1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Wang H, Ruan G, Yang S, Li H, Sun Z, Tian B, Yan P, Li Y, Yang H, Zhong Y, Qian J. Ocular manifestations of mitochondrial neurogastrointestinal encephalomyopathy: A case report and literature review. Am J Med Genet A 2023; 191:2819-2824. [PMID: 37530213 DOI: 10.1002/ajmg.a.63361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive multisystem disorder that often presents with gastrointestinal and neurological symptoms. Here we report a 33-year-old male who presented with a 16-year history of diarrhea with black stool and progressive weight loss. He complained of progressive bilateral blurred vision, upper eyelids heaviness, ocular motility impairment, and color blindness. Peripheral neuropathy, bilateral sensorineural deafness, hyperlactatemia, diabetes mellitus, hepatic steatosis, blood coagulation dysfunction, and diffuse leukoencephalopathy were detected in the systemic evaluation. Based on the novel homozygous pathogenic variant in the TYMP gene (c.1159+1G>A), he was diagnosed with MNGIE. On ophthalmic examinations, the thickness of the inner retina and ganglion cell complex significantly decreased. ERG showed diffusely decreased amplitudes. The electronegative electroretinogram, which was first reported in MNGIE, indicated a more severe inner retina impairment. The bilateral papillomacular bundle defect and central vision loss in MNGIE are consistent with classical mitochondrial optic neuropathies' features. According to the literature, pigmentary retinopathy, optic neuropathy, and abnormal pupillary reflexes are uncommon ocular features of MNGIE. This study contributes to a better understanding of ocular manifestations in MNGIE and demonstrates that MNGIE may have dyschromatopsia and an electronegative electroretinogram.
Collapse
Affiliation(s)
- Heng Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gechong Ruan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bowen Tian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pengguang Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong Zhong
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Chanpong A, Alves MM, Bonora E, De Giorgio R, Thapar N. Evaluating the molecular and genetic mechanisms underlying gut motility disorders. Expert Rev Gastroenterol Hepatol 2023; 17:1301-1312. [PMID: 38117595 DOI: 10.1080/17474124.2023.2296558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
INTRODUCTION Gastrointestinal (GI) motility disorders comprise a wide range of different diseases affecting the structural or functional integrity of the GI neuromusculature. Their clinical presentation and burden of disease depends on the predominant location and extent of gut involvement as well as the component of the gut neuromusculature affected. AREAS COVERED A comprehensive literature review was conducted using the PubMed and Medline databases to identify articles related to GI motility and functional disorders, published between 2016 and 2023. In this article, we highlight the current knowledge of molecular and genetic mechanisms underlying GI dysmotility, including disorders of gut-brain interaction, which involve both GI motor and sensory disturbance. EXPERT OPINION Although the pathophysiology and molecular mechanisms underlying many such disorders remain unclear, recent advances in the assessment of intestinal tissue samples, genetic testing with the application of 'omics' technologies and the use of animal models will provide better insights into disease pathogenesis as well as opportunities to improve therapy.
Collapse
Affiliation(s)
- Atchariya Chanpong
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Neurogastroenterology & Motility Unit, Gastroenterology Department, Great Ormond Street Hospital for Children, London, UK
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Elena Bonora
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, Bologna, Italy
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, AOUB, Bologna, Italy
| | - Roberto De Giorgio
- Department of Translational Sciences, University of Ferrara, Ferrara, Italy
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
- Woolworths Centre for Child Nutrition Research, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Alcalá-González LG, Accarino A, Martí R, Sánchez-Tejerina D, Llauradó A, Azpiroz F, Malagelada C. Distinctive gastrointestinal motor dysfunction in patients with MNGIE. Neurogastroenterol Motil 2023; 35:e14643. [PMID: 37448106 DOI: 10.1111/nmo.14643] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare mitochondrial disease caused by mutations in TYMP, encoding thymidine phosphorylase. Clinically it is characterized by severe gastrointestinal dysmotility associated with cachexia and a demyelinating sensorimotor polyneuropathy. Even though digestive manifestations are progressive and invariably lead to death, the features of gastrointestinal motor dysfunction have not been systematically evaluated. The objective of this study was to describe gastrointestinal motor dysfunction in MNGIE using state-of-the art techniques and to evaluate the relationship between motor abnormalities and symptoms. METHODS Prospective study evaluating gastrointestinal motor function and digestive symptoms in all patients with MNGIE attended at a national referral center in Spain between January 2018 and July 2022. KEY RESULTS In this period, five patients diagnosed of MNGIE (age range 16-46 years, four men) were evaluated. Esophageal motility by high-resolution manometry was abnormal in four patients (two hypoperistalsis, two aperistalsis). Gastric emptying by scintigraphy was mildly delayed in four and indicative of gastroparesis in one. In all patients, small bowel high-resolution manometry exhibited a common, distinctive dysmotility pattern, characterized by repetitive bursts of spasmodic contractions, without traces of normal fasting and postprandial motility patterns. Interestingly, objective motor dysfunctions were detected in the absence of severe digestive symptoms. CONCLUSIONS AND INFERENCES MNGIE patients exhibit a characteristic motor dysfunction, particularly of the small bowel, even in patients with mild digestive symptoms and in the absence of morphological signs of intestinal failure. Since symptoms are not predictive of objective findings, early investigation is indicated.
Collapse
Affiliation(s)
- Luis G Alcalá-González
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Anna Accarino
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Sánchez-Tejerina
- Clinic of Neuromuscular Disorders and Rare Diseases, Neurology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
- European Reference Network for Neuromuscular and Rare Diseases EURO-NMD, Barcelona, Spain
| | - Arnau Llauradó
- Clinic of Neuromuscular Disorders and Rare Diseases, Neurology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
- European Reference Network for Neuromuscular and Rare Diseases EURO-NMD, Barcelona, Spain
| | - Fernando Azpiroz
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Carolina Malagelada
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
5
|
Almannai M, El-Hattab AW, Azamian MS, Ali M, Scaglia F. Mitochondrial DNA maintenance defects: potential therapeutic strategies. Mol Genet Metab 2022; 137:40-48. [PMID: 35914366 PMCID: PMC10401187 DOI: 10.1016/j.ymgme.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Mitochondrial DNA (mtDNA) replication depends on the mitochondrial import of hundreds of nuclear encoded proteins that control the mitochondrial genome maintenance and integrity. Defects in these processes result in an expanding group of disorders called mtDNA maintenance defects that are characterized by mtDNA depletion and/or multiple mtDNA deletions with variable phenotypic manifestations. As it applies for mitochondrial disorders in general, current treatment options for mtDNA maintenance defects are limited. Lately, with the development of model organisms, improved understanding of the pathophysiology of these disorders, and a better knowledge of their natural history, the number of preclinical studies and existing and planned clinical trials has been increasing. In this review, we discuss recent preclinical studies and current and future clinical trials concerning potential therapeutic options for the different mtDNA maintenance defects.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
6
|
Karamitros CS, Somody CM, Agnello G, Rowlinson S. Engineering of the Recombinant Expression and PEGylation Efficiency of the Therapeutic Enzyme Human Thymidine Phosphorylase. Front Bioeng Biotechnol 2021; 9:793985. [PMID: 34976980 PMCID: PMC8718881 DOI: 10.3389/fbioe.2021.793985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022] Open
Abstract
Human thymidine phosphorylase (HsTP) is an enzyme with important implications in the field of rare metabolic diseases. Defective mutations of HsTP lead to mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a disease with a high unmet medical need that is associated with severe neurological and gastrointestinal complications. Current efforts focus on the development of an enzyme replacement therapy (ERT) using the Escherichia coli ortholog (EcTP). However, bacterial enzymes are counter-indicated for human therapeutic applications because they are recognized as foreign by the human immune system, thereby eliciting adverse immune responses and raising significant safety and efficacy risks. Thus, it is critical to utilize the HsTP enzyme as starting scaffold for pre-clinical drug development, thus de-risking the safety concerns associated with the use of bacterial enzymes. However, HsTP expresses very poorly in E. coli, whereas its PEGylation, a crucial chemical modification for achieving long serum persistence of therapeutic enzymes, is highly inefficient and negatively affects its catalytic activity. Here we focused on the engineering of the recombinant expression profile of HsTP in E. coli cells, as well as on the optimization of its PEGylation efficiency aiming at the development of an alternative therapeutic approach for MNGIE. We show that phylogenetic and structural analysis of proteins can provide important insights for the rational design of N’-terminus-truncation constructs which exhibit significantly improved recombinant expression levels. In addition, we developed and implemented a criteria-driven rational surface engineering strategy for the substitution of arginine-to-lysine and lysine-to-arginine residues to achieve more efficient, homogeneous and reproducible PEGylation without negatively affecting the enzymatic catalytic activity upon PEGylation. Collectively, our proposed strategies provide an effective way to optimize enzyme PEGylation and E. coli recombinant expression and are likely applicable for other proteins and enzymes.
Collapse
|
7
|
Chanpong A, Borrelli O, Thapar N. Hirschsprung disease and Paediatric Intestinal Pseudo-obstruction. Best Pract Res Clin Gastroenterol 2021; 56-57:101765. [PMID: 35331399 DOI: 10.1016/j.bpg.2021.101765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/31/2023]
Abstract
Hirschsprung disease (HSCR) and Paediatric Intestinal Pseudo-obstruction (PIPO) comprise two of the most recognized and severe disorders of gastrointestinal (GI) motility. HSCR is a developmental disorder of the enteric nervous system invariably affecting the large intestine, whereas the majority of PIPO conditions represent congenital disorders of one or more components of the neuromusculature and more diffusely affect the GI tract. Histopathology is deemed the gold standard for the diagnosis of HSCR and, arguably, of PIPO, but, other diagnostic modalities such as manometric and genetic studies have seen recent advances that may increase their utility. Especially for PIPO, management is multidisciplinary and best performed in specialist referral centres. Surgery remains the only viable treatment for HSCR and appears essential to optimize and sustain feeding and viability of intestinal function in PIPO patients. Novel therapies such as neural stem cell transplants show promise for the future.
Collapse
Affiliation(s)
- Atchariya Chanpong
- Neurogastroenterology & Motility Unit, Gastroenterology Department, Great Ormond Street Hospital for Children, London, WC1N 3JH, United Kingdom; Division of Gastroenterology and Hepatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand; Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Osvaldo Borrelli
- Neurogastroenterology & Motility Unit, Gastroenterology Department, Great Ormond Street Hospital for Children, London, WC1N 3JH, United Kingdom
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdom; Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Queensland, 4101, Australia.
| |
Collapse
|
8
|
Zaidman I, Elhasid R, Gefen A, Yahav Dovrat A, Mutaz S, Shaoul R, Eshach Adiv O, Mandel H, Tal G. Hematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalopathy: A single-center experience underscoring the multiple factors involved in the prognosis. Pediatr Blood Cancer 2021; 68:e28926. [PMID: 33533561 DOI: 10.1002/pbc.28926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive autosomal recessive disorder characterized by cachexia, gastrointestinal (GI) dysmotility, ptosis, peripheral neuropathy, and brain magnetic resonance imaging (MRI) white matter changes. Bi-allelic TYMP mutations lead to deficient thymidine phosphorylase (TP) activity, toxic accumulation of plasma nucleosides (thymidine and deoxyuridine), nucleotide pool imbalances, and mitochondrial DNA (mtDNA) instability. Death is mainly due to GI complications: intestinal perforation, peritonitis, and/or liver failure. Based on our previous observations in three patients with MNGIE that platelet infusions resulted in a transient 40% reduction of plasma nucleoside levels, in 2005 we performed the first hematopoietic stem cell transplantation (HSCT) worldwide as a life-long source of TP in a patient with MNGIE. PROCEDURE HSCT was performed in a total of six patients with MNGIE. The multiple factors involved in the prognosis of this cohort were analyzed and compared to the literature experience. RESULTS Cell source was bone marrow in five patients and peripheral stem cells in one, all from fully human leukocyte antigen (HLA)-matched related donors, including four who were TYMP mutation carriers. Four of six (66%) survived compared to the 37% survival rate in the literature. Reduced intensity conditioning regimen contributed to secondary graft failure in two patients. Fifteen years post HSCT, the first transplanted patient is seemingly cured. Severe GI symptoms before transplantation were mostly irreversible and were poor prognostic factors. CONCLUSIONS Allogenic HSCT could constitute a curative therapeutic option for carefully selected, young, presymptomatic, or mildly affected patients. Timing, donor selection, and optimal conditioning protocol are major determinants of outcome. HSCT is inadvisable in patients with advanced MNGIE disease.
Collapse
Affiliation(s)
- Irina Zaidman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronit Elhasid
- Department of Hematology-Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Aharon Gefen
- Division of Pediatric Hematology Oncology and Bone Marrow Transplantation, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | | | - Sultan Mutaz
- Department of Pediatrics, Makassed Hospital, Faculty of Medicine, Al-Quds University, Jerusalem, Israel
| | - Ron Shaoul
- Gastroenterology institute, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel.,Technion Faculty of Medicine, Haifa, Israel
| | - Orly Eshach Adiv
- Technion Faculty of Medicine, Haifa, Israel.,Pediatric Gastroenterology and Nutrition Unit, "HyllelYaffe" Medical Center, Hadera, Israel
| | - Hanna Mandel
- Technion Faculty of Medicine, Haifa, Israel.,Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Galit Tal
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Pediatric B Department, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
9
|
Mencias M, Levene M, Blighe K, Bax BE, on behalf of the Project Group. Circulating miRNAs as Biomarkers for Mitochondrial Neuro-Gastrointestinal Encephalomyopathy. Int J Mol Sci 2021; 22:3681. [PMID: 33916195 PMCID: PMC8037498 DOI: 10.3390/ijms22073681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease for which there are currently no validated outcome measures for assessing therapeutic intervention efficacy. The aim of this study was to identify a plasma and/or serum microRNA (miRNA) biomarker panel for MNGIE. Sixty-five patients and 65 age and sex matched healthy controls were recruited and assigned to one of four study phases: (i) discovery for sample size determination; (ii) candidate screening; (iii) candidate validation; and (iv) verifying the performance of the validated miRNA panel in four patients treated with erythrocyte-encapsulated thymidine phosphorylase (EE-TP), an enzyme replacement under development for MNGIE. Quantitative PCR (qPCR) was used to profile miRNAs in serum and/or plasma samples collected for the discovery, validation and performance phases, and next generation sequencing (NGS) analysis was applied to serum samples assigned to the candidate screening phase. Forty-one differentially expressed candidate miRNAs were identified in the sera of patients (p < 0.05, log2 fold change > 1). The validation cohort revealed that of those, 27 miRNAs were upregulated in plasma and three miRNAs were upregulated in sera (p < 0.05). Through binary logistic regression analyses, five plasma miRNAs (miR-192-5p, miR-193a-5p, miR-194-5p, miR-215-5p and miR-34a-5p) and three serum miRNAs (miR-192-5p, miR-194-5p and miR-34a-5p) were shown to robustly distinguish MNGIE from healthy controls. Reduced longitudinal miRNA expression of miR-34a-5p was observed in all four patients treated with EE-TP and coincided with biochemical and clinical improvements. We recommend the inclusion of the plasma exploratory miRNA biomarker panel in future clinical trials of investigational therapies for MNGIE; it may have prognostic value for assessing clinical status.
Collapse
Affiliation(s)
- Mark Mencias
- Molecular and Clinical Sciences, St. George’s, University of London, London SW17 0RE, UK; (M.M.); (M.L.)
| | - Michelle Levene
- Molecular and Clinical Sciences, St. George’s, University of London, London SW17 0RE, UK; (M.M.); (M.L.)
| | - Kevin Blighe
- Clinical Bioinformatics Research Ltd., London W1B 3HH, UK;
| | - Bridget E. Bax
- Molecular and Clinical Sciences, St. George’s, University of London, London SW17 0RE, UK; (M.M.); (M.L.)
| | | |
Collapse
|
10
|
Hirano M, Carelli V, De Giorgio R, Pironi L, Accarino A, Cenacchi G, D’Alessandro R, Filosto M, Martí R, Nonino F, Pinna AD, Baldin E, Bax BE, Bolletta A, Bolletta R, Boschetti E, Cescon M, D’Angelo R, Dotti MT, Giordano C, Gramegna LL, Levene M, Lodi R, Mandel H, Morelli MC, Musumeci O, Pugliese A, Scarpelli M, Siniscalchi A, Spinazzola A, Tal G, Torres-Torronteras J, Vignatelli L, Zaidman I, Zoller H, Rinaldi R, Zeviani M. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE International Network. J Inherit Metab Dis 2021; 44:376-387. [PMID: 32898308 PMCID: PMC8399867 DOI: 10.1002/jimd.12300] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disease caused by TYMP mutations and thymidine phosphorylase (TP) deficiency. Thymidine and deoxyuridine accumulate impairing the mitochondrial DNA maintenance and integrity. Clinically, patients show severe and progressive gastrointestinal and neurological manifestations. The onset typically occurs in the second decade of life and mean age at death is 37 years. Signs and symptoms of MNGIE are heterogeneous and confirmatory diagnostic tests are not routinely performed by most laboratories, accounting for common misdiagnosis. Factors predictive of progression and appropriate tests for monitoring are still undefined. Several treatment options showed promising results in restoring the biochemical imbalance of MNGIE. The lack of controlled studies with appropriate follow-up accounts for the limited evidence informing diagnostic and therapeutic choices. The International Consensus Conference (ICC) on MNGIE, held in Bologna, Italy, on 30 March to 31 March 2019, aimed at an evidence-based consensus on diagnosis, prognosis, and treatment of MNGIE among experts, patients, caregivers and other stakeholders involved in caring the condition. The conference was conducted according to the National Institute of Health Consensus Conference methodology. A consensus development panel formulated a set of statements and proposed a research agenda. Specifically, the ICC produced recommendations on: (a) diagnostic pathway; (b) prognosis and the main predictors of disease progression; (c) efficacy and safety of treatments; and (f) research priorities on diagnosis, prognosis, and treatment. The Bologna ICC on diagnosis, management and treatment of MNGIE provided evidence-based guidance for clinicians incorporating patients' values and preferences.
Collapse
Affiliation(s)
- Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, New York
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberto De Giorgio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Loris Pironi
- Clinical Nutrition and Metabolism Unit and Center for Chronic Intestinal Failure, Department of Digestive System, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Anna Accarino
- Digestive System Research Unit, University Hospital Vall d’Hebron / Centro de Investigación Biomédica en Red de Enfermeda des Hepáticas y Digestivas (CIBEREHD); Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | | - Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, Azienda Socio Sanitaria Territoriale degli Spedali Civili and University of Brescia, Brescia, Italy
| | - Ramon Martí
- Vall d’Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain
| | - Francesco Nonino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Elisa Baldin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Bridget Elizabeth Bax
- Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| | | | | | - Elisa Boschetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Roberto D’Angelo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Metropolitana (NeuroMet), - Neurologia AOU S.Orsola-Malpighi, Bologna, Italy
| | - Maria Teresa Dotti
- Neurological and Metabolic Diseases Clinic, Siena Hospital, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Umberto I Policlinic, Rome, Italy
| | - Laura Ludovica Gramegna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michelle Levene
- Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Hanna Mandel
- Institute of Human Genetics and Inherited Metabolic Disorders, Galilee Medical Center, Nahariya, Israel
| | - Maria Cristina Morelli
- Department for Care of Organ Failures and Transplants, Internal Medicine for the Treatment of Severe Organ Failures, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Olimpia Musumeci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessia Pugliese
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mauro Scarpelli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Integrata Verona, Verona, Italy
| | - Antonio Siniscalchi
- Anaesthesiology Intensive Care and Transplantation Unit, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Antonella Spinazzola
- Department of Clinical Movement Neurosciences, Royal Free Campus, University College of London, Queen Square Institute of Neurology, London, UK
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Javier Torres-Torronteras
- Vall d’Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Irina Zaidman
- Department of Bone Marrow Transplantation, Hadassah University Medical Center, Jerusalem, Israel
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Metropolitana (NeuroMet), - Neurologia AOU S.Orsola-Malpighi, Bologna, Italy
| | - Massimo Zeviani
- Department of Neurosciences, Veneto Institute of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Abstract
The extrinsic and autonomic nervous system intricately controls the major functions of the gastrointestinal tract through the enteric nervous system; these include motor, secretory, sensory, storage, and excretory functions. Disorders of the nervous system affecting gastrointestinal tract function manifest primarily as abnormalities in motor (rather than secretory) functions. Common gastrointestinal symptoms in neurologic disorders include sialorrhea, dysphagia, gastroparesis, intestinal pseudo-obstruction, constipation, diarrhea, and fecal incontinence. Diseases of the entire neural axis ranging from the cerebral hemispheres to the peripheral autonomic nerves can result in gastrointestinal motility disorders. The most common neurologic diseases affecting gastrointestinal function are stroke, parkinsonism, multiple sclerosis, and diabetic neuropathy. Diagnosis involves identification of the neurologic disease and its distribution, and documentation of segmental gut dysfunction, typically using noninvasive imaging, transit measurements, or intraluminal measurements of pressure activity and coordination of motility. Apart from treatment of the underlying neurologic disease, management focuses on restoration of normal hydration and nutrition and pharmacologic treatment of the gut neuromuscular disorder.
Collapse
|
12
|
|
13
|
Yadak R, Breur M, Bugiani M. Gastrointestinal Dysmotility in MNGIE: from thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J Rare Dis 2019; 14:33. [PMID: 30736844 PMCID: PMC6368792 DOI: 10.1186/s13023-019-1016-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background MNGIE is a rare and fatal disease in which absence of the enzyme thymidine phosphorylase induces systemic accumulation of thymidine and deoxyuridine and secondary mitochondrial DNA alterations. Gastrointestinal (GI) symptoms are frequently reported in MNGIE patients, however, they are not resolved with the current treatment interventions. Recently, our understanding of the GI pathology has increased, which rationalizes the pursuit of more targeted therapeutic strategies. In particular, interstitial cells of Cajal (ICC) play key roles in GI physiology and are involved in the pathogenesis of the GI dysmotility. However, understanding of the triggers of ICC deficits in MNGIE is lacking. Herein, we review the current knowledge about the pathology of GI dysmotility in MNGIE, discuss potential mechanisms in relation to ICC loss/dysfunction, remark on the limited contribution of the current treatments, and propose intervention strategies to overcome ICC deficits. Finally, we address the advances and new research avenues offered by organoids and tissue engineering technologies, and propose schemes to implement to further our understanding of the GI pathology and utility in regenerative and personalized medicine in MNGIE. Conclusion Interstitial cells of Cajal play key roles in the physiology of the gastrointestinal motility. Evaluation of their status in the GI dysmotility related to MNGIE would be valuable for diagnosis of MNGIE. Understanding the underlying pathological and molecular mechanisms affecting ICC is an asset for the development of targeted prevention and treatment strategies for the GI dysmotility related to MNGIE.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marjolein Breur
- Department of Child Neurology, VU University Medical center, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Bax BE. Mitochondrial neurogastrointestinal encephalomyopathy: approaches to diagnosis and treatment. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2019; 4:1-16. [PMID: 32914088 PMCID: PMC7116056 DOI: 10.20517/jtgg.2020.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease caused by mutations in TYMP, the gene encoding for the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of thymidine and 2’-deoxyuridine and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. MNGIE is characterised by gastrointestinal dysmotility, cachexia, peripheral neuropathy, ophthalmoplegia, ptosis and leukoencephalopathy. The disease is progressively degenerative and leads to death at an average age of 37.6 years. Patients invariably encounter misdiagnoses, diagnostic delays, and non-specific clinical management. Despite its rarity, MNGIE has invoked much interest in the development of therapeutic strategies, mainly because it is one of the few mitochondrial disorders where the molecular abnormality is metabolically and physically accessible to manipulation. This review provides a resume of the current diagnosis and treatment approaches and aims to increase the clinical awareness of MNGIE and thereby facilitate early diagnosis and timely access to treatments, before the development of untreatable and irreversible organ damage.
Collapse
Affiliation(s)
- Bridget E Bax
- Institute of Molecular and Clinical Sciences, St. George's University of London, London, SW17 ORE, UK
| |
Collapse
|
15
|
Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front Genet 2018; 9:669. [PMID: 30627136 PMCID: PMC6309918 DOI: 10.3389/fgene.2018.00669] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare metabolic autosomal recessive disease, caused by mutations in the nuclear gene TYMP which encodes the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of the deoxyribonucleosides thymidine and deoxyuridine, and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. Clinically, MNGIE is characterized by gastrointestinal and neurological manifestations, including cachexia, gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, ophthalmoplegia and ptosis. The disease is progressively degenerative and leads to death at an average age of 37.6 years. As with the vast majority of rare diseases, patients with MNGIE face a number of unmet needs related to diagnostic delays, a lack of approved therapies, and non-specific clinical management. We provide here a comprehensive collation of the available knowledge of MNGIE since the disease was first described 42 years ago. This review includes symptomatology, diagnostic procedures and hurdles, in vitro and in vivo disease models that have enhanced our understanding of the disease pathology, and finally experimental therapeutic approaches under development. The ultimate aim of this review is to increase clinical awareness of MNGIE, thereby reducing diagnostic delay and improving patient access to putative treatments under investigation.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Caterina Garone
- MRC Mitochondrial Biology Unit, Cambridge Biomedical, Cambridge, United Kingdom
| | | | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| |
Collapse
|