1
|
Sehgal A, Peigh G, Wasserlauf J, Verma N. Evaluation and Management of Arrhythmias in Ischemic Cardiomyopathy. Heart Fail Clin 2025; 21:295-308. [PMID: 40107806 DOI: 10.1016/j.hfc.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Atrial and ventricular arrhythmias are highly comorbid with ischemic cardiomyopathy (ICM) and are associated with worsening symptoms, morbidity, and mortality. This review will discuss the pathophysiology, evaluation, and treatment of each arrhythmia in ICM with a focus on novel evaluation strategies and catheter-directed interventions. For atrial fibrillation /atrial flutter, recent studies have demonstrated mortality and symptom benefit with early rhythm control with catheter ablation. With respect to ventricular tachycardia, scar characterization is being investigated to change primary prevention and novel ablation technologies and strategies are being explored.
Collapse
Affiliation(s)
- Abhinav Sehgal
- Division of Medicine, Northwestern University, 251 East Huron Street Suite 8-300, Chicago, IL 60611, USA
| | - Graham Peigh
- Division of Cardiology, Northwestern University, 251 East Huron Stress, Feinberg 8-503, Chicago, IL 60611, USA
| | - Jeremiah Wasserlauf
- Division of Cardiology, Endeavor Health/University of Chicago Pritzker School of Medicine, 2650 Ridge Avenue, Evanston, IL 60201, USA
| | - Nishant Verma
- Division of Cardiology, Northwestern University, 251 East Huron Stress, Feinberg 8-503, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Zeppenfeld K, Rademaker R, Al-Ahmad A, Carbucicchio C, De Chillou C, Cvek J, Ebert M, Ho G, Kautzner J, Lambiase P, Merino JL, Lloyd M, Misra S, Pruvot E, Sapp J, Schiappacasse L, Sramko M, Stevenson WG, Zei PC. Patient selection, ventricular tachycardia substrate delineation, and data transfer for stereotactic arrhythmia radioablation: a clinical consensus statement of the European Heart Rhythm Association of the European Society of Cardiology and the Heart Rhythm Society. Europace 2025; 27:euae214. [PMID: 39177652 PMCID: PMC12041921 DOI: 10.1093/europace/euae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Stereotactic arrhythmia radioablation (STAR) is a novel, non-invasive, and promising treatment option for ventricular arrhythmias (VAs). It has been applied in highly selected patients mainly as bailout procedure, when (multiple) catheter ablations, together with anti-arrhythmic drugs, were unable to control the VAs. Despite the increasing clinical use, there is still limited knowledge of the acute and long-term response of normal and diseased myocardium to STAR. Acute toxicity appeared to be reasonably low, but potential late adverse effects may be underreported. Among published studies, the provided methodological information is often limited, and patient selection, target volume definition, methods for determination and transfer of target volume, and techniques for treatment planning and execution differ across studies, hampering the pooling of data and comparison across studies. In addition, STAR requires close and new collaboration between clinical electrophysiologists and radiation oncologists, which is facilitated by shared knowledge in each collaborator's area of expertise and a common language. This clinical consensus statement provides uniform definition of cardiac target volumes. It aims to provide advice in patient selection for STAR including aetiology-specific aspects and advice in optimal cardiac target volume identification based on available evidence. Safety concerns and the advice for acute and long-term monitoring including the importance of standardized reporting and follow-up are covered by this document. Areas of uncertainty are listed, which require high-quality, reliable pre-clinical and clinical evidence before the expansion of STAR beyond clinical scenarios in which proven therapies are ineffective or unavailable.
Collapse
Affiliation(s)
- Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert Rademaker
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Amin Al-Ahmad
- Electrophysiology, Texas Cardiac Arrhythmia Institute, Austin, TX, USA
| | | | - Christian De Chillou
- CHU de Nancy, Cardiology, Institut Lorrain du Coeur et des Vaisseaux, Vandoeuvre Les Nancy, France
| | - Jakub Cvek
- Radiation Oncology, University of Ostrava, Ostrava, Czech Republic
| | - Micaela Ebert
- Electrophysiology, Heart Center Leipzig, Leipzig, Germany
| | - Gordon Ho
- Division of Cardiology, Section of Cardiac Electrophysiology, University of California San Diego, La Jolla, CA, USA
| | - Josef Kautzner
- Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Pier Lambiase
- Cardiology Department, University College London, London, UK
| | | | - Michael Lloyd
- Emory Electrophysiology, Electrophysiology Lab Director, EUH, Emory University Hospital, Atlanta, GA, USA
| | - Satish Misra
- Atrium Health Sanger Heart Vascular Institute Kenilworth, Charlotte, NC, USA
| | - Etienne Pruvot
- Department of Cardiology, Lausanne University Hospital, CHUV, Lausanne, Switzerland
| | - John Sapp
- QEII Health Sciences Center, Halifax Infirmary Site, Halifax, NS, Canada
| | - Luis Schiappacasse
- Department of Cardiology, Service de Radio-Oncologie, Lausanne University Hospital, CHUV, Lausanne, Switzerland
| | - Marek Sramko
- Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Paul C Zei
- Professor of Medicine, Cardiac Electrophysiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Biasi N, Seghetti P, Parollo M, Zucchelli G, Tognetti A. A Matlab Toolbox for cardiac electrophysiology simulations on patient-specific geometries. Comput Biol Med 2025; 185:109529. [PMID: 39674072 DOI: 10.1016/j.compbiomed.2024.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
In this paper, we present CardioMat, a Matlab toolbox for cardiac electrophysiology simulation based on patient-specific anatomies. The strength of CardioMat is the easy and fast construction of electrophysiology cardiac digital twins from segmented anatomical images in a general-purpose software such as Matlab. CardioMat implements a quasi-automatic pipeline that guides the user toward the construction of anatomically detailed cardiac electrophysiology models. Importantly, the CardioMat framework includes the generation of physiologically plausible fiber orientation and Purkinje networks. The main novelty of our framework is its ability to handle voxel-based geometries as produced by segmentation procedures directly, without the need for an unstructured mesh. Indeed, the CardioMat monodomain solver uses a smoothed boundary approach and runs completely on GPU for fast simulations. We employed CardioMat in different application scenarios to show its potentialities and provide preliminary assessment of the feasibility, diagnostic performance, and accuracy of the toolbox. In particular, we showed that CardioMat simulations derived from post-infarction patients hold high sensitivity, specificity, predictive value, and accuracy for localization of deceleration zones in sinus rhythm.
Collapse
Affiliation(s)
- Niccolò Biasi
- Research Center E. Piaggio, University of Pisa, L. Lazzarino, 1, Pisa, 56122, Italy; Information Engineering Department, University of Pisa, G. Caruso, 16, Pisa, 56122, Italy.
| | - Paolo Seghetti
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Martiri della Libertà, 33, Pisa, 56127, Italy; Institute of Clinical Physiology, National Research Council, G. Moruzzi, 1, Pisa, 56124, Italy
| | - Matteo Parollo
- Second Division of Cardiology, Cardiothoracic and Vascular Department, Pisa University Hospital, Paradisa, 2, Pisa, 56124, Italy
| | - Giulio Zucchelli
- Second Division of Cardiology, Cardiothoracic and Vascular Department, Pisa University Hospital, Paradisa, 2, Pisa, 56124, Italy
| | - Alessandro Tognetti
- Research Center E. Piaggio, University of Pisa, L. Lazzarino, 1, Pisa, 56122, Italy; Information Engineering Department, University of Pisa, G. Caruso, 16, Pisa, 56122, Italy
| |
Collapse
|
4
|
Cojocaru C, Dorobanțu M, Vătășescu R. Pre-ablation and Post-ablation Factors Influencing the Prognosis of Patients with Electrical Storm Treated by Radiofrequency Catheter Ablation: An Update. Rev Cardiovasc Med 2024; 25:432. [PMID: 39742218 PMCID: PMC11683710 DOI: 10.31083/j.rcm2512432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 01/03/2025] Open
Abstract
Catheter ablation-based management strategies for the drug-refractory electrical storm (ES) have been proven to abolish acute ventricular arrhythmic episodes and improve long-term outcomes. However, this effect is highly influenced by multiple independently acting factors, which, if identified and addressed, may allow a more tailored management to each particular case to improve results. This review synthesizes existing evidence concerning ES outcome predictors of patients undergoing ablation and introduces the role of novel scoring algorithms to refine risk stratification. The presence of these factors should be assessed during two distinct phases in relation to the ablation procedure: before (based on preprocedural multimodal evaluation of the patient's structural heart disease and comorbidities) and after the ablation procedure (in terms of information derived from the invasive substrate characterization, procedural results, postprocedural recurrences (spontaneous or during non-invasive testing), and complications).
Collapse
Affiliation(s)
- Cosmin Cojocaru
- Department of Cardiothoracic Pathology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiology, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Maria Dorobanțu
- Department of Cardiothoracic Pathology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| | - Radu Vătășescu
- Department of Cardiothoracic Pathology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiology, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
5
|
Di Cori A, Pistelli L, Parollo M, Zaurino N, Segreti L, Zucchelli G. Approaching Ventricular Tachycardia Ablation in 2024: An Update on Mapping and Ablation Strategies, Timing, and Future Directions. J Clin Med 2024; 13:5017. [PMID: 39274230 PMCID: PMC11396273 DOI: 10.3390/jcm13175017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
This review provides insights into mapping and ablation strategies for VT, offering a comprehensive overview of contemporary approaches and future perspectives in the field. The strengths and limitations of classical mapping strategies, namely activation mapping, pace mapping, entrainment mapping, and substrate mapping, are deeply discussed. The increasing pivotal relevance of CMR and MDCT in substrate definition is highlighted, particularly in defining the border zone, tissue channels, and fat. The integration of CMR and MDCT images with EAM is explored, with a special focus on their role in enhancing effectiveness and procedure safety. The abstract concludes by illustrating the Pisa workflow for the VT ablation procedure.
Collapse
Affiliation(s)
- Andrea Di Cori
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| | - Lorenzo Pistelli
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| | - Matteo Parollo
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| | - Nicola Zaurino
- Biosense Webster, Johnson & Johnson Medial SpA, 00071 Pomezia, Italy
| | - Luca Segreti
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| | - Giulio Zucchelli
- Second Division of Cardiology, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, 56124 Pisa, Italy
| |
Collapse
|
6
|
Stanciulescu LA, Vatasescu R. Ventricular Tachycardia Catheter Ablation: Retrospective Analysis and Prospective Outlooks-A Comprehensive Review. Biomedicines 2024; 12:266. [PMID: 38397868 PMCID: PMC10886924 DOI: 10.3390/biomedicines12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Ventricular tachycardia is a potentially life-threatening arrhythmia associated with an overall high morbi-mortality, particularly in patients with structural heart disease. Despite their pivotal role in preventing sudden cardiac death, implantable cardioverter-defibrillators, although a guideline-based class I recommendation, are unable to prevent arrhythmic episodes and significantly alter the quality of life by delivering recurrent therapies. From open-heart surgical ablation to the currently widely used percutaneous approach, catheter ablation is a safe and effective procedure able to target the responsible re-entry myocardial circuit from both the endocardium and the epicardium. There are four main mapping strategies, activation, entrainment, pace, and substrate mapping, each of them with their own advantages and limitations. The contemporary guideline-based recommendations for VT ablation primarily apply to patients experiencing antiarrhythmic drug ineffectiveness or those intolerant to the pharmacological treatment. Although highly effective in most cases of scar-related VTs, the traditional approach may sometimes be insufficient, especially in patients with nonischemic cardiomyopathies, where circuits may be unmappable using the classic techniques. Alternative methods have been proposed, such as stereotactic arrhythmia radioablation or radiotherapy ablation, surgical ablation, needle ablation, transarterial coronary ethanol ablation, and retrograde coronary venous ethanol ablation, with promising results. Further studies are needed in order to prove the overall efficacy of these methods in comparison to standard radiofrequency delivery. Nevertheless, as the field of cardiac electrophysiology continues to evolve, it is important to acknowledge the role of artificial intelligence in both the pre-procedural planning and the intervention itself.
Collapse
Affiliation(s)
- Laura Adina Stanciulescu
- Cardio-Thoracic Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Clinical Emergency Hospital, 014461 Bucharest, Romania
| | - Radu Vatasescu
- Cardio-Thoracic Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Clinical Emergency Hospital, 014461 Bucharest, Romania
| |
Collapse
|
7
|
Guarracini F, Tritto M, Di Monaco A, Mariani MV, Gasperetti A, Compagnucci P, Muser D, Preda A, Mazzone P, Themistoclakis S, Carbucicchio C. Stereotactic Arrhythmia Radioablation Treatment of Ventricular Tachycardia: Current Technology and Evolving Indications. J Cardiovasc Dev Dis 2023; 10:jcdd10040172. [PMID: 37103051 PMCID: PMC10143260 DOI: 10.3390/jcdd10040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Ventricular tachycardia in patients with structural heart disease is a significant cause of morbidity and mortality. According to current guidelines, cardioverter defibrillator implantation, antiarrhythmic drugs, and catheter ablation are established therapies in the management of ventricular arrhythmias but their efficacy is limited in some cases. Sustained ventricular tachycardia can be terminated by cardioverter-defibrillator therapies although shocks in particular have been demonstrated to increase mortality and worsen patients' quality of life. Antiarrhythmic drugs have important side effects and relatively low efficacy, while catheter ablation, even if it is actually an established treatment, is an invasive procedure with intrinsic procedural risks and is frequently affected by patients' hemodynamic instability. Stereotactic arrhythmia radioablation for ventricular arrhythmias was developed as bail-out therapy in patients unresponsive to traditional treatments. Radiotherapy has been mainly applied in the oncological field, but new current perspectives have developed in the field of ventricular arrhythmias. Stereotactic arrhythmia radioablation provides an alternative non-invasive and painless therapeutic strategy for the treatment of previously detected cardiac arrhythmic substrate by three-dimensional intracardiac mapping or different tools. Since preliminary experiences have been reported, several retrospective studies, registries, and case reports have been published in the literature. Although, for now, stereotactic arrhythmia radioablation is considered an alternative palliative treatment for patients with refractory ventricular tachycardia and no other therapeutic options, this research field is currently extremely promising.
Collapse
Affiliation(s)
| | - Massimo Tritto
- Electrophysiology and Cardiac Pacing Unit, Humanitas Mater Domini Hospital, 21053 Castellanza, Italy
| | - Antonio Di Monaco
- Cardiology Department, General Regional Hospital F. Miulli, 70021 Acquaviva delle Fonti, Italy
| | - Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Alessio Gasperetti
- Department of Cardiology, ASST-Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital Ospedali Riuniti Umberto I-Lancisi-Salesi, 60126 Ancona, Italy
| | - Daniele Muser
- Cardiothoracic Department, University Hospital, 33100 Udine, Italy
| | - Alberto Preda
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Patrizio Mazzone
- Cardiothoracovascular Department, Electrophysiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Sakis Themistoclakis
- Department of Cardiothoracic, Vascular Medicine and Intensive Care, Dell'Angelo Hospital, Mestre, 30174 Venice, Italy
| | - Corrado Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| |
Collapse
|