: PMC10711777 DOI: 10.1159/000533789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
Delirium, an acute change in cognition, is common, morbid, and costly, particularly among hospitalized older adults. Despite growing knowledge of its epidemiology, far less is known about delirium pathophysiology. Initial work understanding delirium pathogenesis has focused on assaying single or a limited subset of molecules or genetic loci. Recent technological advances at the forefront of biomarker and drug target discovery have facilitated application of multiple "omics" approaches aimed to provide a more complete understanding of complex disease processes such as delirium. At its basic level, "omics" involves comparison of genes (genomics, epigenomics), transcripts (transcriptomics), proteins (proteomics), metabolites (metabolomics), or lipids (lipidomics) in biological fluids or tissues obtained from patients who have a certain condition (i.e., delirium) and those who do not. Multi-omics analyses of these various types of molecules combined with machine learning and systems biology enable the discovery of biomarkers, biological pathways, and predictors of delirium, thus elucidating its pathophysiology. This review provides an overview of the most recent omics techniques, their current impact on identifying delirium biomarkers, and future potential in enhancing our understanding of delirium pathogenesis. We summarize challenges in identification of specific biomarkers of delirium and, more importantly, in discovering the mechanisms underlying delirium pathophysiology. Based on mounting evidence, we highlight a heightened inflammatory response as one common pathway in delirium risk and progression, and we suggest other promising biological mechanisms that have recently emerged. Advanced multiple omics approaches coupled with bioinformatics methodologies have great promise to yield important discoveries that will advance delirium research.
Collapse
Affiliation(s)
- Sarinnapha M. Vasunilashorn
- Division of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Simon T. Dillon
- Harvard Medical School, Boston, MA, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, BIDMC, Boston, MA, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, BIDMC, Boston, MA, USA
| | - Edward R. Marcantonio
- Division of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gerontology, Department of Medicine, BIDMC, Boston, MA, USA
| | - Towia A. Libermann
- Harvard Medical School, Boston, MA, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, BIDMC, Boston, MA, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, BIDMC, Boston, MA, USA
| |
Collapse
|
7
|
Hu Y, Jin L, Wang Z. Genome-wide association study of dilated cardiomyopathy-induced heart failure associated with renal insufficiency in a Chinese population. BMC Cardiovasc Disord 2023; 23:335. [PMID: 37391705 PMCID: PMC10314512 DOI: 10.1186/s12872-023-03370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/28/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND As it is unclear whether there is genetic susceptibility to cardiorenal syndrome (CRS), we conducted a genome-wide association study of dilated cardiomyopathy (DCM)-induced heart failure (HF) associated with renal insufficiency (RI) in a Chinese population to identify putative susceptibility variants and culprit genes. METHODS A total of 99 Han Chinese patients with DCM-induced chronic HF were selected and divided into one of three groups, namely, HF with normal renal function (Group 1), HF with mild RI (Group 2) and HF with moderate to severe RI (Group 3). Genomic DNA was extracted from each subject for genotyping. RESULTS According to Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, top 10 lists of molecular function, cell composition and biological process of differential target genes and 15 signalling pathways were discriminated among the three groups. Additionally, sequencing results identified 26 significantly different single-nucleotide polymorphisms (SNPs) in the 15 signalling pathways, including three SNPs (rs57938337, rs6683225 and rs6692782) in ryanodine receptor 2 (RYR2) and two SNPs (rs12439006 and rs16958069) in RYR3. The genotype and allele frequencies of the five SNPs in RYR2 and RYR3 were significantly differential between HF (Group 1) and CRS (Group 2 + 3) patients. CONCLUSION Twenty-six significantly different SNP loci in 17 genes of the 15 KEGG pathways were found in the three patient groups. Among these variants, rs57938337, rs6683225 and rs6692782 in RYR2 and rs12439006 and rs16958069 in RYR3 are associated with RI in Han Chinese patients with heart failure, suggesting that these variants may be used to identify patients susceptible to CRS in the future.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 246 Guangzhou Road, Nanjing, Jiangsu, 210008, China
- Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Liangli Jin
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 246 Guangzhou Road, Nanjing, Jiangsu, 210008, China
- Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 246 Guangzhou Road, Nanjing, Jiangsu, 210008, China.
- Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China.
| |
Collapse
|
8
|
Zhang N, Fan K, Ji H, Ma X, Wu J, Huang Y, Wang X, Gui R, Chen B, Zhang H, Zhang Z, Zhang X, Gong Z, Wang Y. Identification of risk factors for infection after mitral valve surgery through machine learning approaches. Front Cardiovasc Med 2023; 10:1050698. [PMID: 37383697 PMCID: PMC10294678 DOI: 10.3389/fcvm.2023.1050698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
Background Selecting features related to postoperative infection following cardiac surgery was highly valuable for effective intervention. We used machine learning methods to identify critical perioperative infection-related variables after mitral valve surgery and construct a prediction model. Methods Participants comprised 1223 patients who underwent cardiac valvular surgery at eight large centers in China. The ninety-one demographic and perioperative parameters were collected. Random forest (RF) and least absolute shrinkage and selection operator (LASSO) techniques were used to identify postoperative infection-related variables; the Venn diagram determined overlapping variables. The following ML methods: random forest (RF), extreme gradient boosting (XGBoost), Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), AdaBoost, Naive Bayesian (NB), Logistic Regression (LogicR), Neural Networks (nnet) and artificial neural network (ANN) were developed to construct the models. We constructed receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) was calculated to evaluate model performance. Results We identified 47 and 35 variables with RF and LASSO, respectively. Twenty-one overlapping variables were finally selected for model construction: age, weight, hospital stay, total red blood cell (RBC) and total fresh frozen plasma (FFP) transfusions, New York Heart Association (NYHA) class, preoperative creatinine, left ventricular ejection fraction (LVEF), RBC count, platelet (PLT) count, prothrombin time, intraoperative autologous blood, total output, total input, aortic cross-clamp (ACC) time, postoperative white blood cell (WBC) count, aspartate aminotransferase (AST), alanine aminotransferase (ALT), PLT count, hemoglobin (Hb), and LVEF. The prediction models for infection after mitral valve surgery were established based on these variables, and they all showed excellent discrimination performance in the test set (AUC > 0.79). Conclusions Key features selected by machine learning methods can accurately predict infection after mitral valve surgery, guiding physicians in taking appropriate preventive measures and diminishing the infection risk.
Collapse
Affiliation(s)
- Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kexin Fan
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwen Ji
- Department of Anesthesiology, Fuwai Hospital National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xianjun Ma
- Department of Blood Transfusion, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyi Wu
- Department of Transfusion, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xinhua Wang
- Department of Transfusion, Beijing Aerospace General Hospital, Beijing, China
| | - Rong Gui
- Department of Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bingyu Chen
- Department of Transfusion, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Hui Zhang
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
| | - Zugui Zhang
- Institute for Research on Equity and Community Health, Christiana Care Health System, Newark, DE, United States
| | - Xiufeng Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zheng Gong
- Sino-Cellbiomed Institutes of Medical Cell & Pharmaceutical Proteins Qingdao University, Qingdao, Shandong, China
- Department of Basic Medicine, Xiangnan University, Chenzhou, China
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Douville NJ, Larach DB, Lewis A, Bastarache L, Pandit A, He J, Heung M, Mathis M, Wanderer JP, Kheterpal S, Surakka I, Kertai MD. Genetic predisposition may not improve prediction of cardiac surgery-associated acute kidney injury. Front Genet 2023; 14:1094908. [PMID: 37124606 PMCID: PMC10133500 DOI: 10.3389/fgene.2023.1094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background: The recent integration of genomic data with electronic health records has enabled large scale genomic studies on a variety of perioperative complications, yet genome-wide association studies on acute kidney injury have been limited in size or confounded by composite outcomes. Genome-wide association studies can be leveraged to create a polygenic risk score which can then be integrated with traditional clinical risk factors to better predict postoperative complications, like acute kidney injury. Methods: Using integrated genetic data from two academic biorepositories, we conduct a genome-wide association study on cardiac surgery-associated acute kidney injury. Next, we develop a polygenic risk score and test the predictive utility within regressions controlling for age, gender, principal components, preoperative serum creatinine, and a range of patient, clinical, and procedural risk factors. Finally, we estimate additive variant heritability using genetic mixed models. Results: Among 1,014 qualifying procedures at Vanderbilt University Medical Center and 478 at Michigan Medicine, 348 (34.3%) and 121 (25.3%) developed AKI, respectively. No variants exceeded genome-wide significance (p < 5 × 10-8) threshold, however, six previously unreported variants exceeded the suggestive threshold (p < 1 × 10-6). Notable variants detected include: 1) rs74637005, located in the exonic region of NFU1 and 2) rs17438465, located between EVX1 and HIBADH. We failed to replicate variants from prior unbiased studies of post-surgical acute kidney injury. Polygenic risk was not significantly associated with post-surgical acute kidney injury in any of the models, however, case duration (aOR = 1.002, 95% CI 1.000-1.003, p = 0.013), diabetes mellitus (aOR = 2.025, 95% CI 1.320-3.103, p = 0.001), and valvular disease (aOR = 0.558, 95% CI 0.372-0.835, p = 0.005) were significant in the full model. Conclusion: Polygenic risk score was not significantly associated with cardiac surgery-associated acute kidney injury and acute kidney injury may have a low heritability in this population. These results suggest that susceptibility is only minimally influenced by baseline genetic predisposition and that clinical risk factors, some of which are modifiable, may play a more influential role in predicting this complication. The overall impact of genetics in overall risk for cardiac surgery-associated acute kidney injury may be small compared to clinical risk factors.
Collapse
Affiliation(s)
- Nicholas J. Douville
- Department of Anesthesiology, University of Michigan Health System, Ann Arbor, MI, United States
- Center for Computational Medicine and Bioinformatics, University of Michigan Health System, Ann Arbor, MI, United States
- Michigan Integrated Center for Health Analytics and Medical Prediction, Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, United States
| | - Daniel B. Larach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Adam Lewis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anita Pandit
- Center for Statistical Genetics and Precision Health Initiative, University of Michigan, Ann Arbor, MI, United States
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael Heung
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Michael Mathis
- Department of Anesthesiology, University of Michigan Health System, Ann Arbor, MI, United States
- Center for Computational Medicine and Bioinformatics, University of Michigan Health System, Ann Arbor, MI, United States
- Michigan Integrated Center for Health Analytics and Medical Prediction, Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan P. Wanderer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sachin Kheterpal
- Department of Anesthesiology, University of Michigan Health System, Ann Arbor, MI, United States
| | - Ida Surakka
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Miklos D. Kertai
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Imbalzano E, Murdaca G, Orlando L, Gigliotti-De Fazio M, Terranova D, Tonacci A, Gangemi S. Alarmins as a Possible Target of Future Therapies for Atrial Fibrillation. Int J Mol Sci 2022; 23:15946. [PMID: 36555588 PMCID: PMC9780784 DOI: 10.3390/ijms232415946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
To date, worldwide, atrial fibrillation is the most common cardiovascular disease in adults, with a prevalence of 2% to 4%. The trigger of the pathophysiological mechanism of arrhythmia includes several factors that sustain and exacerbate the disease. Ectopic electrical conductivity, associated with the resulting atrial mechanical dysfunction, atrial remodeling, and fibrosis, promotes hypo-contractility and blood stasis, involving micro endothelial damage. This causes a significant local inflammatory reaction that feeds and sustains the arrhythmia. In our literature review, we evaluate the role of HMGB1 proteins, heat shock proteins, and S100 in the pathophysiology of atrial fibrillation, offering suggestions for possible new therapeutic strategies. We selected scientific publications on the specific topics "alarmins" and "atrial fibrillation" from PubMed. The nonsystematic review confirms the pivotal role of molecules such as S100 proteins, high-mobility group box-1, and heat shock proteins in the molecular pattern of atrial fibrillation. These results could be considered for new therapeutic opportunities, including inhibition of oxidative stress, evaluation of new anticoagulant drugs with novel therapeutic targets, molecular and genetic studies, and consideration of these alarmins as predictive or prognostic biomarkers of disease onset and severity.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, University of Genova, 16132 Genova, Italy
| | - Luana Orlando
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Marianna Gigliotti-De Fazio
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Dario Terranova
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
11
|
Larach DB, Lewis A, Bastarache L, Pandit A, He J, Sinha A, Douville NJ, Heung M, Mathis MR, Mosley JD, Wanderer JP, Kheterpal S, Zawistowski M, Brummett CM, Siew ED, Robinson-Cohen C, Kertai MD. Limited clinical utility for GWAS or polygenic risk score for postoperative acute kidney injury in non-cardiac surgery in European-ancestry patients. BMC Nephrol 2022; 23:339. [PMID: 36271344 PMCID: PMC9587619 DOI: 10.1186/s12882-022-02964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/27/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Prior studies support a genetic basis for postoperative acute kidney injury (AKI). We conducted a genome-wide association study (GWAS), assessed the clinical utility of a polygenic risk score (PRS), and estimated the heritable component of AKI in patients who underwent noncardiac surgery. METHODS We performed a retrospective large-scale genome-wide association study followed by a meta-analysis of patients who underwent noncardiac surgery at the Vanderbilt University Medical Center ("Vanderbilt" cohort) or Michigan Medicine, the academic medical center of the University of Michigan ("Michigan" cohort). In the Vanderbilt cohort, the relationship between polygenic risk score for estimated glomerular filtration rate and postoperative AKI was also tested to explore the predictive power of aggregating multiple common genetic variants associated with AKI risk. Similarly, in the Vanderbilt cohort genome-wide complex trait analysis was used to estimate the heritable component of AKI due to common genetic variants. RESULTS The study population included 8248 adults in the Vanderbilt cohort (mean [SD] 58.05 [15.23] years, 50.2% men) and 5998 adults in Michigan cohort (56.24 [14.76] years, 49% men). Incident postoperative AKI events occurred in 959 patients (11.6%) and in 277 patients (4.6%), respectively. No loci met genome-wide significance in the GWAS and meta-analysis. PRS for estimated glomerular filtration rate explained a very small percentage of variance in rates of postoperative AKI and was not significantly associated with AKI (odds ratio 1.050 per 1 SD increase in polygenic risk score [95% CI, 0.971-1.134]). The estimated heritability among common variants for AKI was 4.5% (SE = 4.5%) suggesting low heritability. CONCLUSION The findings of this study indicate that common genetic variation minimally contributes to postoperative AKI after noncardiac surgery, and likely has little clinical utility for identifying high-risk patients.
Collapse
Affiliation(s)
- Daniel B Larach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam Lewis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anita Pandit
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anik Sinha
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Douville
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Healthcare Policy & Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Michael Heung
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Mathis
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan D Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan P Wanderer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sachin Kheterpal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Chad M Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI (VIP-AKI), Tennessee Valley Health System, Nashville Veterans Affairs Hospital, Nashville, TN, USA
| | - Cassianne Robinson-Cohen
- Vanderbilt O'Brien Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miklos D Kertai
- Division of Adult Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University Medical Center, 1211 21st Avenue South, Medical Arts Building, Office 526E, Nashville, TN, 37212, USA.
| |
Collapse
|
12
|
Jiang H, Liu L, Wang Y, Ji H, Ma X, Wu J, Huang Y, Wang X, Gui R, Zhao Q, Chen B. Machine Learning for the Prediction of Complications in Patients After Mitral Valve Surgery. Front Cardiovasc Med 2021; 8:771246. [PMID: 34977184 PMCID: PMC8716451 DOI: 10.3389/fcvm.2021.771246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background: This study intended to use a machine learning model to identify critical preoperative and intraoperative variables and predict the risk of several severe complications (myocardial infarction, stroke, renal failure, and hospital mortality) after cardiac valvular surgery.Study Design and Methods: A total of 1,488 patients undergoing cardiac valvular surgery in eight large tertiary hospitals in China were examined. Fifty-four perioperative variables, such as essential demographic characteristics, concomitant disease, preoperative laboratory indicators, operation type, and intraoperative information, were collected. Machine learning models were developed and validated by 10-fold cross-validation. In each fold, Recursive Feature Elimination was used to select key variables. Ten machine learning models and logistic regression were developed. The area under the receiver operating characteristic (AUROC), accuracy (ACC), Youden index, sensitivity, specificity, F1-score, positive predictive value (PPV), and negative predictive value (NPV) were used to compare the prediction performance of different models. The SHapley Additive ex Planations package was applied to interpret the best machine learning model. Finally, a model was trained on the whole dataset with the merged key variables, and a web tool was created for clinicians to use.Results: In this study, 14 vital variables, namely, intraoperative total input, intraoperative blood loss, intraoperative colloid bolus, Classification of New York Heart Association (NYHA) heart function, preoperative hemoglobin (Hb), preoperative platelet (PLT), age, preoperative fibrinogen (FIB), intraoperative minimum red blood cell volume (Hct), body mass index (BMI), creatinine, preoperative Hct, intraoperative minimum Hb, and intraoperative autologous blood, were finally selected. The eXtreme Gradient Boosting algorithms (XGBOOST) algorithm model presented a significantly better predictive performance (AUROC: 0.90) than the other models (ACC: 81%, Youden index: 70%, sensitivity: 89%, specificity: 81%, F1-score:0.26, PPV: 15%, and NPV: 99%).Conclusion: A model for predicting several severe complications after cardiac valvular surgery was successfully developed using a machine learning algorithm based on 14 perioperative variables, which could guide clinical physicians to take appropriate preventive measures and diminish the complications for patients at high risk.
Collapse
Affiliation(s)
- Haiye Jiang
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, China
| | - Leping Liu
- Department of Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwen Ji
- Department of Anesthesiology, Fuwai Hospital National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xianjun Ma
- Department of Blood Transfusion, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyi Wu
- Department of Transfusion, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xinhua Wang
- Department of Transfusion, Beijing Aerospace General Hospital, Beijing, China
| | - Rong Gui
- Department of Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Rong Gui
| | - Qinyu Zhao
- College of Engineering & Computer Science, Australian National University, Canberra, ACT, Australia
- Qinyu Zhao
| | - Bingyu Chen
- Department of Transfusion, Zhejiang Provincial People's Hospital, Hangzhou, China
- Bingyu Chen
| |
Collapse
|
13
|
Heinrich M, Sieg M, Kruppa J, Nürnberg P, Schreier PH, Heilmann-Heimbach S, Hoffmann P, Nöthen MM, Janke J, Pischon T, Slooter AJC, Winterer G, Spies CD. Association between genetic variants of the cholinergic system and postoperative delirium and cognitive dysfunction in elderly patients. BMC Med Genomics 2021; 14:248. [PMID: 34674705 PMCID: PMC8529799 DOI: 10.1186/s12920-021-01071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background Postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) are frequent and serious complications after surgery. We aim to investigate the association between genetic variants in cholinergic candidate genes according to the Kyoto encyclopedia of genes and genomes - pathway: cholinergic neurotransmission with the development of POD or POCD in elderly patients. Methods This analysis is part of the European BioCog project (www.biocog.eu), a prospective multicenter observational study with elderly surgical patients. Patients with a Mini-Mental-State-Examination score ≤ 23 points were excluded. POD was assessed up to seven days after surgery using the Nursing Delirium Screening Scale, Confusion Assessment Method and a patient chart review. POCD was assessed three months after surgery with a neuropsychological test battery. Genotyping was performed on the Illumina Infinium Global Screening Array. Associations with POD and POCD were analyzed using logistic regression analysis, adjusted for age, comorbidities and duration of anesthesia (for POCD analysis additionally for education). Odds ratios (OR) refer to minor allele counts (0, 1, 2). Results 745 patients could be included in the POD analysis, and 452 in the POCD analysis. The rate of POD within this group was 20.8% (155 patients), and the rate of POCD was 10.2% (46 patients). In a candidate gene approach three genetic variants of the cholinergic genes CHRM2 and CHRM4 were associated with POD (OR [95% confidence interval], rs8191992: 0.61[0.46; 0.80]; rs8191992: 1.60[1.22; 2.09]; rs2067482: 1.64[1.10; 2.44]). No associations were found for POCD. Conclusions We found an association between genetic variants of CHRM2 and CHRM4 and POD. Further studies are needed to investigate whether disturbances in acetylcholine release and synaptic plasticity are involved in the development of POD. Trial registration: ClinicalTrials.gov: NCT02265263. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01071-1.
Collapse
Affiliation(s)
- Maria Heinrich
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Miriam Sieg
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Informatics, Charitéplatz 1, 10117, Berlin, Germany.,QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Jochen Kruppa
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Informatics, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Nürnberg
- Institute of Genetics, University of Cologne, Cologne, Germany.,Atlas Biolabs GmbH, Berlin, Germany
| | - Peter H Schreier
- Institute of Genetics, University of Cologne, Cologne, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany.,Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jürgen Janke
- MDC/BIH Biobank, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tobias Pischon
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,MDC/BIH Biobank, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Molecular Epidemiology Research Group, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arjen J C Slooter
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Neurology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Georg Winterer
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Berlin, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Claudia D Spies
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Berlin, Germany.
| |
Collapse
|
14
|
Li Z, Chen B. DUSP4 alleviates LPS-induced chondrocyte injury in knee osteoarthritis via the MAPK signaling pathway. Exp Ther Med 2021; 22:1401. [PMID: 34650647 PMCID: PMC8506912 DOI: 10.3892/etm.2021.10837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Knee osteoarthritis (KOA) is characterized by cartilage damage, and the associated pathogenesis is complex. The expression of dual specificity protein phosphatase 4 (DUSP4) is significantly decreased in osteoarthritis (OA); however, the specific role and mechanism underlying DUSP4 in OA are yet to be elucidated. ATDC5 cells were treated with lipopolysaccharide (LPS) to establish the cell injury model. The expression levels of DUSP4 were decreased in OA chondrocytes, demonstrated by reverse transcription-quantitative PCR and western blot analysis. Following overexpression of DUSP4 by cell transfection, Cell Counting Kit-8, ELISA, TUNEL and western blotting assays were used to detect the cell viability, oxidative stress, inflammation and apoptosis levels of LPS-induced ATDC5 cells. Overexpression of DUSP4 inhibited the activation of the MAPK signaling pathway, thereby reducing oxidative stress levels, inflammatory response and apoptosis in the OA cell model. The mechanisms underlying DUSP4 in OA were further explored following the addition of MAPK signaling pathway agonist, phorbol 12-myristate 13-acetate (PMA). The addition of PMA reversed the inhibitory effects of DUSP4 overexpression on oxidative stress, inflammatory response and apoptosis in cells. In summary, DUSP4 alleviated LPS-induced chondrocyte injury in KOA via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zhengnan Li
- Department of Sports Medicine, Ganzhou People's Hospital, Zhanggong, Jiangxi 341000, P.R. China
| | - Bojie Chen
- Department of Joint Surgery, Ganzhou People's Hospital, Zhanggong, Jiangxi 341000, P.R. China
| |
Collapse
|
15
|
Al-Amodi HS, Abdelsattar S, Kasemy ZA, Bedair HM, Elbarbary HS, Kamel HFM. Potential Value of TNF-α (-376 G/A) Polymorphism and Cystatin C (CysC) in the Diagnosis of Sepsis Associated Acute Kidney Injury (S-AK I) and Prediction of Mortality in Critically Ill patients. Front Mol Biosci 2021; 8:751299. [PMID: 34692772 PMCID: PMC8526786 DOI: 10.3389/fmolb.2021.751299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis Associated Kidney Injury represents a major health concern as it is frequently associated with increased risk of mortality and morbidity. We aimed to evaluate the potential value of TNF-α (-376 G/A) and cystatin C in the diagnosis of S-AKI and prediction of mortality in critically ill patients. This study included 200 critically ill patients and 200 healthy controls. Patients were categorized into 116 with acute septic shock and 84 with sepsis, from which 142 (71%) developed S-AKI. Genotyping of TNF-α (-376 G/A) was performed by RT-PCR and serum CysC was assessed by Enzyme Linked Immunosorbent Assay. Our results showed a highly significant difference in the genotype frequencies of TNF-α (-376 G/A) SNP between S-AKI and non-AKI patients (p < 0.001). Additionally, sCysC levels were significantly higher in the S-AKI group (p = 0.011). The combination of both sCysC and TNF-α (-376 G/A) together had a better diagnostic ability for S-AKI than sCysC alone (AUC = 0.610, 0.838, respectively). Both GA and AA genotypes were independent predictors of S-AKI (p= < 0.001, p = 0.002 respectively). Additionally, sCysC was significantly associated with the risk of S-AKI development (Odds Ratio = 1.111). Both genotypes and sCysC were significant predictors of non-survival (p < 0.001), suggesting their potential role in the diagnosis of S-AKI and prediction of mortality.
Collapse
Affiliation(s)
- Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shebine Elkoum, Egypt
| | - Zeinab A. Kasemy
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebine Elkoum, Egypt
| | - Hanan M. Bedair
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebine Elkoum, Egypt
| | - Hany S. Elbarbary
- Department of Internal Medicine, Renal Unit, Faculty of Medicine, Menoufia University, Shebine Elkoum, Egypt
- Department of Internal Medicine, Renal Unit, Faculty of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hala F. M. Kamel
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Sepulveda E, Adamis D, Franco JG, Meagher D, Aranda S, Vilella E. The complex interaction of genetics and delirium: a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 2021; 271:929-939. [PMID: 33779822 DOI: 10.1007/s00406-021-01255-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
The objective is to understand genetic predisposition to delirium. Following PRISMA guidelines, we undertook a systematic review of studies involving delirium and genetics in the databases of Pubmed, Scopus, Cochrane Library and PsycINFO, and performed a meta-analysis when appropriate. We evaluated 111 articles, of which 25 were finally included in the analysis. The studies were assessed by two independent researchers for methodological quality using the Downs and Black Tool and for genetic analysis quality. We performed a meta-analysis of 10 studies of the Apolipoprotein E (APOE) gene, obtaining no association with the presence of delirium (LOR 0.18, 95% CI - 0.10-0.47, p = 0.21). Notably, only 5 out of 25 articles met established criteria for genetic studies (good quality) and 6 were of moderate quality. Seven studies found an association with APOE4, the dopamine transporter gene SCL6A3, dopamine receptor 2 gene, glucocorticoid receptor, melatonin receptor and mitochondrial DNA haplotypes. One genome-wide association study found two suggestive long intergenic non-coding RNA genes. Five studies found no association with catechol-o-methyltransferase, melatonin receptor or several interleukins genes. The studies were heterogenous in establishing the presence of delirium. Future studies with large samples should further specify the delirium phenotype and deepen our understanding of interactions between genes and other biological factors.
Collapse
Affiliation(s)
- Esteban Sepulveda
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital Psiquiàtric Universitari Institut Pere Mata, IISPV, C/Institut Pere Mata, S/N, 43206, Reus, Spain. .,Universitat Rovira i Virgili, Tarragona, Spain.
| | | | - Jose G Franco
- Grupo de Investigación en Psiquiatría de Enlace, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - David Meagher
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Selena Aranda
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital Psiquiàtric Universitari Institut Pere Mata, IISPV, C/Institut Pere Mata, S/N, 43206, Reus, Spain.,Universitat Rovira i Virgili, Tarragona, Spain
| | - Elisabet Vilella
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital Psiquiàtric Universitari Institut Pere Mata, IISPV, C/Institut Pere Mata, S/N, 43206, Reus, Spain.,Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
17
|
Ortega-Loubon C, Martínez-Paz P, García-Morán E, Tamayo-Velasco Á, López-Hernández FJ, Jorge-Monjas P, Tamayo E. Genetic Susceptibility to Acute Kidney Injury. J Clin Med 2021; 10:jcm10143039. [PMID: 34300206 PMCID: PMC8307812 DOI: 10.3390/jcm10143039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a widely held concern related to a substantial burden of morbidity, mortality and expenditure in the healthcare system. AKI is not a simple illness but a complex conglomeration of syndromes that often occurs as part of other syndromes in its wide clinical spectrum of the disease. Genetic factors have been suggested as potentially responsible for its susceptibility and severity. As there is no current cure nor an effective treatment other than generally accepted supportive measures and renal replacement therapy, updated knowledge of the genetic implications may serve as a strategic tactic to counteract its dire consequences. Further understanding of the genetics that predispose AKI may shed light on novel approaches for the prevention and treatment of this condition. This review attempts to address the role of key genes in the appearance and development of AKI, providing not only a comprehensive update of the intertwined process involved but also identifying specific markers that could serve as precise targets for further AKI therapies.
Collapse
Affiliation(s)
- Christian Ortega-Loubon
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiovascular Surgery, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Pedro Martínez-Paz
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Emilio García-Morán
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiology, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Álvaro Tamayo-Velasco
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Hematology and Hemotherapy, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. López-Hernández
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Institute of Biomedical Research of Salamnca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Departmental Building Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Pablo Jorge-Monjas
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Eduardo Tamayo
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
| |
Collapse
|
18
|
Wang H, Ba Y, Han W, Zhang H, Zhu L, Jiang P. Association of heat shock protein polymorphisms with patient susceptibility to coronary artery disease comorbid depression and anxiety in a Chinese population. PeerJ 2021; 9:e11636. [PMID: 34178482 PMCID: PMC8216166 DOI: 10.7717/peerj.11636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Background Coronary artery disease (CAD) is one of the severe diseases that threaten human health worldwide. In addition, the associated rate of comorbidity with depression and anxiety is extremely high. Heat shock proteins (HSPs) are a group of proteins that possesses cardiovascular and psychological protection properties. The objective of this study is to determine the association of the two most widely studied HSPs, namely, HSP70 and HSP90, with CAD comorbid depression and anxiety in a Chinese population. Methods A case-control study involving 271 CAD patients and 113 healthy individuals was conducted. The 271 CAD patients include individuals with (123) and without depression (148) and individuals with (57) and without anxiety (214). Ten single nucleotide polymorphisms (SNPs) for HSP70 and seven SNPs for HSP90 were selected and genotyped. Results Results revealed that the HSP70 rs10892958 C allele and HSP70 rs2236658 T allele were associated with a decreased risk of CAD (P < 0.05), whereas the G allele of the rs11218941 polymorphism was associated with an increased risk of CAD. The haplotype analysis results indicated that the haplotype TGGGC of the HSPA8 gene (coded the HSP70 family, rs4936770/rs4802/rs10892958/rs11218941/rs2236658) significantly increased the risk of CAD (P = 0.008). Among the patients with CAD, the carriers of the CC genotype for the HSP90 rs1042665 showed higher risks of anxiety than the carriers of another genotypes. However, no significant relationships were found among the CAD with depression and CAD without depression groups for the selected SNPs. These findings suggested that the genetic polymorphisms in the HSP gene, especially the HSPA8 of HSP70, contribute to CAD susceptibility and rs1042665 genetic polymorphisms might have an effect on the anxiety incidence among CAD patients.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yudong Ba
- Department of Pharmacy, Dongying People's Hospital, Dongying, China
| | - Wenxiu Han
- Jining First People's Hospital, Jining Medical University, Jining, China
| | - Haixia Zhang
- Jining First People's Hospital, Jining Medical University, Jining, China
| | - Laiqing Zhu
- Jining First People's Hospital, Jining Medical University, Jining, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
19
|
Averdunk L, Bernhagen J, Fehnle K, Surowy H, Lüdecke HJ, Mucha S, Meybohm P, Wieczorek D, Leng L, Marx G, Leaf DE, Zarbock A, Zacharowski K, on behalf of the RIPHeart Study Collaborators, Bucala R, Stoppe C. The Macrophage Migration Inhibitory Factor ( MIF) Promoter Polymorphisms (rs3063368, rs755622) Predict Acute Kidney Injury and Death after Cardiac Surgery. J Clin Med 2020; 9:jcm9092936. [PMID: 32932965 PMCID: PMC7565645 DOI: 10.3390/jcm9092936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Macrophage Migration Inhibitory Factor (MIF) is highly elevated after cardiac surgery and impacts the postoperative inflammation. The aim of this study was to analyze whether the polymorphisms CATT5–7 (rs5844572/rs3063368,“-794”) and G>C single-nucleotide polymorphism (rs755622,-173) in the MIF gene promoter are related to postoperative outcome. Methods: In 1116 patients undergoing cardiac surgery, the MIF gene polymorphisms were analyzed and serum MIF was measured by ELISA in 100 patients. Results: Patients with at least one extended repeat allele (CATT7) had a significantly higher risk of acute kidney injury (AKI) compared to others (23% vs. 13%; OR 2.01 (1.40–2.88), p = 0.0001). Carriers of CATT7 were also at higher risk of death (1.8% vs. 0.4%; OR 5.12 (0.99–33.14), p = 0.026). The GC genotype was associated with AKI (20% vs. GG/CC:13%, OR 1.71 (1.20–2.43), p = 0.003). Multivariate analyses identified CATT7 predictive for AKI (OR 2.13 (1.46–3.09), p < 0.001) and death (OR 5.58 (1.29–24.04), p = 0.021). CATT7 was associated with higher serum MIF before surgery (79.2 vs. 50.4 ng/mL, p = 0.008). Conclusion: The CATT7 allele associates with a higher risk of AKI and death after cardiac surgery, which might be related to chronically elevated serum MIF. Polymorphisms in the MIF gene may constitute a predisposition for postoperative complications and the assessment may improve risk stratification and therapeutic guidance.
Collapse
Affiliation(s)
- Luisa Averdunk
- Department of Intensive Care Medicine, University Hospital Aachen, Rheinisch Westphälische Technische Hochschule Aachen, 52074 Aachen, Germany; (L.A.); (G.M.)
- Institute of Human Genetics and Department of Pediatrics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (H.S.); (H.-J.L.); (D.W.)
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University Munich, 80333 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
- Munich Cluster for Systems Neurology (EXC 2145 SyNergy), 81377 Munich, Germany
| | - Karl Fehnle
- Algora: Statistics and Clinical Research GmbH, 85540 Haar, Germany;
| | - Harald Surowy
- Institute of Human Genetics and Department of Pediatrics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (H.S.); (H.-J.L.); (D.W.)
| | - Hermann-Josef Lüdecke
- Institute of Human Genetics and Department of Pediatrics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (H.S.); (H.-J.L.); (D.W.)
| | - Sören Mucha
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, 24118 Kiel, Germany;
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Patrick Meybohm
- Department of Anesthesiology, Intensive Care Medicine & Pain Therapy, University Hospital Frankfurt, Goethe University, 60323 Frankfurt, Germany; (P.M.); (K.Z.)
| | - Dagmar Wieczorek
- Institute of Human Genetics and Department of Pediatrics, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (H.S.); (H.-J.L.); (D.W.)
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital Aachen, Rheinisch Westphälische Technische Hochschule Aachen, 52074 Aachen, Germany; (L.A.); (G.M.)
| | - David E. Leaf
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Zarbock
- Intensive Care and Pain Medicine, Department of Anesthesiology, University of Münster, 48149 Münster, Germany;
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine & Pain Therapy, University Hospital Frankfurt, Goethe University, 60323 Frankfurt, Germany; (P.M.); (K.Z.)
| | | | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA;
- Correspondence: (R.B.); (C.S.); Tel.: +49-241-8036575 (R.B. & C.S.); Fax: +49-241-8082406 (R.B. & C.S.)
| | - Christian Stoppe
- Department of Intensive Care Medicine, University Hospital Aachen, Rheinisch Westphälische Technische Hochschule Aachen, 52074 Aachen, Germany; (L.A.); (G.M.)
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Würzburg, 97080 Würzburg, Germany
- Correspondence: (R.B.); (C.S.); Tel.: +49-241-8036575 (R.B. & C.S.); Fax: +49-241-8082406 (R.B. & C.S.)
| |
Collapse
|
20
|
Association of genetic defects in the apelin-AGTRL1 system with myocardial infarction risk in Han Chinese. Gene 2020; 766:145143. [PMID: 32911028 DOI: 10.1016/j.gene.2020.145143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022]
Abstract
We aimed to test the hypothesis that apelin (APLN) and its receptor AGTRL1 (APLNR) genes may contribute to the pathogenesis of myocardial infarction in Han Chinese. This is a hospital-based, case-control association study, involving 1067 patients with myocardial infarction and 942 healthy controls. Myocardial infarction is diagnosed by electrocardiogram or anatomopathological examination. Eight polymorphisms in APLN gene and 5 in APLNR gene were genotyped using the TaqMan assay. Risk was summarized as odds ratio (OR) and 95% confidence interval (CI). In males, rs56204867-G allele (adjusted OR, 95% CI, p: 0.21, 0.08-0.55, 0.002) and rs2235309-T allele (0.60, 0.42-0.84, 0.004) was associated with a significantly reduced risk of myocardial infarction, and the mutations of rs2235310 was associated with an increased risk (1.41, 1.06-2.52, 0.021), as well as for rs948847-GG genotype (1.85, 1.23-2.91, 0.007). In females, the presence of rs56204867-AG and -GG genotypes was significantly associated with 44% and 50% reduced risk (0.56 and 0.50, 0.40-8.04 and 0.29-0.86, 0.007 and 0.036), respectively; for rs2235310, CC genotype was associated with 72% increased risk (1.72, 1.09-3.22, 0.016), and the odds of myocardial infarction was 3.47 for rs9943582-TT genotype (95% CI: 1.53-7.57, 0.009). The gender-specific association of APLN and APLNR genes with myocardial infarction was reinforced by further linkage and haplotype analyses. Finally, nomograms based on significant polymorphisms are satisfactory, with the C-indexes over 80% for both genders. Taken together, our findings indicate that APLN and APLNR genes are potential candidates in the pathogenesis of myocardial infarction in Han Chinese, and importantly their contribution is gender-dependent.
Collapse
|
21
|
Huang X, Li Y, Zhang J, Wang X, Li Z, Li G. The molecular genetic basis of atrial fibrillation. Hum Genet 2020; 139:1485-1498. [PMID: 32617797 DOI: 10.1007/s00439-020-02203-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
As the most common cardiac arrhythmia, atrial fibrillation (AF) is a major risk factor for stroke, heart failure, and premature death with considerable associated costs. However, no available treatment options have optimal benefit-harm profiles currently, reflecting an incomplete understanding of the biological mechanisms underlying this complex arrhythmia. Recently, molecular epidemiological studies, especially genome-wide association studies, have emphasized the substantial genetic component of AF etiology. A comprehensive mapping of the genetic underpinnings for AF can expand our knowledge of AF mechanism and further facilitate the process of locating novel therapeutics for AF. Here we provide a state-of-the-art review of the molecular genetics of AF incorporating evidence from linkage analysis and candidate gene, as well as genome-wide association studies of common variations and rare copy number variations; potential epigenetic modifications (e.g., DNA methylation, histone modification, and non-coding RNAs) are also involved. We also outline the challenges in mechanism investigation and potential future directions in this article.
Collapse
Affiliation(s)
- Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Yuhui Li
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junguo Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Xiaojie Wang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Ziyi Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China. .,Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University Hamilton, 1280 Main St West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|