1
|
Takenaka K, Hisamatsu T, Kobayashi T, Yamamoto H, Ohmiya N, Hayashi R, Matsuoka K, Saruta M, Andoh A, Fukata N, Watanabe K, Imaeda H, Hirai F, Matsumoto T, Hirakawa A, Yano T, Matsuura M, Okamoto R, Ohtsuka K, Watanabe M. Inadequate Efficacy of Biologics for Treating Proximal Ileal Lesions in Crohn's Disease; A Prospective Multicenter Study. Clin Gastroenterol Hepatol 2024:S1542-3565(24)01084-X. [PMID: 39694212 DOI: 10.1016/j.cgh.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND & AIMS Although biologic therapy has revolutionized the treatment of Crohn's disease (CD), surgery remains unavoidable in cases involving ileal complications. We aimed to evaluate the efficacy of biologics on proximal ileal lesions using balloon-assisted enteroscopy (BAE). METHODS This open-label multicenter prospective study was conducted at tertiary referral centers in Japan. We enrolled 253 patients with active ileal CD who were treated with biologics (infliximab/adalimumab/ustekinumab/vedolizumab). BAE was performed at week 0 and week 26, and endoscopic findings were centrally assessed. We evaluated the rate of endoscopic remission (defined as having a maximum modified Simple Endoscopic Score for Crohn's disease <4) at week 26 and patient prognosis (CD-related hospitalization and surgery). RESULTS At baseline, 74 patients (29.2%) had proximal ileal ulcerations without terminal ileal ulcerations. The second BAE showed that endoscopic remission was achieved in 91 patients (36.0%). Of the patients with complete ulcer healing of the terminal ileum, 28.6% (22/77) had residual ulcers in the proximal ileum. The rate of endoscopic remission in the proximal ileum (50.9%) was relatively lower compared with the colon (63.4%) and terminal ileum (56.7%), a trend consistently observed across all treatment agents. After a median follow-up of 134 weeks, residual ulcerations in the proximal ileum were associated with a poorer prognosis (P = .0126 for hospitalization and P = .0014 for surgery). CONCLUSIONS A substantial proportion of patients with CD exhibited ulcerations in the proximal ileum, which correlated with a poorer prognosis. These lesions proved challenging to heal, regardless of the type of biologic used.
Collapse
Affiliation(s)
- Kento Takenaka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Hironori Yamamoto
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Naoki Ohmiya
- Department of Advanced Endoscopy, Fujita Health University School of Medicine, Aichi, Japan
| | - Ryohei Hayashi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsuyoshi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Norimasa Fukata
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - Kenji Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Hyogo, Japan
| | - Hiroyuki Imaeda
- Department of Gastroenterology, Saitama Medical University, Saitama, Japan
| | - Fumihito Hirai
- Department of Gastroenterology, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology and Hepatology, Iwate Medical University, Iwate, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomonori Yano
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Ohtsuka
- Endoscopic Unit, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Mamoru Watanabe
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
2
|
Wang X, Shang D, Chen J, Cheng S, Chen D, Zhang Z, Liu C, Yu J, Cao H, Li L, Li L. Serum metabolomics reveals the effectiveness of human placental mesenchymal stem cell therapy for Crohn's disease. Talanta 2024; 277:126442. [PMID: 38897006 DOI: 10.1016/j.talanta.2024.126442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mesenchymal stem cell (MSC) therapy offers a promising cure for Crohn's disease (CD), however, its therapeutic effects vary significantly due to individual differences. Therefore, identifying easily detectable biomarkers is essential to assess the efficacy of MSC therapy. In this study, SAMP1/Yit mice were used as a model of CD, which develop spontaneous chronic ileitis, closely resembling the characteristics present in CD patients. Serum metabolic alterations during treatment were analyzed, through the application of differential 12C-/13C-dansylation labeling liquid chromatography-mass spectrometry. Based on the significant differences and time-varying trends of serum amine/phenol-containing metabolites abundance between the control group, the model group, and the treatment group, four serum biomarkers were ultimately screened for evaluating the efficacy of MSC treatment for CD, namely 4-hydroxyphenylpyruvate, 4-hydroxyphenylacetaldehyde, caffeate, and N-acetyltryptamine, whose abundances both increased in the serum of CD model mice and decreased after MSC treatment. These metabolic alterations were associated with tyrosine metabolism, which was validated by the dysregulation of related enzymes. The discovery of biomarkers may help to improve the targeting and effectiveness of treatment and provide innovative prospects for the clinical application of MSC for CD.
Collapse
Affiliation(s)
- Xiao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China
| | - Dandan Shang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China
| | - Junyao Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Deying Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Zhehua Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China; State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, 79 Qingchun Rd, Hangzhou City 310003, China.
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China; State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-chemical and Aging-related Injuries, 79 Qingchun Rd, Hangzhou City 310003, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China; State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| |
Collapse
|
3
|
Zhou YW, Ren Y, Lu MM, Xu LL, Cheng WX, Zhang MM, Ding LP, Chen D, Gao JG, Du J, Jin CL, Chen CX, Li YF, Cheng T, Jiang PL, Yang YD, Qian PX, Xu PF, Jin X. Crohn's disease as the intestinal manifestation of pan-lymphatic dysfunction: An exploratory proposal based on basic and clinical data. World J Gastroenterol 2024; 30:34-49. [PMID: 38293325 PMCID: PMC10823898 DOI: 10.3748/wjg.v30.i1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Crohn's disease (CD) is caused by immune, environmental, and genetic factors. It can involve the entire gastrointestinal tract, and although its prevalence is rapidly increasing its etiology remains unclear. Emerging biological and small-molecule drugs have advanced the treatment of CD; however, a considerable proportion of patients are non-responsive to all known drugs. To achieve a breakthrough in this field, innovations that could guide the further development of effective therapies are of utmost urgency. In this review, we first propose the innovative concept of pan-lymphatic dysfunction for the general distribution of lymphatic dysfunction in various diseases, and suggest that CD is the intestinal manifestation of pan-lymphatic dysfunction based on basic and clinical preliminary data. The supporting evidence is fully summarized, including the existence of lymphatic system dysfunction, recognition of the inside-out model, disorders of immune cells, changes in cell plasticity, partial overlap of the underlying mechanisms, and common gut-derived fatty and bile acid metabolism. Another benefit of this novel concept is that it proposes adopting the zebrafish model for studying intestinal diseases, especially CD, as this model is good at presenting and mimicking lymphatic dysfunction. More importantly, the ensuing focus on improving lymphatic function may lead to novel and promising therapeutic strategies for CD.
Collapse
Affiliation(s)
- Yu-Wei Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The Second Hospital of Jiaxing, Jiaxing 314000, Zhejiang Province, China
| | - Miao-Miao Lu
- Endoscopy Center, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Ling Xu
- Department of Gastroenterology, The Second People’s Hospital of Yuhang District, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Xin Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Meng Zhang
- Department of Gastroenterology, Hangzhou Shangcheng District People’s Hospital, Hangzhou 310003, Zhejiang Province, China
| | - Lin-Ping Ding
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Juan Du
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ci-Liang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chun-Xiao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yun-Fei Li
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Tao Cheng
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Lei Jiang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Da Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Xu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Fei Xu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
4
|
Bousvaros A, Schmidt BAR, Kurtz M. Treatment of Genital Crohn's Disease With Upadacitinib in a Male Child: A Case Report. Gastroenterol Hepatol (N Y) 2023; 19:401-403. [PMID: 37771618 PMCID: PMC10524414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Affiliation(s)
- Athos Bousvaros
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts
| | | | - Michael Kurtz
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Nikolakis D, de Voogd FAE, Pruijt MJ, Grootjans J, van de Sande MG, D’Haens GR. The Role of the Lymphatic System in the Pathogenesis and Treatment of Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23031854. [PMID: 35163775 PMCID: PMC8836364 DOI: 10.3390/ijms23031854] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Although the number of therapeutic options for the treatment of inflammatory bowel disease (IBD) has increased in recent years, patients suffer from decreased quality of life due to non-response or loss of response to the currently available treatments. An increased understanding of the disease’s etiology could provide novel insights for treatment strategies in IBD. Lymphatic system components are generally linked to immune responses and presumably related to inflammatory diseases pathophysiology. This review aims to summarize findings on immune-mediated mechanisms in lymphoid tissues linked with IBD pathogenesis and (potential) novel treatments. Enhanced innate and adaptive immune responses were observed in mesenteric lymph nodes (MLNs) and other lymphoid structures, such as Peyer’s patches, in patients with IBD and in animal models. Furthermore, the phenomenon of lymphatic obstruction in the form of granulomas in MLNs and lymphatic vessels correlates with disease activity. There is also evidence that abnormalities in the lymphatic stromal components and lymph node microbiome are common in IBD and could be exploited therapeutically. Finally, novel agents targeting lymphocyte trafficking have been added to the treatment armamentarium in the field of IBD. Overall, gut-associated lymphoid tissue plays a key role in IBD immunopathogenesis, which could offer novel therapeutic targets.
Collapse
Affiliation(s)
- Dimitrios Nikolakis
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Onassis Foundation, 4 Aeschinou Street, 10558 Athens, Greece
| | - Floris A. E. de Voogd
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
| | - Maarten J. Pruijt
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
| | - Joep Grootjans
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
| | - Marleen G. van de Sande
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
- Correspondence:
| |
Collapse
|
6
|
Islam J, Agista AZ, Watanabe K, Nochi T, Aso H, Ohsaki Y, Koseki T, Komai M, Shirakawa H. Fermented rice bran supplementation attenuates chronic colitis-associated extraintestinal manifestations in female C57BL/6N mice. J Nutr Biochem 2022; 99:108855. [PMID: 34517096 DOI: 10.1016/j.jnutbio.2021.108855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/04/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Patients with inflammatory bowel disease (IBD) have higher incidence of extraintestinal manifestations (EIM), including liver disorders, sarcopenia, and neuroinflammation. Fermented rice bran (FRB), generated from rice bran (RB), is rich in bioactive compounds, and exhibits anti-colitis activity. However, its role in EIM prevention is still unclear. Here, for the first time, we investigated whether EIM in female C57Bl/6N mice is attenuated by FRB supplementation. EIM was induced by repeated administration of 1.5% dextran sulfate sodium (DSS) in drinking water (4 d) followed by drinking water (12 d). Mice were divided into 3 groups-control (AIN93M), 10% RB, and 10% FRB. FRB ameliorated relapsing colitis and inflammation in muscle by significantly lowering proinflammatory cytokines Tnf-α and Il-6 in serum and advanced glycation end product-specific receptor (Ager) in serum and muscle when compared with the RB and control groups. As FRB reduced aspartate aminotransferase levels and oxidative stress, it might prevent liver disorders. FRB downregulated proinflammatory cytokine and chemokine transcripts responsible for neuroinflammation in the hippocampus and upregulated mRNA expression of G protein coupled receptors (GPRs), Gpr41 and Gpr43, in small and large intestines, which may explain the FRB-mediated protective mechanism. Hence, FRB can be used as a supplement to prevent IBD-associated EIM.
Collapse
Affiliation(s)
- Jahidul Islam
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.
| | - Afifah Zahra Agista
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Takuya Koseki
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan; International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Krigsman A, Walker SJ. Gastrointestinal disease in children with autism spectrum disorders: Etiology or consequence? World J Psychiatry 2021; 11:605-618. [PMID: 34631464 PMCID: PMC8474996 DOI: 10.5498/wjp.v11.i9.605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic gastrointestinal (GI) symptoms and disorders are common in children with autism spectrum disorder and have been shown to be significantly correlated with the degree of behavioral and cognitive impairment. In this unique population, GI symptoms often arise very early in development, during infancy or toddlerhood, and may be misdiagnosed - or not diagnosed at all – due in part to the challenges associated with recognition of symptoms in a minimally or non-communicative child. Evidence demonstrating that the gut-brain-axis can communicate gut dysbiosis and systemic immune dysregulation in a bidirectional manner raises the question as to whether an untreated gastrointestinal disorder can directly impact neurodevelopment or, conversely, whether having a neurodevelopmental disorder predisposes a child to chronic GI issues. From the data presented in this mini review, we conclude that the preponderance of available evidence would suggest the former scenario is more strongly supported.
Collapse
Affiliation(s)
- Arthur Krigsman
- Pediatric Gastroenterology Resources of New York and Texas, Georgetown, TX 78628, United States
| | - Stephen J Walker
- Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, United States
| |
Collapse
|
8
|
Zhang L, Ocansey DKW, Liu L, Olovo CV, Zhang X, Qian H, Xu W, Mao F. Implications of lymphatic alterations in the pathogenesis and treatment of inflammatory bowel disease. Biomed Pharmacother 2021; 140:111752. [PMID: 34044275 DOI: 10.1016/j.biopha.2021.111752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by intense immune dysregulation, gut microbiota imbalance, and intestinal epithelium destruction. Among the factors that contribute to the pathogenesis of IBD, lymphatics have received less attention, hence less studied, characterized, and explored. However, in recent years, the role of the lymphatic system in gastrointestinal pathophysiology continues to be highlighted. This paper examines the implications of lymphatic changes in IBD pathogenesis related to immune cells, gut microbiota, intestinal and mesenteric epithelial barrier integrity, and progression to colorectal cancer (CRC). Therapeutic targets of lymphatics in IBD studies are also presented. Available studies indicate that lymph nodes and other secondary lymphatic tissues, provide highly specialized microenvironments for mounting effective immune responses and that lymphatic integrity plays a significant role in small intestine homeostasis, where the lymphatic vasculature effectively controls tissue edema, leukocyte exit, bacterial antigen, and inflammatory chemokine clearance. In IBD, there are functional and morphological alterations in intestinal and mesenteric lymphatic vessels (more profoundly in Crohn's disease [CD] compared to ulcerative colitis [UC]), including lymphangiogenesis, lymphangiectasia, lymphadenopathy, and lymphatic vasculature blockade, affecting not only immunity but gut microbiota and epithelial barrier integrity. While increased lymphangiogenesis is primarily associated with a good prognosis of IBD, increased lymphangiectasia, lymphadenopathy, and lymphatic vessel occlusion correlate with poor prognosis. IBD therapies that target the lymphatic system seek to increase lymphangiogenesis via induction of lymphangiogenic factors and inhibition of its antagonists. The resultant increased lymphatic flow coupled with other anti-inflammatory activities restores gut homeostasis.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Lianqin Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
9
|
NIIMI K, TAKAHASHI E. Reduced differentiation of intestinal epithelial cells in wasting marmoset syndrome. J Vet Med Sci 2021; 83:784-792. [PMID: 33731497 PMCID: PMC8182325 DOI: 10.1292/jvms.20-0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/05/2021] [Indexed: 11/28/2022] Open
Abstract
Wasting marmoset syndrome (WMS) is a serious disease in captive common marmoset (Callithrix jacchus) colonies. Because of the high mortality rates, elucidation of the underlying mechanisms is essential. In this study, we compared the histopathology, the number of each epithelial cell in the jejunum and colon, and the expression patterns of some molecular markers between healthy and WMS-affected marmosets. Atrophy of villi in the jejunum and mononuclear cell infiltration in the lamina propria were observed in the intestinal tract of WMS-affected marmosets. Although the numbers of transient amplifying cells and tuft cells were increased, the number of goblet cells was obviously decreased in the jejunum and colon of WMS-affected marmosets compared to healthy marmosets. In addition, the number of enterocytes in the jejunum was decreased in WMS animals. There was no apparent difference in the numbers of stem cells, enteroendocrine cells, or Paneth cells. The expression of β-catenin and Tcf7l2 was increased in WMS, and the co-existence of β-catenin and Tcf7l2/Cyclin D1 was observed around the crypts in WMS-affected marmosets. These findings suggest that cell proliferation continues, but cell differentiation is halted in the intestinal tract due to the enhanced β-catenin/Tcf7l2/Cyclin D1signaling pathway in WMS, which results in malfunction of the villus and mucosa.
Collapse
Affiliation(s)
- Kimie NIIMI
- Support Unit for Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, 2-1 Hirosawa,
Wako-shi, Saitama 351-0198, Japan
| | - Eiki TAKAHASHI
- Research Resources Division, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Misselwitz B, Wyss A, Raselli T, Cerovic V, Sailer AW, Krupka N, Ruiz F, Pot C, Pabst O. The oxysterol receptor GPR183 in inflammatory bowel diseases. Br J Pharmacol 2021; 178:3140-3156. [PMID: 33145756 DOI: 10.1111/bph.15311] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Immune cell trafficking is an important mechanism for the pathogenesis of inflammatory bowel disease (IBD). The oxysterol receptor GPR183 and its ligands, dihydroxylated oxysterols, can mediate positioning of immune cells including innate lymphoid cells. GPR183 has been mapped to an IBD risk locus, however another gene, Ubac2 is encoded on the reverse strand and associated with Behçet's disease, therefore the role of GPR183 as a genetic risk factor requires validation. GPR183 and production of its oxysterol ligands are up-regulated in human IBD and murine colitis. Gpr183 inactivation reduced severity of colitis in group 3 innate lymphoid cells-dependent colitis and in IL-10 colitis but not in dextran sodium sulphate colitis. Irrespectively, Gpr183 knockout strongly reduced accumulation of intestinal lymphoid tissue in health and all colitis models. In conclusion, genetic, translational and experimental studies implicate GPR183 in IBD pathogenesis and GPR183-dependent cell migration might be a therapeutic drug target for IBD. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Benjamin Misselwitz
- Gastroenterology, University Hospital of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Andreas W Sailer
- Disease Area X, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Niklas Krupka
- Gastroenterology, University Hospital of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Florian Ruiz
- Service of Neurology, University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Service of Neurology, University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Qian Y, He W, Zheng CY, Xue JH, Fang JY, Chen XY, Cui Y. Significance of granuloma and granulomatous lymphangitis in the differential diagnosis of Crohn's disease. J Dig Dis 2020; 21:454-461. [PMID: 32621394 DOI: 10.1111/1751-2980.12919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To clarify the pathological characteristics of granuloma and granulomatous lymphangitis in patients with non-neoplastic bowel diseases and to compare their significance in the differential diagnosis of Crohn's disease (CD) and intestinal tuberculosis (ITB). METHODS Altogether 78 cases with CD, 11 with ITB and 33 suffering from other non-neoplastic bowel diseases were included. All patients underwent a partial enterectomy and histopathological examination. Pathological sections were reviewed retrospectively. Detailed morphological features and the distribution of granulomas and granulomatous lymphangitis in the three groups were analyzed and compared. RESULTS Significant differences in the features of granuloma were observed in CD compared with ITB, including the presence of Langhans giant cells, caseous necrosis, coalescence, hyaline change, onionskin changes, and their frequency and size. Granulomatous lymphangitis was significantly more frequent in CD than in other non-neoplastic bowel diseases (P < 0.0001). The rate was also higher than that of granuloma in CD (P = 0.0004). It more often manifested within the mucosal layer of the small bowel (55.4%) in CD whereas it tended to be located within the deep layers of the intestinal wall in other diseases. It can be divided into four types, but types 1 and 2 appeared relatively specific to CD. CONCLUSIONS Granuloma and granulomatous lymphangitis were not specific in CD. However, by combining morphology and distribution, their manifestations could assist in the differentiation of CD from other non-neoplastic bowel diseases. Furthermore, granulomatous lymphangitis showed better diagnostic performance than granulomas in the mucosal layer of the small bowel.
Collapse
Affiliation(s)
- Yun Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei He
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chu Yi Zheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Hui Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Yu Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|