1
|
Dash M, Mahajan B, Dar GM, Sahu P, Saluja SS. An update on the cell-free DNA-derived methylome as a non-invasive biomarker for coronary artery disease. Int J Biochem Cell Biol 2024; 169:106555. [PMID: 38428633 DOI: 10.1016/j.biocel.2024.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/22/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases are the foremost contributor to global mortality, presenting a complex etiology and an expanding array of risk factors. Coronary artery disease characterized by atherosclerotic plaque build-up in the coronary arteries, imposes significant mortality and financial burdens, especially in low- and middle-income nations. The pathogenesis of coronary artery disease involves a multifaceted interplay of genetic, environmental, and epigenetic factors. Epigenetic regulation contributes to the dynamic control of gene expression without altering the underlying DNA sequence. The mounting evidence that highlights the pivotal role of epigenetic regulation in coronary artery disease development and progression, offering potential avenues for the development of novel diagnostic biomarkers and therapeutic targets. Abnormal DNA methylation patterns are linked to the modulation of gene expression involved in crucial processes like lipid metabolism, inflammation, and vascular function in the context of coronary artery disease. Cell-free DNA has become invaluable in tumor biology as a liquid biopsy, while its applications in coronary artery disease are limited, but intriguing. Atherosclerotic plaque rupture causes myocardial infarction, by depriving heart muscles of oxygen, releasing cell-free DNA from dead cardiac cells, and providing a minimally invasive source to explore tissue-specific epigenetic alterations. We discussed the methodologies for studying the global methylome and hydroxy-methylome landscape, their advantages, and limitations. It explores methylome alterations in coronary artery disease, considering risk factors and their relevance in coronary artery disease genesis. The review also details the implications of MI-derived cell-free DNA for developing minimally invasive biomarkers and associated challenges.
Collapse
Affiliation(s)
- Manoswini Dash
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; School of Medicine, Center for Aging, Tulane University, LA, United States
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Parameswar Sahu
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| |
Collapse
|
2
|
Kotlyarov S. Identification of Important Genes Associated with the Development of Atherosclerosis. Curr Gene Ther 2024; 24:29-45. [PMID: 36999180 DOI: 10.2174/1566523223666230330091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University Named After Academician I.P. Pavlov, Russian Federation
| |
Collapse
|
3
|
Sánchez EC, Barajas-Olmos F, Baca P, Zerrweck C, Guilbert L, Martínez-Hernández A, Centeno F, Orozco L. DNA Methylation Remodeling after Bariatric Surgery Correlates with Clinical Parameters. Adv Biol (Weinh) 2023; 7:e2300001. [PMID: 37144655 DOI: 10.1002/adbi.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/27/2023] [Indexed: 05/06/2023]
Abstract
The altered functions of adipose tissue are one of the main issues in obesity. Bariatric surgery is associated with improvement of obesity associated comorbidities. Here DNA methylation remodeling in adipose tissue after bariatric surgery is examined. After six months postoperative, DNA methylation shows changes in 1155 CpG sites, 66 of these sites correlate with body mass index. Some sites also show correlation with LDL-C, HDL-C, total cholesterol, and triglycerides. CpG sites are located in genes that have not previously been linked to obesity or metabolic diseases. GNAS complex locus is one of those that presented CpG site with the greatest changes after surgery, and the most significant correlation with BMI and lipid profiles. These results show that epigenetic regulation may be involved in the alteration of adipose tissue functions in obesity.
Collapse
Affiliation(s)
- Ernesto Carlos Sánchez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Cto. de los Posgrados, Ciudad Universitaria, Mexico City, Coyoacán, 04510, Mexico
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| | - Paulina Baca
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| | - Carlos Zerrweck
- Facultad de Medicina, Alta especialidad en Cirugía Bariatrica, UNAM, Escolar 411A, Copilco Universidad, Mexico City, Coyoacán, 04360, Mexico
| | - Lizbeth Guilbert
- Clínica Integral de Obesidad, Hospital General Tláhuac, Secretaría de Salud de la CDMX, Av. La turba 655, Mexico City, Tláhuac, 13278, Mexico
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| | - Federico Centeno
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional de Medicina Genómica, SS, Periférico Sur 4809, Mexico City, Tlalpan, 14610, Mexico
| |
Collapse
|
4
|
Bian J, Zhao J, Zhao Y, Hao X, He S, Li Y, Huang L. Impact of individual factors on DNA methylation of drug metabolism genes: A systematic review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:401-415. [PMID: 37522536 DOI: 10.1002/em.22567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Individual differences in drug response have always existed in clinical treatment. Many non-genetic factors show non-negligible impacts on personalized medicine. Emerging studies have demonstrated epigenetic could connect non-genetic factors and individual treatment differences. We used systematic retrieval methods and reviewed studies that showed individual factors' impact on DNA methylation of drug metabolism genes. In total, 68 studies were included, and half (n = 36) were cohort studies. Six aspects of individual factors were summarized from the perspective of personalized medicine: parental exposure, environmental pollutants exposure, obesity and diet, drugs, gender and others. The most research (n = 11) focused on ABCG1 methylation. The majority of studies showed non-genetic factors could result in a significant DNA methylation alteration in drug metabolism genes, which subsequently affects the pharmacokinetic processes. However, the underlying mechanism remained unknown. Finally, some viewpoints were presented for future research.
Collapse
Affiliation(s)
- Jialu Bian
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Jinxia Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yinyu Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xu Hao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Shiyu He
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yuanyuan Li
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Lin Huang
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| |
Collapse
|
5
|
Identification of an Epigenetic Signature for Coronary Heart Disease in Postmenopausal Women’s PBMC DNA. Mediators Inflamm 2022; 2022:2185198. [PMID: 36032780 PMCID: PMC9417773 DOI: 10.1155/2022/2185198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Menopause is accompanied with an increased risk of cardiovascular disease. DNA methylation may have a significant impact on postmenopausal women's development of coronary heart disease. DNA methylation alterations in peripheral blood mononuclear cells (PBMCs) from women with coronary heart disease and healthy controls were detected using the Illumina Infinium MethylationEPIC BeadChip platform in this work. We employed Sangerbox technology and the GO and KEGG databases to further study the pathogenesis of coronary heart disease in postmenopausal women. After that, we used functional epigenetic module analysis and Cytoscape to remove the hub genes from the protein–protein interaction networks. Five genes (FOXA2, PTRD, CREB1, CTNAP2, and FBN2) were the hub genes. Lipid accumulation, endothelial cell failure, inflammatory responses, monocyte recruitment and aggregation, and other critical biological processes were all influenced by these genes. Finally, we employed methylation-specific PCR to demonstrate that FOXA2 was methylated at a high level in postmenopausal women with coronary heart disease. To better understand coronary heart disease in postmenopausal women's molecular mechanisms, our study examine the major factors contributing to the state of DNA methylation modification, which will help discover novel diagnostic tools and treatment options.
Collapse
|
6
|
Kotlyarov S. Genetic and Epigenetic Regulation of Lipoxygenase Pathways and Reverse Cholesterol Transport in Atherogenesis. Genes (Basel) 2022; 13:1474. [PMID: 36011386 PMCID: PMC9408222 DOI: 10.3390/genes13081474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is one of the most important medical and social problems of modern society. Atherosclerosis causes a large number of hospitalizations, disability, and mortality. A considerable amount of evidence suggests that inflammation is one of the key links in the pathogenesis of atherosclerosis. Inflammation in the vascular wall has extensive cross-linkages with lipid metabolism, and lipid mediators act as a central link in the regulation of inflammation in the vascular wall. Data on the role of genetics and epigenetic factors in the development of atherosclerosis are of great interest. A growing body of evidence is strengthening the understanding of the significance of gene polymorphism, as well as gene expression dysregulation involved in cross-links between lipid metabolism and the innate immune system. A better understanding of the genetic basis and molecular mechanisms of disease pathogenesis is an important step towards solving the problems of its early diagnosis and treatment.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
7
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|