1
|
Mao Z, Chen Y, Li H, Lu Q, Zhou K. TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013-2018 and Molecular Docking. TOXICS 2024; 12:693. [PMID: 39453113 PMCID: PMC11511422 DOI: 10.3390/toxics12100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Concerns have been raised regarding the effects of perfluoroalkyl substance (PFAS) exposure on cardiovascular diseases (CVD), but clear evidence linking PFAS exposure to CVD is lacking, and the mechanism remains unclear. OBJECTIVES To study the association between PFASs and CVD in U.S. population, and to reveal the mechanism of PFASs' effects on CVD. METHODS To assess the relationships between individual blood serum PFAS levels and the risk of total CVD or its subtypes, multivariable logistic regression analysis and partial least squares discriminant analysis (PLS-DA) were conducted on all participants or subgroups among 3391 adults from the National Health and Nutrition Examination Survey (NHANES). The SuperPred and GeneCards databases were utilized to identify potential targets related to PFAS and CVD, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersection genes were performed using Metascape. Protein interaction networks were generated, and core targets were identified with STRING. Molecular docking was achieved using Autodock Vina 1.1.2. RESULTS There was a positive association between Me-PFOSA-AcOH and CVD (OR = 1.28, p = 0.022), especially coronary heart disease (CHD) (OR = 1.47, p = 0.007) and heart attack (OR = 1.58, p < 0.001) after adjusting for all potential covariates. Me-PFOSA-AcOH contributed the most to distinguishing between individuals in terms of CVD and non-CVD. Significant moderating effects for Me-PFOSA-AcOH were observed in the subgroup analysis stratified by sex, ethnicity, education level, PIR, BMI, smoking status, physical activity, and hypertension (p < 0.05). The potential intersection targets were mainly enriched in CVD-related pathways, including the inflammatory response, neuroactive ligand-receptor interaction, MAPK signaling pathway, and arachidonic acid metabolism. TLR4 was identified as the core target for the effects of Me-PFOSA-AcOH on CVD. Molecular docking results revealed that the binding energy of Me-PFOSA-AcOH to the TLR4-MD-2 complex was -7.2 kcal/mol, suggesting that Me-PFOSA-AcOH binds well to the TLR4-MD-2 complex. CONCLUSIONS Me-PFOSA-AcOH exposure was significantly associated with CVD. Network toxicology and molecular docking uncovered novel molecular targets, such as TLR4, and identified the inflammatory and metabolic mechanisms underlying Me-PFOSA-AcOH-induced CVD.
Collapse
Affiliation(s)
- Zhilei Mao
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China; (Z.M.); (H.L.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanling Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haixin Li
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China; (Z.M.); (H.L.)
| | - Qun Lu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Nimbal SK, Nagashettikoppa K, Jeedi NM, Patil SB, Mali N. Role of Chlorophytum Borivilianum extract against Doxorubicin- induced Myocardial Toxicity in Albino Rats: Insilico and Invivo studies. ARCHIVES OF RAZI INSTITUTE 2024; 79:727-740. [PMID: 40256579 PMCID: PMC12004043 DOI: 10.32592/ari.2024.79.4.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/04/2024] [Indexed: 04/22/2025]
Abstract
The doxorubicin, an anthracycline derivative, is a cytotoxic agent with proven efficacy in various malignancies. The clinical utility has been limited due to its dose -dependent cardiac toxicity. To evaluate the role of Chlorophytum Borivilianum L. on doxorubicin-induced cardiotoxicity in rats and to predict the role of Chlorophytum Borivilianum L. by Insilico and in vivo methods. Invitro studies were conducted on Chlorophytum Borivilianum L. Cardiotoxicity was produced by administration of doxorubicin (Dox-15 mg/kg ip. for two weeks). Ethanolic extract and fractions of Chlorophytum Borivilianum L. (250 and 500 mg/kg, p.o.) were administered as pretreatment for 15 days followed by Doxorubicin 2.5 mg/kg i.p. on alternate day for two weeks. The parameters like body weight, food and water consumption, cardiac specific markers like Creatine Kinase (CK-MB), Lactate Dehydrogenase (LDH) and Cardiac Troponin-I (cTnl), ECG changes, antioxidant parameters like superoxide dismutase (SOD), glutathione (GSH), catalase (CAT) and lipid peroxidation (MDA) were monitored. Histopathological studies of the heart were also performed to evaluate myocardial toxicity. Dox treatment results in cardiomyopathy characterised by elevated cardiac biomarkers and deficiency of antioxidant enzymes. By reducing the elevated levels of biomarker enzymes like LDH and CK-MB and the absence of cTnI, pretreatment with the EECB (500mg/kg) significantly protected the myocardium from the toxic effects of Dox. In addition, the EECB increased the reduced levels of GSH, SOD, and CAT while decreasing the elevated levels of malondialdehyde (MDA) in cardiac tissue.
Collapse
Affiliation(s)
- S K Nimbal
- Department of Pharmacology, KLE College of Pharmacy, Hubballi - 580031 (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), India
| | - K Nagashettikoppa
- Department of Pharmacology, KLE College of Pharmacy, Hubballi - 580031 (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), India
| | - N M Jeedi
- Department of Pharmacology, KLE College of Pharmacy, Hubballi - 580031 (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), India
| | - S B Patil
- Department of Pharmacology, KLE College of Pharmacy, Hubballi - 580031 (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), India
| | - N Mali
- Department of Pharmacology, KLE College of Pharmacy, Hubballi - 580031 (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), India
| |
Collapse
|
3
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
4
|
Pereira EEB, Modesto AAC, Fernandes BM, Burbano RMR, Assumpção PP, Fernandes MR, Guerreiro JF, dos Santos SEB, dos Santos NPC. Association between Polymorphism of Genes IL-1A, NFKB1, PAR1, TP53, and UCP2 and Susceptibility to Non-Small Cell Lung Cancer in the Brazilian Amazon. Genes (Basel) 2023; 14:461. [PMID: 36833388 PMCID: PMC9957054 DOI: 10.3390/genes14020461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 02/15/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for the vast majority of cases of lung neoplasms. It is formed in multiple stages, with interactions between environmental risk factors and individual genetic susceptibility and with genes involved in the immune and inflammatory response paths, cell or genome stability, and metabolism, among others. Our objective was to evaluate the association between five genetic variants (IL-1A, NFKB1, PAR1, TP53, and UCP2) and the development of NSCLC in the Brazilian Amazon. The study included 263 individuals with and without lung cancer. The samples were analyzed for the genetic variants of NFKB1 (rs28362491), PAR1 (rs11267092), TP53 (rs17878362), IL-1A (rs3783553), and UCP2 (INDEL 45-bp), which were genotyped in PCR, followed by an analysis of the fragments, in which we applied a previously developed set of informative ancestral markers. We used a logistic regression model to identify differences in the allele and the genotypic frequencies among individuals and their association with NSCLC. The variables of gender, age, and smoking were controlled in the multivariate analysis to prevent confusion by association. The individuals that were homozygous for the Del/Del of polymorphism NFKB1 (rs28362491) (p = 0.018; OR = 0.332) demonstrate a significant association with NSCLC, which was similar to that observed in the variants of PAR1 (rs11267092) (p = 0.023; OR = 0.471) and TP53 (rs17878362) (p = 0.041; OR = 0.510). Moreover, the individuals with the Ins/Ins genotype of polymorphism IL-1A (rs3783553) demonstrated greater risk for NSCLC (p = 0.033; OR = 2.002), as did the volunteers with the Del/Del of UCP2 (INDEL 45-bp) (p = 0.031; OR = 2.031). The five polymorphisms investigated can contribute towards NSCLC susceptibility in the population of the Brazilian Amazon.
Collapse
Affiliation(s)
- Esdras E. B. Pereira
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
- Instituto Tocantinense Presidente Antônio Carlos (ITPAC), Abaetetuba 68440-000, PA, Brazil
| | - Antônio A. C. Modesto
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | - Bruno M. Fernandes
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | - Rommel M. R. Burbano
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | - Paulo P. Assumpção
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | | | - João F. Guerreiro
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
| | - Sidney E. B. dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | - Ney P. C. dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| |
Collapse
|