1
|
Sun E, Peng L, Liu Z, Yan Z, Chen M, Zheng J. Systematic analysis of expression and prognostic significance for MCM family in head and neck squamous cell carcinoma. Histol Histopathol 2024; 39:471-482. [PMID: 37526267 DOI: 10.14670/hh-18-652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSC) is a common malignant tumor in the world and has a poor prognosis. The family of minichromosome maintenance proteins (MCM) improves the stability of genome replication by inhibiting the rate of DNA replication in eukaryotic cells, thus, small changes in physiological MCM levels would increase the instability of gene replication and increase the incidence of tumor formation, most of which are significantly elevated in multiple cancers. However, the expression of different MCM families in HNSC and their prognostic value remain unclear. METHODS ONCOMINE and GEPIA databases were used to analyze the expression of MCMs in HNSC. The Kaplan-Meier plotter database was used to identify molecules with prognostic values. We collected 77 HNSC tissues and 50 normal tissues to validate the results of the bioinformatics analysis by immunohistochemical staining. RESULTS The expression of MCM3, MCM5 and MCM6 in mRNA and protein levels were higher in HNSC. Moreover, the increased expression of MCM3, MCM5 and MCM6 in mRNA and protein levels predicted better prognosis of HNSC patients. Furthermore, multivariate analysis showed that high expressions of MCM3, MCM5 and MCM6 in protein level may be independent prognostic factors for HNSC patients. CONCLUSION The results of this study indicated that MCM3, MCM5 and MCM6 play an important role in occurrence and development in HNSC and might be risk factors for the survival of HNSC patients.
Collapse
Affiliation(s)
- Ercan Sun
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
| | - Lu Peng
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
| | - Zhe Liu
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
| | - Zeng Yan
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
| | - Min Chen
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China. and
| | - Jun Zheng
- The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China. and
| |
Collapse
|
2
|
Song R, Huang J, Yang C, Li Y, Zhan G, Xiang B. ESPL1 is Elevated in Hepatocellular Carcinoma and Predicts Prognosis. Int J Gen Med 2022; 15:8381-8398. [PMID: 36465268 PMCID: PMC9717693 DOI: 10.2147/ijgm.s381188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/21/2022] [Indexed: 03/27/2025] Open
Abstract
PURPOSE The extra spindle pole bodies-like 1 (ESPL1) gene is associated with malignant biological behaviors in several tumors. Nevertheless, the correlation between hepatocellular carcinoma (HCC) and ESPL1 has not been determined. The present study analyzed the molecular function and prognostic value of ESPL1 in HCC. PATIENTS AND METHODS Samples from 121 HCCs and 119 adjacent normal tissue specimens were subjected to next-generation sequencing. Clinicopathological and genetic data of HCC patients in The Cancer Genome Atlas (TCGA) were also collected. ESPL1 expression was assessed in 20 pairs of HCC and normal liver specimens by qRT-PCR and immunohistochemistry (IHC). The prognostic value of ESPL1 expression was determined by Cox univariate and multivariate regression analyses. ESPL1-related co-expressed genes were evaluated by weighted gene co-expression network analysis (WGCNA). Processes and pathways involving ESPL1 in HCC were determined by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The prognostic values of hub genes were determined by joint effect survival analysis. RESULTS RNA-Seq, RT-qPCR and IHC showed that ESPL1 expression was significantly higher in HCC than in normal liver tissues. Increased ESPL1 expression, greater tumor size and advanced BCLC stage were independently prognostic of poorer overall survival; and increased ESPL1 and advanced BCLC stage were independently prognostic of poorer recurrence-free survival. WGCNA showed that the top 10 co-expressed genes associated with ESPL1 were GTSE1, KIF18B, BUB1B, GINS1, PRC1, KIF23, KIF18A, TOP2A, NEK2 and FANCD2. Enrichment analysis indicated that ESPL1 and its co-expressed genes might be involved in the cell cycle and cell division of HCC. Joint effect survival analysis showed that the mortality rate was approximately 3.37 times higher in HCC patients with high than low expression of ESPL1, GTSE1, BUB1B, PRC1, KIF23, and TOP2A. CONCLUSION ESPL1 might be associated with cell cycle and might be an effective prognostic indicator in patients with HCC.
Collapse
Affiliation(s)
- Rui Song
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
| | - Juntao Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
| | - Chenglei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
| | - Yuankuan Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
| | - Guohua Zhan
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors, Ministry of Education, Nanning, People’s Republic of China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, People’s Republic of China
| |
Collapse
|
3
|
Li P, Gao C, Chen Z. Effect of Bone Marrow Mesenchymal Stem Cells (BMSCs) with High miR-183-5p Expression on Ovarian Cancer Cells by Regulating Signal Transducer and Activator of Transcription 3 (STAT3). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Currently, the treatment for ovarian cancer (OC) is not satisfactory. The microRNAs may have an important function in tumor pathogenesis. miR-183-5p involves in several tumors. However, its effect on OC cells is unclear. The BMSCs could regulate the micro-environment of tumor and participate
in tumor procession. In this study, effect of BMSCs with highly-expressed miR-183-5p on OC cells was assessed. The BMSCs with highly-expressed miR-183-5p was established and co-cultivated with OC cell line SKOV3 followed by measuring miR-183-5p level by PCR, STAT3 and ADAM9 expression by western
blot. miR-183-5p level in OC cells was reduced and further decreased after co-culture with BMSCs along with enhance cell proliferation and upregulated STAT3 expression (P < 0.05). In addition, miR-183-5p level was increased in BMSCs with highly-expressed miR-183-5p and STAT3 expression
was reduced along with restrained cell proliferation (P < 0.05). In conclusion, miR-183-5p in OC cells is downregulated and malignant biological behaviors of OC cells are restrained by BMSCs with highly-expressed miR-183-5p possibly through regulating the expression of STAT3.
Collapse
Affiliation(s)
- Peiyi Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Huizhou Municipal Central Hospital, Huizhou, Guangdong, 516000, China
| | - Caifeng Gao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Huizhou Municipal Central Hospital, Huizhou, Guangdong, 516000, China
| | - Zhiyun Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Huizhou Municipal Central Hospital, Huizhou, Guangdong, 516000, China
| |
Collapse
|
4
|
Li J, Xie B, Wang H, Chen C, Pan C, Jia J. Research on Function of Exosome of miR-328-3p Secreted by Bone Marrow Mesenchymal Stem Cells (BMSCs) on Restraining the Gastric Cancer Through Being Down-Regulated with Trefoil Factor 3. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Certain progress has been made in the therapeutic method against gastric cancer such as surgical operation combined with chemotherapy and radiation therapy in recent years. But the therapeutic efficacy and prognosis on gastric cancer was still not satisfactory. The function of exosome
of miR-328–3p secreted by bone marrow stromal cells (BMSCs) on restraining the gastric cancer was studied in the present study. The BMSCs with highly-expressed miR-328-3p was established. The exosome in cell supernatant was collected. The exosome of BMSCs and MSCs with highlyexpressed
miR-328-3p was added into SGC-7901 cells followed by analysis of miR-328-3p level by Real-time PCR and TFF3 (Trefoil Factor 3) level in exosome by Western blot, cell proliferation, expression of E-cadherin, Vimentin and Caspase-3. miR-328-39 expression was reduced and TFF3 was elevated in
gastric cancer tissue (P < 0.05). miR-328-3p was upregulated and TFF3 was downregulated after addition of BMSCs exosomes along with increased cell proliferation and reduced E-cadherin and Caspase3 expression (P < 0.05). In conclusion, exosome of BMSCs could be regulated
by miR-328-3p and TFF3 expression is restrained so as to regulate the biological behaviors of gastric cancer cell.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Bo Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Hu Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Chengsong Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Chengwu Pan
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Jianguang Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| |
Collapse
|
5
|
NF- κB-Related Metabolic Gene Signature Predicts the Prognosis and Immunotherapy Response in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5092505. [PMID: 35036435 PMCID: PMC8753254 DOI: 10.1155/2022/5092505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022]
Abstract
Background Sufficient evidence indicated the crucial role of NF-κB family played in gastric cancer (GC). The novel discovery that NF-κB could regulate cancer metabolism and immune evasion greatly increased its attraction in cancer research. However, the correlation among NF-κB, metabolism, and cancer immunity in GC still requires further improvement. Methods TCGA, hTFtarget, and MSigDB databases were employed to identify NF-κB-related metabolic genes (NFMGs). Based on NFMGs, we used consensus clustering to divide GC patients into two subtypes. GSVA was employed to analyze the enriched pathway. ESTIMATE, CIBERSORT, ssGSEA, and MCPcounter algorithms were applied to evaluate immune infiltration in GC. The tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict patients' response to immunotherapy. We also established a NFMG-related risk score by using the LASSO regression model and assessed its efficacy in TCGA and GSE62254 datasets. Results We used 27 NFMGs to conduct an unsupervised clustering on GC samples and classified them into two clusters. Cluster 1 was characterized by high active metabolism, tumor mutant burden, and microsatellite instability, while cluster 2 was featured with high immune infiltration. Compared to cluster 2, cluster 1 had a better prognosis and higher response to immunotherapy. In addition, we constructed a 12-NFMG (ADCY3, AHCY, CHDH, GUCY1A2, ITPA, MTHFD2, NRP1, POLA1, POLR1A, POLR3A, POLR3K, and SRM) risk score. Followed analysis indicated that this risk score acted as an effectively prognostic factor in GC. Conclusion Our data suggested that GC subtypes classified by NFMGs may effectively guide prognosis and immunotherapy. Further study of these NFMGs will deepen our understanding of NF-κB-mediated cancer metabolism and immunity.
Collapse
|
6
|
Gui T, Yao C, Jia B, Shen K. Identification and analysis of genes associated with epithelial ovarian cancer by integrated bioinformatics methods. PLoS One 2021; 16:e0253136. [PMID: 34143800 PMCID: PMC8213194 DOI: 10.1371/journal.pone.0253136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Background Though considerable efforts have been made to improve the treatment of epithelial ovarian cancer (EOC), the prognosis of patients has remained poor. Identifying differentially expressed genes (DEGs) involved in EOC progression and exploiting them as novel biomarkers or therapeutic targets is of great value. Methods Overlapping DEGs were screened out from three independent gene expression omnibus (GEO) datasets and were subjected to Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. The protein-protein interactions (PPI) network of DEGs was constructed based on the STRING database. The expression of hub genes was validated in GEPIA and GEO. The relationship of hub genes expression with tumor stage and overall survival and progression-free survival of EOC patients was investigated using the cancer genome atlas data. Results A total of 306 DEGs were identified, including 265 up-regulated and 41 down-regulated. Through PPI network analysis, the top 20 genes were screened out, among which 4 hub genes, which were not researched in depth so far, were selected after literature retrieval, including CDC45, CDCA5, KIF4A, ESPL1. The four genes were up-regulated in EOC tissues compared with normal tissues, but their expression decreased gradually with the continuous progression of EOC. Survival curves illustrated that patients with a lower level of CDCA5 and ESPL1 had better overall survival and progression-free survival statistically. Conclusion Two hub genes, CDCA5 and ESPL1, identified as probably playing tumor-promotive roles, have great potential to be utilized as novel therapeutic targets for EOC treatment.
Collapse
Affiliation(s)
- Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenhe Yao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Binghan Jia
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Wang Y, Huang Z. Transforming Growth Factor Beta 1 Affects Gastric Cancer Cell Proliferation, Migration, and Invasion by Regulating Phosphatase and Tensin Homolog. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gastric cancer (GC) is a common tumor with high incidence and poor prognosis. So far, the pathogenesis of GC has not been fully elucidated, which has brought great difficulty to the treatment. TGF-β regulates cell growth and differentiation. As a key member, TGF-β1 is abnormally
expressed in various tumors, but its role on GC and related mechanisms have not been elucidated. Gastric cancer and adjacent tissues were collected to measure TGF-β1 level by real-time PCR. SGC-7901 cell was assigned into control group, mock group, and TGF-β1 siRNA group followed
by analysis of TGF-β1 level by ELISA, cell proliferation by MTT assay, apoptosis by flow cytometry, cell migration by cell scratch test, cell invasion by Transwell chamber assay, and Bcl-2, Bax, and PTEN level by Western blot. TGF-β1 was significantly upregulated in GC tissues (P
<0.05) and increased with TNM stage dependence. TGF-β1 siRNA transfection significantly decreased TGF-β1 mRNA level and secretion, inhibited cell proliferation, increased apoptosis rate, and attenuated cell migration and invasion along with downregulated Bcl-2 and elevated Bax
and PTEN expression (P <0.05). Downregulation of TGF-β1 can promote gastric cancer cell apoptosis, inhibit proliferation, migration, and invasion by regulating PTEN.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of General Surgery, Fujian Elderly Hospital, Fuzhou, Fujian, 350009, China
| | - Zhimin Huang
- Department of General Surgery, Fujian Elderly Hospital, Fuzhou, Fujian, 350009, China
| |
Collapse
|
8
|
Lu G, Chen L, Wu S, Feng Y, Lin T. Comprehensive Analysis of Tumor-Infiltrating Immune Cells and Relevant Therapeutic Strategy in Esophageal Cancer. DISEASE MARKERS 2020; 2020:8974793. [PMID: 32454908 PMCID: PMC7238334 DOI: 10.1155/2020/8974793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and comprehensive analysis of TIICs and its therapeutic value in esophageal cancer (EC). The proportions of 22 TIICs were evaluated between 150 normal tissues and 141 tumor tissues of EC by the CIBERSORT algorithm. Besides, correlation analyses between proportions of TIICs and clinicopathological characters, including age, gender, histologic grade, tumor location, histologic type, LRP1B mutation, TP53 mutation, tumor stage, lymph node stage, and TNM stage, were conducted. We constructed a risk score model to improve prognostic capacity with 5 TIICs by least absolute shrinkage and selection operator (lasso) regression analysis. The risk score = -1.86∗plasma + 2.56∗T cell follicular helper - 1.37∗monocytes - 3.64∗activated dendritic cells - 2.24∗resting mast cells (immune cells in the risk model mean the proportions of immune cell infiltration in EC). Patients in the high-risk group had significantly worse overall survival than these in the low-risk group (HR: 2.146, 95% CI: 1.243-3.705, p = 0.0061). Finally, we identified Semustine and Sirolimus as two candidate compounds for the treatment of EC based on CMap analysis. In conclusion, the proportions of TIICs may be important to the progression, prognosis, and treatment of EC.
Collapse
Affiliation(s)
- Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Liping Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Shengjie Wu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yuao Feng
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tiesu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
9
|
Jia W, Xie L, Wang X, Zhang Q, Wei B, Li H, Qin S, Chen S, Liu J, Tan Y, Zheng S, Liang X, Yang X. The impact of MCM6 on hepatocellular carcinoma in a Southern Chinese Zhuang population. Biomed Pharmacother 2020; 127:110171. [PMID: 32403044 DOI: 10.1016/j.biopha.2020.110171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022] Open
Abstract
Minichromosome maintenance complex component 6 (MCM6) is involved in tumorigenesis of hepatocellular carcinoma (HCC). Because its effect on different populations remains unclear, this study investigated the impact of MCM6 on HCC in Southern Chinese Zhuang population. In addition to assessing the global mRNA levels of MCM6 based on The Cancer Genome Atlas database (TCGA) and The Gene Expression Omnibus database (GEO), associations between MCM6 mRNA levels and clinicopathological features were analyzed. High MCM6 levels were associated with high alpha-fetoprotein (AFP) (>20 ng/mL in serum) (P < 0.0001) and advanced clinical stage (III + IV) (P < 0.001). Higher MCM6 was associated with poorer outcomes (P < 0.01) in these databases. Furthermore, the mRNA and protein expression of MCM6 in the Guangxi Zhuang population was detected by quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemistry (IHC). The results showed that MCM6 levels were up-regulated in the Zhuang population with HCC. Higher MCM6 protein levels were correlated with larger tumor size (>5 cm) (P = 0.038) and advanced clinical stage (III + IV) (p = 0.023). Bioinformatic enrichment analysis of MCM6 and its interacting proteins (CDT1,WEE1,TRIM28 and MKI67) suggested that in addition to being involved in the cell cycle process, these complexes could also be involved in protein binding, pre-replication complex assemble, and nucleus metabolism. Based on the protein-protein interaction (PPI) network with module screen, the interactions between MCM6 and its potential interacting proteins were further studied through protein docking with hot spot analysis. Additionally, the results of the algorithms combining the ROC of MCM6 and its interacting proteins showed that combination biomarker analysis has better HCC diagnosis ability than the single MCM6 test. The combination of MCM6 and TRIM28 was more suitable for the Guangxi Zhuang population. Overall, our study suggests that MCM6 plays an important role in the growth of HCC. MCM6 could be an optimal biomarker for diagnosing HCC and a potential molecular target for HCC therapy in the Zhuang population.
Collapse
Affiliation(s)
- Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China; Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, The Maternal and Children Health Hospital of Guangxi, Guangxi, China
| | - Bing Wei
- College of International Education, Guilin Medical University, Guilin, Guangxi, China
| | - Hongwen Li
- Teaching and Researching Section of Human Anatomy, Guilin Medical University, Guilin, Guangxi, China
| | - Shouxu Qin
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Suixia Chen
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaonan Liang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
10
|
Guo F, Kong WN, Feng YC, Lv J, Zhao G, Wu HL, Ai L, Zhou X, Cai XL, Sun W, Ma XM. Comprehensive Analysis of the Expression and Prognosis for MCMs in Human Gastric Cancer. Technol Cancer Res Treat 2020; 19:1533033820970688. [PMID: 33167799 PMCID: PMC7658509 DOI: 10.1177/1533033820970688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSES Minichromosome maintenance (MCM) proteins play an important role in replication and cell cycle progression. Even so, their expression and prognostic roles in cancer remain controversial. METHODS To address this issue, the study investigated the roles of MCMs in the prognosis of GC by using ONCOMINE, GEPIA2, UALCAN, Cancer Cell Line Encyclopedia (CCLE), the Human Protein Atlas, Kaplan-Meier Plotter, cBioPortal, GeneMANIA, and DAVID databases. RESULTS Over expressions of mRNA and cell lines were found in all members of the MCM family, and MCMs were found to be significantly associated with pathological tumor grades in GC patients. Besides, higher mRNA expressions of MCM1/5/7 were found to be significantly associated with shorter overall survival (OS) and progression-free survival (FP) in GC patients, while higher mRNA expression of MCM4/6/9 were connected with favorable OS and FP. Moreover, a high mutation rate of MCMs (68%) was also observed in GC patients. CONCLUSIONS The results indicated that MCM1/5/7 were potential targets of precision therapy for patients with GC. And MCM4/6/9 were new biomarkers for the prognosis of GC. The results of the study will contribute to supplement the existing knowledge, and help to explore therapeutic targets and enhance the accuracy of prognosis for patients with GC.
Collapse
Affiliation(s)
- Fan Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei-Na Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang-Chun Feng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jie Lv
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui-Li Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Le Ai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuan Zhou
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuan-Lin Cai
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Sun
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiu-Min Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
11
|
Bioinformatics Analysis Identified Key Molecular Changes in Bladder Cancer Development and Recurrence. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3917982. [PMID: 31828101 PMCID: PMC6881748 DOI: 10.1155/2019/3917982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/29/2022]
Abstract
Background and Objectives: Bladder cancer (BC) is a complex tumor associated with high recurrence and mortality. To discover key molecular changes in BC, we analyzed next-generation sequencing data of BC and surrounding tissue samples from clinical specimens. Methods. Gene expression profiling datasets of bladder cancer were analyzed online. The Database for Annotation, Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.gov/) was used to perform Gene Ontology (GO) functional and KEGG pathway enrichment analyses. Molecular Complex Detection (MCODE) in Cytoscape software (Cytoscape_v3.6.1) was applied to identify hub genes. Protein expression and survival data were downloaded from OncoLnc (http://www.oncolnc.org/). Gene expression data were obtained from the ONCOMINE website (https://www.oncomine.org/). Results. We identified 4211 differentially expressed genes (DEGs) by analysis of surrounding tissue vs. cancer tissue (SC analysis) and 410 DEGs by analysis of cancer tissue vs. recurrent tissue cluster (CR analysis). GO function analysis revealed enrichment of DEGs in genes related to the cytoplasm and nucleoplasm for both clusters, and KEGG pathway analysis showed enrichment of DEGs in the PI3K-Akt signaling pathway. We defined the 20 genes with the highest degree of connectivity as the hub genes. Cox regression revealed CCNB1, ESPL1, CENPM, BLM, and ASPM were related to overall survival. The expression levels of CCNB1, ESPL1, CENPM, BLM, and ASPM were 4.795-, 5.028-, 8.691-, 2.083-, and 3.725-fold higher in BC than the levels in normal tissues, respectively. Conclusions. The results suggested that the functions of CCNB1, ESPL1, CENPM, BLM, and ASPM may contribute to BC development and the functions of CCNB1, ESPL1, CENPM, and BLM may also contribute to BC recurrence.
Collapse
|
12
|
Toxicity study of separase inhibitor-Sepin-1 in Sprague-Dawley rats. Pathol Res Pract 2019; 216:152730. [PMID: 31784093 DOI: 10.1016/j.prp.2019.152730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/17/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023]
Abstract
Sepin-1 is a small compound that inhibits enzymatic activity of Separase and growth of cancer cells. As part of the IND-enabling studies to develop Sepin-1 as a chemotherapeutic agent, herein we have profiled the toxicity of Sepin-1 in Sprague-Dawley rats in a good laboratory practice (GLP) setting. The maximum tolerated dose (MTD) of Sepin-1 in rats is 40 mg/kg in single dose study and 20 mg/kg in the study dosed for 7 consecutive days. The toxicity study consists of two parts-Main Study and Recovery Study. Sepin-1 with 0 (control), 5 (low dose), 10 (median dose), and 20 (high dose) mg/kg was administered by bolus intravenous injection to rats once daily for 28 consecutive days. The animals in the Main Study were euthanized on Day 29, whereas animals in the Recovery Study were allowed to recover for 28 days following the 28-day Sepin-1 dose before they were euthanized on Day 29 of the off-dose period. Although the effects of Sepin-1 at low and median doses are minimal, hematological analysis shows that high-dose Sepin-1 is associated with decrease of red blood cells and hemoglobin, and increase in the number of reticulocytes and platelets as well as mean corpuscular volume. Clinical chemistry indicates that Sepin-1 causes increase of total bilirubin and decrease of creatine kinase. Histopathology analysis indicates Sepin-1 results in minimal bone marrow erythroid hyperplasia, minimal to moderate splenic extramedullary hematopoiesis, minimal splenic lymphoid depletion, minimal to mild thymic lymphoid depletion, and minimal to mild mandibular lymph node lymphoid hyperplasia in male and female rats in the Main Study. Those abnormal changes are Sepin-1 dose-dependent and mostly reversible after a 28-day recovery period in animals from the Recovery Study. Based on our results, we conclude that Sepin-1 at pharmacologic doses (5-10 mg/kg) is well tolerable, with no significant rates of mortality or morbidity, and can further be developed as a potential new drug to treat Separase-overexpressed tumors.
Collapse
|
13
|
Gong B, Ma M, Yang X, Xie W, Luo Y, Sun T. MCM5 promotes tumour proliferation and correlates with the progression and prognosis of renal cell carcinoma. Int Urol Nephrol 2019; 51:1517-1526. [PMID: 31190295 DOI: 10.1007/s11255-019-02169-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND To investigate the role of Minichromosome maintenance protein 5 (MCM5) in the clinical prognosis and biological function of renal cell carcinoma (RCC). METHODS The Oncomine database was analysed to determine the differential expression of MCMs in RCC. A total of 50 RCC tissues were evaluated by immunohistochemistry (IHC), and the association between MCM5 and clinicopathologic features was determined. Kaplan-Meier curves and the log-rank test were applied for survival analysis. MCM5 expression in RCC tissues and cell lines was examined further by Western blotting. To explore the biological function of MCM5 in RCC, RCC cell lines (786-0, 769p) were transfected with shRNA-MCM5 or MCM5. Cell proliferation was assessed using MTT and colony-formation assays. Tumour xenografts were generated in nude mice to confirm the effects of MCM5 on tumour growth. RESULTS MCM5 was significantly overexpressed in RCC tissues; this outcome was confirmed by the Oncomine database, IHC and Western blotting. IHC and LinkedOmics analysis demonstrated that the MCM5 expression was significantly associated with pathological stage, lymph node status, distant metastasis, and TNM stage (p < 0.05) but not with sex, age, position, or tumour size (p > 0.05). Furthermore, high MCM5 levels correlated with unfavourable clinical outcomes in RCC (p < 0.05). Additionally, MCM5 silencing inhibited RCC cell line proliferation and reduced 786-0 xenograft tumour growth; in contrast, MCM5 upregulation promoted cell proliferation. CONCLUSION MCM5 overexpression is associated with malignant status and poor prognosis in RCC. Additionally, MCM5 plays an important role in proliferation and may be a potential prognostic marker and novel therapeutic target for RCC.
Collapse
Affiliation(s)
- Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaorong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yanping Luo
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
14
|
Cai H, Jing C, Chang X, Ding D, Han T, Yang J, Lu Z, Hu X, Liu Z, Wang J, Shang L, Wu S, Meng P, Lin L, Zhao J, Nie M, Yin K. Mutational landscape of gastric cancer and clinical application of genomic profiling based on target next-generation sequencing. J Transl Med 2019; 17:189. [PMID: 31164161 PMCID: PMC6549266 DOI: 10.1186/s12967-019-1941-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background Gastric cancer (GC) is a leading cause of cancer deaths, and an increased number of GC patients adopt to next-generation sequencing (NGS) to identify tumor genomic alterations for precision medicine. Methods In this study, we established a hybridization capture-based NGS panel including 612 cancer-associated genes, and collected sequencing data of tumors and matched bloods from 153 gastric cancer patients. We performed comprehensive analysis of these sequencing and clinical data. Results 35 significantly mutated genes were identified such as TP53, AKAP9, DRD2, PTEN, CDH1, LRP2 et al. Among them, 29 genes were novel significantly mutated genes compared with TCGA study. TP53 is the top frequently mutated gene, and tends to mutate in male (p = 0.025) patients and patients whose tumor located in cardia (p = 0.011). High tumor mutation burden (TMB) gathered in TP53 wild-type tumors (p = 0.045). TMB was also significantly associated with DNA damage repair (DDR) genes genotype (p = 0.047), Lauren classification (p = 1.5e−5), differentiation (1.9e−7), and HER2 status (p = 0.023). 38.31% of gastric cancer patients harbored at least one actionable alteration according to OncoKB database. Conclusions We drew a comprehensive mutational landscape of 153 gastric tumors and demonstrated utility of target next-generation sequencing to guide clinical management. Electronic supplementary material The online version of this article (10.1186/s12967-019-1941-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Cai
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Xusheng Chang
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Dan Ding
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Ting Han
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Junchi Yang
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Xuguang Hu
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zhaorui Liu
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Shouxin Wu
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Peng Meng
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Ling Lin
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Jiangman Zhao
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China. .,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China.
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
15
|
Liu L, Lin J, He H. Identification of Potential Crucial Genes Associated With the Pathogenesis and Prognosis of Endometrial Cancer. Front Genet 2019; 10:373. [PMID: 31105744 PMCID: PMC6499025 DOI: 10.3389/fgene.2019.00373] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Endometrial cancer (EC) is a common gynecological malignancy worldwide. Despite advances in the development of strategies for treating EC, prognosis of the disease remains unsatisfactory, especially for advanced EC. The aim of this study was to identify novel genes that can be used as potential biomarkers for identifying the prognosis of EC and to construct a novel risk stratification using these genes. Methods and Results An mRNA sequencing dataset, corresponding survival data and expression profiling of an array of EC patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Common differentially expressed genes (DEGs) were identified based on sequencing and expression as given in the profiling dataset. Pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization, and Integrated Discovery. The protein-protein interaction network was established using the string online database in order to identify hub genes. Univariate and multivariable Cox regression analyses were used to screen prognostic DEGs and to construct a prognostic signature. Survival analysis based on the prognostic signature was performed on TCGA EC dataset. A total of 255 common DEGs were found and 11 hub genes (TOP2A, CDK1, CCNB1, CCNB2, AURKA, PCNA, CCNA2, BIRC5, NDC80, CDC20, and BUB1BA) that may be closely related to the pathogenesis of EC were identified. A panel of 7 DEG signatures consisting of PHLDA2, GGH, ESPL1, FAM184A, KIAA1644, ESPL1, and TRPM4 were constructed. The signature performed well for prognosis prediction (p < 0.001) and time-dependent receiver-operating characteristic (ROC) analysis displayed an area under the curve (AUC) of 0.797, 0.734, 0.729, and 0.647 for 1, 3, 5, and 10-year overall survival (OS) prediction, respectively. Conclusion This study identified potential genes that may be involved in the pathophysiology of EC and constructed a novel gene expression signature for EC risk stratification and prognosis prediction.
Collapse
Affiliation(s)
- Li Liu
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongying He
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
16
|
Xue Y, Zhang L, Zhu Y, Ke X, Wang Q, Min H. Regulation of Proliferation and Epithelial-to-Mesenchymal Transition (EMT) of Gastric Cancer by ZEB1 via Modulating Wnt5a and Related Mechanisms. Med Sci Monit 2019; 25:1663-1670. [PMID: 30829316 PMCID: PMC6413562 DOI: 10.12659/msm.912338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background As a member of the zinc-finger E-box binding protein (ZEB) family, ZEB1 can modulate onset and progression of various tumors, but its regulatory effect or mechanism in GC has not been defined. Material/Methods GC tumor tissues and adjacent tissues were collected from GC patients across different TNM stages. Real-time PCR was used to measure ZEB1 expression to analyze its correlation with pathological features of tumors. Cultured GC cell lines SGC-7901 and MGC-803 were randomly assigned into control group, scramble group, and ZEB1 siRNA group. Real-time PCR was employed to analyze ZEB1 expression, and MTT approach was used to measure cell proliferation. Cell apoptosis was evaluated by flow cytometry. Wound healing assay was used to detect its effect on cell migration. Expression of E-cadherin and Vimentin involved in epithelial-to-mesenchymal transition (EMT) was measured by Western blot analysis, along with Wnt5a proteins. Results GC tissues had upregulation of ZEB1 (P<0.05 compared to adjacent tissues), whose expression level was correlated with differentiation grade, lymph node metastasis, and tumor pathological stage (P<0.05). Transfection of ZEB1 siRNA into SGC-7901 or MGC-803 cells can suppress ZEB1 expression, inhibit tumor cell proliferation, enhance apoptosis, and inhibit cell migration. Transfected GC cells had higher E-cadherin expression and decreased Vimentin expression or Wnt5a expression (P<0.05 compared to the control group). Conclusions ZEB1 expression is increased in GC tumor tissues and is associated with pathological features. The downregulation of ZEB1 can facilitate cell apoptosis via mediating Wnt5a, further suppressing GC cell proliferation and migration, and reducing EMT occurrence.
Collapse
Affiliation(s)
- Yongju Xue
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Ligong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yu Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Xiquan Ke
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Haiyang Min
- Department of Gastroenterology, Jiangwan Hospital, Shanghai, China (mainland)
| |
Collapse
|
17
|
Xue Y, Zhang L, Zhu Y, Ke X, Wang Q, Min H. Regulation of Proliferation and Epithelial-to-Mesenchymal Transition (EMT) of Gastric Cancer by ZEB1 via Modulating Wnt5a and Related Mechanisms. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [PMID: 30829316 DOI: 10.12659/msm.912338.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND As a member of the zinc-finger E-box binding protein (ZEB) family, ZEB1 can modulate onset and progression of various tumors, but its regulatory effect or mechanism in GC has not been defined. MATERIAL AND METHODS GC tumor tissues and adjacent tissues were collected from GC patients across different TNM stages. Real-time PCR was used to measure ZEB1 expression to analyze its correlation with pathological features of tumors. Cultured GC cell lines SGC-7901 and MGC-803 were randomly assigned into control group, scramble group, and ZEB1 siRNA group. Real-time PCR was employed to analyze ZEB1 expression, and MTT approach was used to measure cell proliferation. Cell apoptosis was evaluated by flow cytometry. Wound healing assay was used to detect its effect on cell migration. Expression of E-cadherin and Vimentin involved in epithelial-to-mesenchymal transition (EMT) was measured by Western blot analysis, along with Wnt5a proteins. RESULTS GC tissues had upregulation of ZEB1 (P<0.05 compared to adjacent tissues), whose expression level was correlated with differentiation grade, lymph node metastasis, and tumor pathological stage (P<0.05). Transfection of ZEB1 siRNA into SGC-7901 or MGC-803 cells can suppress ZEB1 expression, inhibit tumor cell proliferation, enhance apoptosis, and inhibit cell migration. Transfected GC cells had higher E-cadherin expression and decreased Vimentin expression or Wnt5a expression (P<0.05 compared to the control group). CONCLUSIONS ZEB1 expression is increased in GC tumor tissues and is associated with pathological features. The downregulation of ZEB1 can facilitate cell apoptosis via mediating Wnt5a, further suppressing GC cell proliferation and migration, and reducing EMT occurrence.
Collapse
Affiliation(s)
- Yongju Xue
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Ligong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yu Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Xiquan Ke
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Haiyang Min
- Department of Gastroenterology, Jiangwan Hospital, Shanghai, China (mainland)
| |
Collapse
|