1
|
Liang Q, Lin H, Li J, Luo P, Qi R, Chen Q, Meng F, Qin H, Qu F, Zeng Y, Wang W, Lu J, Huang B, Chen Y. Combining Multifrequency Magnetic Resonance Elastography With Automatic Segmentation to Assess Renal Function in Patients With Chronic Kidney Disease. J Magn Reson Imaging 2025. [PMID: 39874058 DOI: 10.1002/jmri.29719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability. PURPOSE To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity. STUDY TYPE Prospective. PARTICIPANTS A total of 179 participants consisting of 95 healthy volunteers and 84 participants with CKD. FIELD STRENGTH/SEQUENCE 3 T, single shot spin echo planar imaging sequence. ASSESSMENT Participants were randomly assigned into training (n = 58), validation (n = 15), and test (n = 106) sets. Test set included 47 healthy volunteers and 58 CKD participants with different stages (21 stage 1-2, 22 stage 3, and 16 stage 4-5) based on estimated glomerular filtration rate (eGFR). Shear wave speed (SWS) values from mMRE was measured using automatic segmentation constructed through the nnU-Net deep-learning network. Standard manual segmentation was created by a radiologist. In the test set, the automatically segmented renal SWS were compared between healthy volunteers and CKD subgroups, with age as a covariate. The association between SWS and eGFR was investigated in participants with CKD. STATISTICAL TESTS Dice similarity coefficient (DSC), analysis of covariance, Pearson and Spearman correlation analyses. P < 0.05 was considered statistically significant. RESULTS Mean DSCs between standard manual and automatic segmentation were 0.943, 0.901, and 0.970 for the renal cortex, medulla, and parenchyma, respectively. The automatically quantified cortical, medullary, and parenchymal SWS were significantly correlated with eGFR (r = 0.620, 0.605, and 0.640, respectively). Participants with CKD stage 1-2 exhibited significantly lower cortical SWS values compared to healthy volunteers (2.44 ± 0.16 m/second vs. 2.56 ± 0.17 m/second), after adjusting age. CONCLUSION mMRE combined with automatic segmentation revealed abnormal renal stiffness in patients with CKD, even with mild renal impairment. PLAIN LANGUAGE SUMMARY The renal stiffness of patients with chronic kidney disease varies according to the function and structure of the kidney. This study integrates multifrequency magnetic resonance elastography with automated segmentation technique to assess renal stiffness in patients with chronic kidney disease. The findings indicate that this method is capable of distinguishing between patients with chronic kidney disease, including those with mild renal impairment, while simultaneously reducing the subjectivity and time required for radiologists to analyze images. This research enhances the efficiency of image processing for radiologists and assists nephrologists in detecting early-stage damage in patients with chronic kidney disease. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Qiumei Liang
- Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
- Department of Radiology, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Haiwei Lin
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
| | - Junfeng Li
- Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Peiyin Luo
- Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Ruirui Qi
- Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Qiuyi Chen
- Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Fanqi Meng
- Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Haodong Qin
- MR Research Collaboration, Siemens Healthineers, Shanghai, China
| | - Feifei Qu
- MR Research Collaboration, Siemens Healthineers, Shanghai, China
| | - Youjia Zeng
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Wenjing Wang
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Jiandong Lu
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
| | - Yueyao Chen
- Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China
| |
Collapse
|
2
|
Adikary S, Urban MW, Guddati MN. Twin Peak Method for Estimating Tissue Viscoelasticity using Shear Wave Elastography. ARXIV 2024:arXiv:2411.11572v1. [PMID: 39606734 PMCID: PMC11601804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Tissue viscoelasticity is becoming an increasingly useful biomarker beyond elasticity and can theoretically be estimated using shear wave elastography (SWE), by inverting the propagation and attenuation characteristics of shear waves. Estimating viscosity is often more difficult than elasticity because attenuation, the main effect of viscosity, leads to poor signal-to-noise ratio of the shear wave motion. In the present work, we provide an alternative to existing methods of viscoelasticity estimation that is robust against noise. The method minimizes the difference between simulated and measured versions of two sets of peaks (twin peaks) in the frequency-wavenumber domain, obtained first by traversing through each frequency and then by traversing through each wavenumber. The slopes and deviation of the twin peaks are sensitive to elasticity and viscosity respectively, leading to the effectiveness of the proposed inversion algorithm for characterizing mechanical properties. This expected effectiveness is confirmed through in silico verification, followed by ex vivo validation and in vivo application, indicating that the proposed approach can be effectively used in accurately estimating viscoelasticity, thus potentially contributing to the development of enhanced biomarkers.
Collapse
|
3
|
Chon YE, Jin YJ, An J, Kim HY, Choi M, Jun DW, Kim MN, Han JW, Lee HA, Yu JH, Kim SU. Optimal cut-offs of vibration-controlled transient elastography and magnetic resonance elastography in diagnosing advanced liver fibrosis in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Clin Mol Hepatol 2024; 30:S117-S133. [PMID: 39165159 PMCID: PMC11493355 DOI: 10.3350/cmh.2024.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND/AIMS Opinions differ regarding vibration-controlled transient elastography and magnetic resonance elastography (VCTE/MRE) cut-offs for diagnosing advanced fibrosis (AF) in patients with non-alcoholic fatty liver disease (NAFLD). We investigated the diagnostic performance and optimal cut-off values of VCTE and MRE for diagnosing AF. METHODS Literature databases, including Medline, EMBASE, Cochrane Library, and KoreaMed, were used to identify relevant studies published up to June 13, 2023. We selected studies evaluating VCTE and MRE regarding the degree of liver fibrosis using liver biopsy as the reference. The sensitivity, specificity, and area under receiver operating characteristics curves (AUCs) of the pooled data for VCTE and MRE for each fibrosis stage and optimal cut-offs for AF were investigated. RESULTS A total of 19,199 patients from 63 studies using VCTE showed diagnostic AUC of 0.83 (95% confidence interval: 0.80-0.86), 0.83 (0.80-0.86), 0.87 (0.84-0.90), and 0.94 (0.91-0.96) for ≥F1, ≥F2, ≥F3, and F4 stages, respectively. Similarly, 1,484 patients from 14 studies using MRE showed diagnostic AUC of 0.89 (0.86-0.92), 0.92 (0.89-0.94), 0.89 (0.86-0.92), and 0.94 (0.91-0.96) for ≥F1, ≥F2, ≥F3, and F4 stages, respectively. The diagnostic AUC for AF using VCTE was highest at 0.90 with a cut-off of 7.1-7.9 kPa, and that of MRE was highest at 0.94 with a cut-off of 3.62-3.8 kPa. CONCLUSION VCTE (7.1-7.9 kPa) and MRE (3.62-3.8 kPa) with the suggested cut-offs showed favorable accuracy for diagnosing AF in patients with NAFLD. This result will serve as a basis for clinical guidelines for non-invasive tests and differential diagnosis of AF.
Collapse
Affiliation(s)
- Young Eun Chon
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Hee Yeon Kim
- Department of Internal Medicine, College of Medicine, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Miyoung Choi
- Division of Health Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency (NECA), Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
4
|
Kazi IN, Kuo L, Tsai E. Noninvasive Methods for Assessing Liver Fibrosis and Steatosis. Gastroenterol Hepatol (N Y) 2024; 20:21-29. [PMID: 38405045 PMCID: PMC10885415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Accurate diagnosis and staging of liver fibrosis is crucial to the individualized management of patients with chronic liver disease. Liver biopsy remains the reference standard for the assessment of steatosis, necroinflammation, and fibrosis. However, over the past decade, there has been an exponential growth in noninvasive tests (NITs) designed to assess liver fibrosis and steatosis. These NITs range from serum biomarkers to imaging assessments of liver tissue stiffness. Current noninvasive methods overcome the limitations of non-specific laboratory markers, conventional imaging, and invasive procedures, and are now starting to be adopted. The Fibrosis-4 index, Enhanced Liver Fibrosis test, and elastography have gained the strongest clinical footholds for the diagnosis of advanced fibrosis. There remains significant interest in demonstrating superiority of any specific test or, alternatively, optimizing a sequential algorithm to provide the most accurate diagnosis of fibrosis staging. This article reviews currently available noninvasive methods for assessing liver fibrosis and steatosis.
Collapse
Affiliation(s)
| | - Lily Kuo
- UT Health San Antonio, San Antonio, Texas
| | - Eugenia Tsai
- UT Health San Antonio, San Antonio, Texas
- Texas Liver Institute, San Antonio, Texas
| |
Collapse
|
5
|
Rahmani G, O'Sullivan GJ. Acute and chronic venous occlusion. Br J Radiol 2023; 96:20230242. [PMID: 37750946 PMCID: PMC10607425 DOI: 10.1259/bjr.20230242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 08/04/2023] [Indexed: 09/27/2023] Open
Abstract
This review article provides an overview of acute and chronic venous occlusion, a condition that can cause significant morbidity and mortality if not diagnosed and treated promptly. The article begins with an introduction to the anatomy of the venous system, followed by a discussion of the causes and clinical features of venous occlusion. The diagnostic tools available for the assessment of venous occlusion, including imaging modalities such as ultrasound, CT, and MRI, are then discussed, along with their respective advantages and limitations. The article also covers the treatment options for acute and chronic venous occlusion, including anticoagulant therapy and endovascular interventions. This review aims to provide radiologists with an updated understanding of the pathophysiology, diagnosis, and management of acute and chronic venous occlusion.
Collapse
Affiliation(s)
- George Rahmani
- Department of Interventional Radiology, Galway University Hospitals, Galway, Ireland
| | - Gerard J O'Sullivan
- Department of Interventional Radiology, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
6
|
Tilg H, Byrne CD, Targher G. NASH drug treatment development: challenges and lessons. Lancet Gastroenterol Hepatol 2023; 8:943-954. [PMID: 37597527 DOI: 10.1016/s2468-1253(23)00159-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 08/21/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. Although NAFLD is tightly linked to obesity and type 2 diabetes, this liver disease also affects individuals who do not have obesity. NAFLD increases the risk of developing cardiovascular disease, chronic kidney disease, and certain extrahepatic cancers. There is currently no licensed pharmacotherapy for NAFLD, despite numerous clinical trials in the past two decades. Currently, the reason so few drugs have been successful in the treatment of NAFLD in a trial setting is not fully understood. As cardiovascular disease is the predominant cause of mortality in people with NAFLD, future pharmacotherapies for NAFLD must consider associated cardiometabolic risk factors. The successful use of glucose-lowering drugs in the treatment of type 2 diabetes in patients with NAFLD indicates that this strategy is important, and worth developing further. Greater public awareness of NAFLD is needed because collaboration between all stakeholders is vital to enable a holistic approach to successful treatment.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| | - Christopher D Byrne
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Verona, Verona, Italy; IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| |
Collapse
|
7
|
Tun KM, Noureddin N, Noureddin M. Noninvasive tests in the evaluation of nonalcoholic fatty liver disease: A review. Clin Liver Dis (Hoboken) 2023; 22:103-112. [PMID: 37799634 PMCID: PMC10550044 DOI: 10.1097/cld.0000000000000066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/08/2023] [Indexed: 10/07/2023] Open
Abstract
1_kpnc0f20Kaltura.
Collapse
Affiliation(s)
- Kyaw Min Tun
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Nevada, USA
| | - Nabil Noureddin
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, School of Medicine, California, USA
| | - Mazen Noureddin
- Houston Research Institute and Houston Liver Institute, Texas, USA
| |
Collapse
|
8
|
Obrzut M, Atamaniuk V, Ehman RL, Yin M, Cholewa M, Gutkowski K, Domka W, Ozga D, Obrzut B. Evaluation of Spleen Stiffness in Young Healthy Volunteers Using Magnetic Resonance Elastography. Diagnostics (Basel) 2023; 13:2738. [PMID: 37685274 PMCID: PMC10486410 DOI: 10.3390/diagnostics13172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE Magnetic resonance elastography (MRE) has been established as the most accurate noninvasive technique for diagnosing liver fibrosis. Recent publications have suggested that the measurement of splenic stiffness is useful in setting where portal hypertension may be present. The goal of the current study was to compile normative data for MRE-assessed stiffness measurements of the spleen in young adults. MATERIALS AND METHODS A total of 100 healthy young Caucasian volunteers (65 females and 35 males) in the age range of 20 to 32 years were enrolled in this study. The participants reported no history of chronic spleen and liver disease, normal alcohol consumption, and a normal diet. The MRE data were acquired by using a 1.5 T whole-body scanner and a 2D GRE pulse sequence with 60 Hz excitation. Spleen stiffness was calculated as a weighted mean of stiffness values in the regions of interest manually drawn by the radiologist on three to five spleen slices. RESULTS Mean spleen stiffness was 5.09 ± 0.65 kPa for the whole group. Male volunteers had slightly higher splenic stiffness compared to females: 5.28 ± 0.78 vs. 4.98 ± 0.51 kPa, however, this difference was not statistically significant (p = 0.12). Spleen stiffness did not correlate with spleen fat content and liver stiffness but a statistically significant correlation with spleen volume was found. CONCLUSIONS The findings of this study provide normative values for 2D MRE-based measurement of spleen stiffness in young adults, a basis for assessing the value of this biomarker in young patients with portal system pathologies.
Collapse
Affiliation(s)
- Marzanna Obrzut
- Institute of Health Sciences, Medical College, University of Rzeszow, Warzywna 1a, 35-310 Rzeszow, Poland; (M.O.)
| | - Vitaliy Atamaniuk
- Department of Biophysics, Institute of Physics, College of Natural Sciences, University of Rzeszow, Prof. Stanisława Pigonia Str. 1, 35-310 Rzeszow, Poland; (V.A.); (M.C.)
| | - Richard L. Ehman
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Marian Cholewa
- Department of Biophysics, Institute of Physics, College of Natural Sciences, University of Rzeszow, Prof. Stanisława Pigonia Str. 1, 35-310 Rzeszow, Poland; (V.A.); (M.C.)
| | - Krzysztof Gutkowski
- Institute of Medical Sciences, Medical College, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland;
| | - Wojciech Domka
- Department of Otolaryngology, Institute of Medical Sciences, Medical College, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland;
| | - Dorota Ozga
- Institute of Health Sciences, Medical College, University of Rzeszow, Warzywna 1a, 35-310 Rzeszow, Poland; (M.O.)
| | - Bogdan Obrzut
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Medical College, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| |
Collapse
|
9
|
Kaplan JM, Alexis J, Grimaldi G, Islam M, Izard SM, Lee TP. A comparison of magnetic resonance elastography (MRE) to biomarker testing for staging fibrosis in non-alcoholic fatty liver disease (NAFLD). Transl Gastroenterol Hepatol 2023; 8:7. [PMID: 36704653 PMCID: PMC9813653 DOI: 10.21037/tgh-22-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 01/29/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the world's most prevalent chronic liver disease. In advanced stages, it is associated with significant morbidity and mortality. Magnetic resonance elastography (MRE) and scoring panels Fibrosis-4 (FIB-4) and NAFLD Fibrosis Score (NFS) are useful noninvasive alternatives to liver biopsy for fibrosis staging. Our study aimed to determine how well MRE corresponds with both FIB-4 and NFS at different stages of fibrosis. Methods We performed a retrospective chart review of patients age ≥18 with NAFLD as their only known liver disease who underwent MRE within six months of a lab draw. MRE stratified patients into fibrosis stages using kPa values. FIB-4 categorized patients as Advanced Fibrosis Excluded, Further Investigation Needed or Advanced Fibrosis Likely. NFS categorized them as F0-2, Indeterminate or F3-4. MRE fibrosis staging was compared to FIB-4 and NFS for both ruling out advanced fibrosis and identifying advanced fibrosis/cirrhosis. Results Overall, 193 patients met inclusion criteria. Our statistical analysis included calculating positive predictive values (PPVs) and negative predictive values (NPVs), which are the proportions of positive and negative fibrosis screening results that correspond to positive and negative MRE results respectively. NPV for FIB-4 (0.84) and NFS (0.89) in the 'rule out advanced fibrosis' category signify that 84% and 89% of respective biomarker scores correspond to MRE in early stage disease. The PPV for FIB-4 and NFS in the 'identify advanced fibrosis/cirrhosis' category signify 63% and 72% of respective biomarker scores correspond to MRE in late stage disease. Conclusions FIB-4 and NFS scores indicating little to no fibrosis correspond extremely well with MRE, while scores suggesting advanced fibrosis/cirrhosis correspond less convincingly. MRE shows promise as an effective alternative to liver biopsy, however our study suggests FIB-4 and NFS alone may be sufficient for fibrosis staging, particularly in early stage NAFLD.
Collapse
Affiliation(s)
- Joseph M. Kaplan
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jamil Alexis
- Department of Gastroenterology, Yale New Haven Health Bridgeport Hospital, Bridgeport, CT, USA
| | - Gregory Grimaldi
- Department of Radiology, Hofstra School of Medicine/Northwell Health, Manhasset, NY, USA
| | - Mohammed Islam
- Department of Medicine, Hofstra School of Medicine/Northwell Health, Manhasset, NY, USA
| | - Stephanie M. Izard
- Department of Medicine, Northwell Health Center for Health Innovations and Outcomes Research, Manhasset, NY, USA
| | - Tai-Ping Lee
- Division of Hepatology, Hofstra School of Medicine/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
10
|
Kim T, Kim YR, Jeong C, Kim HJ, Kim JW, Lee YH, Yoon K. Regional Analysis of Liver Surface Nodularity in a Single Axial MR Image for Staging Liver Fibrosis. J Magn Reson Imaging 2022; 56:1781-1791. [PMID: 35543163 PMCID: PMC9790718 DOI: 10.1002/jmri.28208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The assessment of liver surface nodularity (LSN) for staging hepatic fibrosis is restricted in clinical practice because it requires customized software and time-consuming procedures. A simplified method to estimate LSN score may be useful in the clinic. PURPOSE To evaluate the regional analysis of LSN and processing time in a single axial liver MR image for staging liver fibrosis. STUDY TYPE Retrospective. POPULATION A total of 210 subjects, a multicenter study. FIELD STRENGTH/SEQUENCE A 3 T/noncontrast gradient echo T1WI. ASSESSMENT Subjects were divided into five fibrosis groups (F0 = 29; F1 = 20; F2 = 32; F3 = 50; F4 = 79) based on the METAVIR fibrosis scoring system. The mean LSN (on three slices) and regional LSN (on one slice) measurements, and the processing times, are compared. The regional LSN scores in five regions-of-interests (ROI1-5 ) were analyzed in a single axial MRI at the level of the hilum by two independent observers. STATISTICAL TESTS Regional variations in LSN scores were compared using ANOVA with Tukey test. Agreement between the mean and regional LSN measurements was evaluated using Pearson correlation coefficients (r) and Bland-Altman plots. The diagnostic performance of mean and regional LSN scores according to fibrosis stage was evaluated with the AUROC. A P value < 0.05 was considered statistically significant. RESULTS Total processing time for a regional LSN measurement (3.6 min) was 75.5% less than that for mean LSN measurement (14.7 min). Mean LSN scores and all five regional LSN scores showed significant differences between fibrosis groups. Among regional LSN scores, ROI5 showed the highest AUROC (0.871 at cut-off 1.12) for discriminating F0-2 vs. F3-4 and the best correlation with mean LSN score (r = 0.800, -0.07 limit of agreement). CONCLUSION Quantitative regional LSN measurement in a single axial MR image reduces processing time. Regional ROI5 LSN score might be useful for clinical decision-making and for distinguishing the difference between early fibrosis (F0-2 ) and advanced fibrosis (F3-4 ) in the liver. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Tae‐Hoon Kim
- Medical Convergence Research CenterWonkwang UniversityIksanRepublic of Korea
| | - Youe Ree Kim
- Medical Convergence Research CenterWonkwang UniversityIksanRepublic of Korea,Department of RadiologyWonkwang University School of Medicine and Wonkwang University HospitalIksanRepublic of Korea
| | - Chang‐Won Jeong
- Medical Convergence Research CenterWonkwang UniversityIksanRepublic of Korea
| | - Hyung Joong Kim
- Department of Biomedical EngineeringKyung Hee UniversityDongdaemun‐gu, SeoulRepublic of Korea
| | - Jin Woong Kim
- Department of RadiologyChosun University College of Medicine, Chosun University HospitalGwangjuKorea
| | - Young Hwan Lee
- Medical Convergence Research CenterWonkwang UniversityIksanRepublic of Korea,Department of RadiologyWonkwang University School of Medicine and Wonkwang University HospitalIksanRepublic of Korea
| | - Kwon‐Ha Yoon
- Medical Convergence Research CenterWonkwang UniversityIksanRepublic of Korea,Department of RadiologyWonkwang University School of Medicine and Wonkwang University HospitalIksanRepublic of Korea
| |
Collapse
|
11
|
Muacevic A, Adler JR. Accuracy of Ultrasonography vs. Elastography in Patients With Non-alcoholic Fatty Liver Disease: A Systematic Review. Cureus 2022; 14:e29967. [PMID: 36381908 PMCID: PMC9637432 DOI: 10.7759/cureus.29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Ultrasonography and elastography are the most widely used imaging modalities for diagnosing non-alcoholic fatty liver disease. This study aimed to assess and compare the diagnostic accuracy in patients with non-alcoholic fatty liver disease/non-alcoholic steatohepatitis. This systematic review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search was done for the past seven years using Pubmed, Pubmed Central, Cochrane, and Google Scholar databases on Jun 29, 2022. Studies were included based on the following predefined criteria: observational studies, randomized controlled trial (RCT), comparative studies, studies using liver biopsy or MRI proton density fat fraction (MRI PDFF) as a reference standard, ultrasonography, and elastography with measures of their diagnostic accuracy like sensitivity (SN), specificity (SP), area under the receiver operating characteristic (AUROC) curve, and English language. The data were extracted on a predefined template. The final twelve eligible studies were assessed using the quality assessment of diagnostic accuracy tool (QUADS-2). Most studies focused on elastography techniques, and the remaining focused on quantitative ultrasonography methods like the controlled attenuation parameter (CAP) and attenuation coefficient (AC). Only one study was available for the evaluation of qualitative ultrasonography. MRI was generally found superior to other diagnostic tests for determining liver stiffness through magnetic resonance elastography (MRE) and steatosis through MRI PDFF. Data assessing the comparative diagnostic accuracy of the two tests were inconclusive.
Collapse
|
12
|
Ehman RL. Magnetic resonance elastography: from invention to standard of care. Abdom Radiol (NY) 2022; 47:3028-3036. [PMID: 35852570 PMCID: PMC9538645 DOI: 10.1007/s00261-022-03597-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023]
Abstract
In 1995, a vivid image of diffracting waves in red and blue was published on the cover of the journal SCIENCE. An article in that issue described a new imaging technology called magnetic resonance elastography (MRE) (Muthupillai in Science 269:1854-1857, 1995). In 2004, quantitative images of liver stiffness in vivo, obtained with MRE, were demonstrated for the first time at the annual meeting of the International Society for Magnetic Resonance in Medicine. Only five years later, the technology had become widely available as an FDA-cleared diagnostic tool for patient care. MRE has emerged as a reliable non-invasive diagnostic method for detecting and staging liver fibrosis. Deployed on more than 2000 MRI systems worldwide, MRE has received a Category I CPT code from the American Medical Association, based on clinical availability and efficacy. For many patients, MRE now provides a safe, more comfortable, and much less expensive alternative to liver biopsy for diagnosing liver fibrosis. Although progress in radiology is notable for a history of very rapid translation of technology innovations to patient care, the path is rarely linear. This article reflects on the story of MRE, the advances and the setbacks, and the lessons that were learned in the process.
Collapse
|
13
|
Identifying Advanced Fibrosis in NAFLD Using Noninvasive Tests: A Systematic Review of Sequential Algorithms. J Clin Gastroenterol 2022; 56:266-272. [PMID: 33780219 DOI: 10.1097/mcg.0000000000001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/27/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND The utility of noninvasive tests (NITs) for the diagnosis of advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is limited by indeterminate results and modest predictive values (PVs). Algorithms of sequential NITs may overcome these shortcomings. Thus, we sought to systematically review the accuracy of sequential algorithms for assessing advanced fibrosis in NAFLD. METHODS A systematic review was performed following guidelines in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. A literature search of PubMed and Embase was performed in July of 2020 to identify studies that evaluated diagnostic characteristics of sequential NIT algorithms in NAFLD. RESULTS Among 8 studies meeting inclusion criteria, 48 algorithms were studied in 6741 patients. The average sensitivity, specificity, positive PV, negative PV, and proportion of indeterminate values for included algorithms were 72%, 92%, 88%, 82%, and 25%, respectively. Six algorithms achieved sensitivities in the top quartile (≥86.3%) with <25% indeterminate values. Four algorithms achieved specificities in the top quartile (≥98.7%) with <25% indeterminate values. The aforementioned algorithms included combinations of Fibrosis-4, NAFLD fibrosis score, and vibration-controlled transient elastography. CONCLUSIONS Sequential NIT algorithms may reduce indeterminate results while achieving sensitivities comparable to single NITs. Sequential algorithms may also augment the specificities of single NITs, though resulting positive PVs may not be high enough to obviate the need for liver biopsy. Available evidence supports the use of Fibrosis-4, NAFLD fibrosis score, and vibration-controlled transient elastography within sequential algorithms to achieve diagnostic accuracy for advanced fibrosis in NAFLD.
Collapse
|
14
|
Aggarwal P, Noureddin M, Harrison S, Jeannin S, Alkhouri N. Nonalcoholic steatohepatitis (NASH) cirrhosis: A snapshot of therapeutic agents in clinical development and the optimal design for clinical trials. Expert Opin Investig Drugs 2022; 31:163-172. [DOI: 10.1080/13543784.2022.2032640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Spiers J, Brindley JH, Li W, Alazawi W. What's new in non-alcoholic fatty liver disease? Frontline Gastroenterol 2022; 13:e102-e108. [PMID: 35812024 PMCID: PMC9234732 DOI: 10.1136/flgastro-2022-102122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide, with an estimated prevalence of 25% in the Western World. NAFLD is a broad spectrum of disease states and while most people with NAFLD do not have progressive disease, 10-20% of patients develop histological features of inflammation (non-alcoholic steatohepatitis), fibrosis, cirrhosis and its complications. Despite this large disease burden of significant clinical impact, most people living with NAFLD are undiagnosed, disease course prediction is imprecise and there are no treatments licensed for this condition. In this review, we discuss some of the recent developments in NAFLD, focusing on disease definition and diagnosis, risk stratification and treatments.
Collapse
Affiliation(s)
- Jessica Spiers
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - James Hallimond Brindley
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Wenhao Li
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - William Alazawi
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, London, UK
| |
Collapse
|
16
|
Pepin KM, Welle CL, Guglielmo FF, Dillman JR, Venkatesh SK. Magnetic resonance elastography of the liver: everything you need to know to get started. Abdom Radiol (NY) 2022; 47:94-114. [PMID: 34725719 PMCID: PMC9538666 DOI: 10.1007/s00261-021-03324-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Magnetic resonance elastography (MRE) of the liver has emerged as the non-invasive standard for the evaluation of liver fibrosis in chronic liver diseases (CLDs). The utility of MRE in the evaluation of different CLD in both adults and children has been demonstrated in several studies, and MRE has been recommended by several clinical societies. Consequently, the clinical indications for evaluation of CLD with MRE have increased, and MRE is currently used as an add-on test during routine liver MRI studies or as a standalone test. To meet the increasing clinical demand, MRE is being installed in many academic and private practice imaging centers. There is a need for a comprehensive practical guide to help these practices to deliver high-quality liver MRE studies as well as troubleshoot the common issues with MRE to ensure smooth running of the service. This comprehensive clinical practice review summarizes the indications and provides an overview on why to use MRE, technical requirements, system set-up, patient preparation, acquiring the data, and interpretation.
Collapse
Affiliation(s)
- Kay M Pepin
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
- Resoundant Inc, Rochester, MN, USA
| | - Christopher L Welle
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | | | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
17
|
Alsaqal S, Hockings P, Ahlström H, Gummesson A, Hedström A, Hulthe J, Johansson L, Niessen HG, Schoelch C, Schultheis C, Vessby J, Wanders A, Rorsman F, Ebeling Barbier C. The Combination of MR Elastography and Proton Density Fat Fraction Improves Diagnosis of Nonalcoholic Steatohepatitis. J Magn Reson Imaging 2021; 56:368-379. [PMID: 34953171 DOI: 10.1002/jmri.28040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is rapidly increasing worldwide. It is subdivided into nonalcoholic fatty liver (NAFL) and the more aggressive form, nonalcoholic steatohepatitis (NASH), which carries a higher risk of developing fibrosis and cirrhosis. There is currently no reliable non-invasive method for differentiating NASH from NAFL. PURPOSE To investigate the ability of magnetic resonance imaging (MRI)-based imaging biomarkers to diagnose NASH and moderate fibrosis as well as assess their repeatability. STUDY TYPE Prospective. SUBJECTS Sixty-eight participants (41% women) with biopsy-proven NAFLD (53 NASH and 15 NAFL). Thirty participants underwent a second MRI in order to assess repeatability. FIELD STRENGTH/SEQUENCE 3.0 T; MR elastography (MRE) (a spin-echo echo-planar imaging [SE-EPI] sequence with motion-encoding gradients), MR proton density fat fraction (PDFF) and R2* mapping (a multi-echo three-dimensional gradient-echo sequence), T1 mapping (a single-point saturation-recovery technique), and diffusion-weighted imaging (SE-EPI sequence). ASSESSMENT Quantitative MRI measurements were obtained and assessed alone and in combination with biochemical markers (cytokeratin-18 [CK18] M30, alanine transaminase [ALT], and aspartate transaminase [AST]) using logistic regression models. Models that could differentiate between NASH and NAFL and between moderate to advanced fibrosis (F2-4) and no or mild fibrosis (F0-1), based on the histopathological results, were identified. STATISTICAL TESTS Independent samples t-test, Pearson's chi-squared test, area under the receiver operating characteristic curve (AUROC), Spearman's correlation, intra-individual coefficient of variation, and intraclass correlation coefficient (ICC). Statistical significance was set at P < 0.05. RESULTS There was a significant difference between the NASH and NAFL groups with liver stiffness assessed with MRE, CK18 M30, and ALT, with an AUROC of 0.74, 0.76, and 0.70, respectively. Both MRE and PDFF contributed significantly to a bivariate model for diagnosing NASH (AUROC = 0.84). MRE could significantly differentiate between F2-4 and F0-1 (AUROC = 0.74). A model combining MRE with AST improved the diagnosis of F2-4 (AUROC = 0.83). The ICC for repeatability was 0.94 and 0.99 for MRE and PDFF, respectively. DATA CONCLUSION MRE can potentially diagnose NASH and differentiate between fibrosis stages. Combining MRE with PDFF improves the diagnosis of NASH. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Salem Alsaqal
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
| | | | - Håkan Ahlström
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden.,Antaros Medical, Mölndal, Sweden
| | - Anders Gummesson
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | - Heiko G Niessen
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Corinna Schoelch
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Christian Schultheis
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Johan Vessby
- Department of Medical Sciences, Section of Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Alkwin Wanders
- Department of Clinical Medicine, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - Fredrik Rorsman
- Department of Medical Sciences, Section of Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
18
|
Takeda T, Fujiwara H, Suga M. Development of three-dimensional integral-type reconstruction formula for magnetic resonance elastography. Int J Comput Assist Radiol Surg 2021; 16:1947-1956. [PMID: 34694572 DOI: 10.1007/s11548-021-02517-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The viscoelasticity (storage modulus and loss modulus) of living tissues is known to be related to diseases. Magnetic resonance elastography (MRE) is a quantitative method for non-invasive measuring viscoelasticity. The viscoelasticity is calculated from the elastic wave images using an inversion algorithm. The estimation accuracy of the inversion algorithm is degraded by background noise. This study aims to propose novel inversion algorithms that are applicable for noisy elastic wave images. METHODS The proposed algorithms are based on the Voigt-type viscoelastic equation. The algorithms are designed to improve the noise robustness by avoiding direct differentiation of measurement data by virtue of Green's formula. Similarly, stabilization is introduced to the curl-operator which works to eliminate the compression waves in measurement data. To clarify the characteristics of the algorithms, the proposed algorithms were compared with the conventional algorithms using isotropic and anisotropic voxel numerical simulations and phantom experimental data. RESULTS From the results of the numerical simulations, normalized errors of stiffness of proposed algorithms were 3% or less. The proposed algorithms mostly showed better results than the conventional algorithms despite noisy elastic wave images. From the gel phantom experiment, we confirmed the same tendency as the characteristics of the algorithms observed in the numerical simulation results. CONCLUSION We have developed a novel inversion algorithm and evaluated it quantitatively. The results confirm that the proposed algorithms are highly quantitative and noise-robust methods for estimating storage and loss modulus regardless of noise, voxel anisotropy, and propagation direction. Therefore, the proposed algorithms will appropriate to various three-dimensional MRE systems.
Collapse
Affiliation(s)
- Tasuku Takeda
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, Chiba, 263-8522, Japan.
| | | | - Mikio Suga
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba, Chiba, 263-8522, Japan.,Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
19
|
Selvaraj EA, Mózes FE, Jayaswal ANA, Zafarmand MH, Vali Y, Lee JA, Levick CK, Young LAJ, Palaniyappan N, Liu CH, Aithal GP, Romero-Gómez M, Brosnan MJ, Tuthill TA, Anstee QM, Neubauer S, Harrison SA, Bossuyt PM, Pavlides M. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J Hepatol 2021; 75:770-785. [PMID: 33991635 DOI: 10.1016/j.jhep.2021.04.044] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/15/2021] [Accepted: 04/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Vibration-controlled transient elastography (VCTE), point shear wave elastography (pSWE), 2-dimensional shear wave elastography (2DSWE), magnetic resonance elastography (MRE), and magnetic resonance imaging (MRI) have been proposed as non-invasive tests for patients with non-alcoholic fatty liver disease (NAFLD). This study evaluated their diagnostic accuracy for liver fibrosis and non-alcoholic steatohepatitis (NASH). METHODS PubMED/MEDLINE, EMBASE and the Cochrane Library were searched for studies examining the diagnostic accuracy of these index tests, against histology as the reference standard, in adult patients with NAFLD. Two authors independently screened and assessed methodological quality of studies and extracted data. Summary estimates of sensitivity, specificity and area under the curve (sAUC) were calculated for fibrosis stages and NASH, using a random effects bivariate logit-normal model. RESULTS We included 82 studies (14,609 patients). Meta-analysis for diagnosing fibrosis stages was possible in 53 VCTE, 11 MRE, 12 pSWE and 4 2DSWE studies, and for diagnosing NASH in 4 MRE studies. sAUC for diagnosis of significant fibrosis were: 0.83 for VCTE, 0.91 for MRE, 0.86 for pSWE and 0.75 for 2DSWE. sAUC for diagnosis of advanced fibrosis were: 0.85 for VCTE, 0.92 for MRE, 0.89 for pSWE and 0.72 for 2DSWE. sAUC for diagnosis of cirrhosis were: 0.89 for VCTE, 0.90 for MRE, 0.90 for pSWE and 0.88 for 2DSWE. MRE had sAUC of 0.83 for diagnosis of NASH. Three (4%) studies reported intention-to-diagnose analyses and 15 (18%) studies reported diagnostic accuracy against pre-specified cut-offs. CONCLUSIONS When elastography index tests are acquired successfully, they have acceptable diagnostic accuracy for advanced fibrosis and cirrhosis. The potential clinical impact of these index tests cannot be assessed fully as intention-to-diagnose analyses and validation of pre-specified thresholds are lacking. LAY SUMMARY Non-invasive tests that measure liver stiffness or use magnetic resonance imaging (MRI) have been suggested as alternatives to liver biopsy for assessing the severity of liver scarring (fibrosis) and fatty inflammation (steatohepatitis) in patients with non-alcoholic fatty liver disease (NAFLD). In this study, we summarise the results of previously published studies on how accurately these non-invasive tests can diagnose liver fibrosis and inflammation, using liver biopsy as the reference. We found that some techniques that measure liver stiffness had a good performance for the diagnosis of severe liver scarring.
Collapse
Affiliation(s)
- Emmanuel Anandraj Selvaraj
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| | - Ferenc Emil Mózes
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Arjun Narayan Ajmer Jayaswal
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mohammad Hadi Zafarmand
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Yasaman Vali
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jenny A Lee
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Christina Kim Levick
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Liam Arnold Joseph Young
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Naaventhan Palaniyappan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Chang-Hai Liu
- UCM Digestive Diseases. Virgen del Rocio University Hospital. Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain; Center for Infectious Diseases, West China Hospital of Sichuan University; Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guruprasad Padur Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Manuel Romero-Gómez
- UCM Digestive Diseases. Virgen del Rocio University Hospital. Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - M Julia Brosnan
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | | | - Quentin M Anstee
- Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen A Harrison
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrick M Bossuyt
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Michael Pavlides
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK.
| | | |
Collapse
|
20
|
Dietrich CG, Rau M, Geier A. Screening for nonalcoholic fatty liver disease-when, who and how? World J Gastroenterol 2021; 27:5803-5821. [PMID: 34629804 PMCID: PMC8475001 DOI: 10.3748/wjg.v27.i35.5803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/13/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming a frequent liver disease, especially in patients with metabolic syndrome and especially in Western countries. Complications of NAFLD comprise progressive fibrosis, cirrhosis and hepatocellular carcinoma. NAFLD also represents an independent risk factor for cardiovascular disease, extrahepatic neoplasia and other organ damage, such as renal insufficiency. Given the epidemiological importance of the disease, new developments in specific treatment of the disease and the wide availability of noninvasive techniques in estimating steatosis and fibrosis, NAFLD should be subject to screening programs, at least in countries with a high prevalence of the disease. The review discusses prerequisites for screening, cost-effectiveness, current guideline recommendations, suitability of techniques for screening and propositions for the following questions: Who should be screened? Who should perform screening? How should screening be performed? It is time for a screening program in patients at risk for NAFLD.
Collapse
Affiliation(s)
- Christoph G Dietrich
- Department of Internal Medicine, Bethlehem Health Center, Stolberg 52222, Germany
| | - Monika Rau
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| | - Andreas Geier
- Department of Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| |
Collapse
|
21
|
Hydes T, Brown E, Hamid A, Bateman AC, Cuthbertson DJ. Current and Emerging Biomarkers and Imaging Modalities for Nonalcoholic Fatty Liver Disease: Clinical and Research Applications. Clin Ther 2021; 43:1505-1522. [PMID: 34400007 DOI: 10.1016/j.clinthera.2021.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is a metabolic disorder that frequently coexists with obesity, metabolic syndrome, and type 2 diabetes. The NAFLD spectrum, ranging from hepatic steatosis to nonalcoholic steatohepatitis, fibrosis, and cirrhosis, can be associated with long-term hepatic (hepatic decompensation and hepatocellular carcinoma) and extrahepatic complications. Diagnosis of NAFLD requires detection of liver steatosis with exclusion of other causes of chronic liver disease. Screening for NAFLD and identification of individuals at risk of end-stage liver disease represent substantial challenges that have yet to be met. NAFLD affects up to 25% of adults, yet only a small proportion will progress beyond steatosis to develop advanced disease (steatohepatitis and fibrosis) associated with increased morbidity and mortality. Identification of this cohort has required the gold standard liver biopsy, which is both invasive and expensive. The use of serum biomarkers and noninvasive imaging techniques is an area of significant clinical relevance. This narrative review outlines current and emerging technologies for the diagnosis of NAFLD, nonalcoholic steatohepatitis, and hepatic fibrosis. METHODS We reviewed the literature using PubMed and reviewed national and international guidelines and conference proceedings to provide a comprehensive overview of the evidence. FINDINGS Significant advances have been made during the past 2 decades that have enhanced noninvasive assessment of NAFLD without the need for liver biopsy. For the detection of steatosis, abdominal ultrasonography remains the first-line investigation, although a controlled attenuation parameter using transient elastography is more sensitive. For detecting fibrosis, noninvasive serum markers of fibrosis and algorithms based on routine biochemistry are available, in addition to transient elastography. These techniques are well validated and have been incorporated into national and international screening guidelines. These approaches have facilitated more judicious use of liver biopsy but are yet to entirely replace it. Although serum biomarkers present a pragmatic and widely available screening approach for NAFLD in large population-based studies, magnetic resonance imaging techniques offer the benefit of achieving high degrees of accuracy in disease grading, tumor staging, and assessing therapeutic response. IMPLICATIONS This diagnostic clinical and research field is rapidly evolving; increasingly combined applications of biomarkers and transient elastography or imaging of selective (intermediate or high risk) cases are being used for clinical and research purposes. Liver biopsy remains the gold standard investigation, particularly in the context of clinical trials, but noninvasive options are emerging, using multimodality assessment, that are quicker, more tolerable, more widely available and have greater patient acceptability.
Collapse
Affiliation(s)
- T Hydes
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom.
| | - E Brown
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - A Hamid
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - A C Bateman
- Department of Cellular Pathology, Southampton General Hospital, Southampton, United Kingdom
| | - D J Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
22
|
Maya-Miles D, Ampuero J, Gallego-Durán R, Dingianna P, Romero-Gómez M. Management of NAFLD patients with advanced fibrosis. Liver Int 2021; 41 Suppl 1:95-104. [PMID: 34155801 DOI: 10.1111/liv.14847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The prevalence of non alcoholic fatty liver disease (NAFLD) has increased to 25% in the general population and could double by 2030. Liver fibrosis is the main indicator of morbidity and mortality and recent estimations suggest a substantial number of individuals with undiagnosed advanced liver disease. Strategies to monitor advanced fibrosis are essential for early detection, referral, diagnosis and treatment in primary care and endocrine units, where NAFLD and consequently liver fibrosis are more prevalent. Blood-based non-invasive methods could be used to stratify patients according to the risk of the progression of fibrosis and combined with imaging techniques to improve stratification. Powerful new diagnostic tools such as MRE and PDFF are emerging and might prevent the need for liver biopsy in the near future. The current therapeutic landscape of NAFLD is rapidly evolving with an increasing number of molecules that treat key factors involved in its progression, but that still have a limited or no ability to effectively reverse fibrosis. Management of this disease will probably require a combination of sequential and personalized treatments as a result of its complex and dynamic pathophysiology. Lifestyle interventions are still the most effective therapeutic option and should be better integrated into patient management together with specific programs of bariatric endoscopy/surgery for morbidly obese patients.
Collapse
Affiliation(s)
- Douglas Maya-Miles
- Institute of Biomedicine of Seville (IBiS), SeLiver Group, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain.,CIBER Hepatic and Digestive Diseases (CIBERehd), Seville, Spain
| | - Javier Ampuero
- Institute of Biomedicine of Seville (IBiS), SeLiver Group, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain.,CIBER Hepatic and Digestive Diseases (CIBERehd), Seville, Spain.,University of Seville, Seville, Spain
| | - Rocío Gallego-Durán
- Institute of Biomedicine of Seville (IBiS), SeLiver Group, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain.,CIBER Hepatic and Digestive Diseases (CIBERehd), Seville, Spain
| | - Paola Dingianna
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
| | - Manuel Romero-Gómez
- Institute of Biomedicine of Seville (IBiS), SeLiver Group, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain.,UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain.,CIBER Hepatic and Digestive Diseases (CIBERehd), Seville, Spain.,University of Seville, Seville, Spain
| |
Collapse
|
23
|
Dzyubak B, Li J, Chen J, Mara KC, Therneau TM, Venkatesh SK, Ehman RL, Allen AM, Yin M. Automated Analysis of Multiparametric Magnetic Resonance Imaging/Magnetic Resonance Elastography Exams for Prediction of Nonalcoholic Steatohepatitis. J Magn Reson Imaging 2021; 54:122-131. [PMID: 33586159 DOI: 10.1002/jmri.27549] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) affects 25% of the global population. The standard of diagnosis, biopsy, is invasive and affected by sampling error and inter-reader variability. We hypothesized that widely available rapid MRI techniques could be used to predict nonalcoholic steatohepatitis (NASH) noninvasively by measuring liver stiffness, with magnetic resonance elastography (MRE), and liver fat, with chemical shift-encoded (CSE) MRI. Besides, we validate an automated image analysis technique to maximize the utility of these methods. PURPOSE To implement and test an automated system for analyzing CSE-MRI and MRE data coupled with model-based prediction of NASH. STUDY TYPE Prospective. SUBJECTS Eighty-three patients with suspected NAFLD. FIELD STRENGTH/SEQUENCE A 1.5 T using a flow-compensated motion-encoded gradient echo MRE sequence and a multiecho CSE-MRI sequence. ASSESSMENTS The MRE and CSE-MRI data were analyzed by two readers (5+ and 1 years of experience) and an automated algorithm. A logistic regression model to predict pathology-diagnosed NASH was trained based on stiffness and proton density fat fraction, and the area under the receiver operating characteristic curve (AUROC) was calculated using 10-fold cross validation for models based on both automated and manual measurements. A separate model was trained to predict the NASH severity score (NAS). STATISTICAL TESTS Pearson's correlation, Bland-Altman, AUROC, C-statistic. RESULTS The agreement between automated measurements and the more experienced reader (R2 = 0.87 for stiffness and R2 = 0.99 for proton density fat fraction [PDFF]) was slightly better than the agreement between readers (R2 = 0.85 and 0.98). The model for predicting biopsy-diagnosed NASH had an AUROC of 0.87. The NAS-prediction model had a C-statistic of 0.85. DATA CONCLUSION We demonstrated a workflow that used a limited MRI acquisition protocol and fully automated analysis to predict NASH with high accuracy. These methods show promise to provide a reliable noninvasive alternative to biopsy for NASH-screening in populations with NAFLD. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
| | - Jiahui Li
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie Chen
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | - Alina M Allen
- GI and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng Yin
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Heyens LJM, Busschots D, Koek GH, Robaeys G, Francque S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front Med (Lausanne) 2021; 8:615978. [PMID: 33937277 PMCID: PMC8079659 DOI: 10.3389/fmed.2021.615978] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing percentage of people have or are at risk to develop non-alcoholic fatty liver disease (NAFLD) worldwide. NAFLD comprises different stadia going from isolated steatosis to non-alcoholic steatohepatitis (NASH). NASH is a chronic state of liver inflammation that leads to the transformation of hepatic stellate cells to myofibroblasts. These cells produce extra-cellular matrix that results in liver fibrosis. In a normal situation, fibrogenesis is a wound healing process that preserves tissue integrity. However, sustained and progressive fibrosis can become pathogenic. This process takes many years and is often asymptomatic. Therefore, patients usually present themselves with end-stage liver disease e.g., liver cirrhosis, decompensated liver disease or even hepatocellular carcinoma. Fibrosis has also been identified as the most important predictor of prognosis in patients with NAFLD. Currently, only a minority of patients with liver fibrosis are identified to be at risk and hence referred for treatment. This is not only because the disease is largely asymptomatic, but also due to the fact that currently liver biopsy is still the golden standard for accurate detection of liver fibrosis. However, performing a liver biopsy harbors some risks and requires resources and expertise, hence is not applicable in every clinical setting and is unsuitable for screening. Consequently, different non-invasive diagnostic tools, mainly based on analysis of blood or other specimens or based on imaging have been developed or are in development. In this review, we will first give an overview of the pathogenic mechanisms of the evolution from isolated steatosis to fibrosis. This serves as the basis for the subsequent discussion of the current and future diagnostic biomarkers and anti-fibrotic drugs.
Collapse
Affiliation(s)
- Leen J. M. Heyens
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Department of Gastro-Enterology and Hepatology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Dana Busschots
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Ger H. Koek
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Geert Robaeys
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Gastro-Enterology and Hepatology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Department of Gastroenterology and Hepatology, University Hospital Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- *Correspondence: Sven Francque
| |
Collapse
|
25
|
Grąt K, Grąt M, Rowiński O. Usefulness of Different Imaging Modalities in Evaluation of Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2020; 8:298. [PMID: 32839409 PMCID: PMC7556032 DOI: 10.3390/biomedicines8090298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are becoming some of the major health problems in well-developed countries, together with the increasing prevalence of obesity, metabolic syndrome, and all of their systemic complications. As the future prognoses are even more disturbing and point toward further increase in population affected with NAFLD/NASH, there is an urgent need for widely available and reliable diagnostic methods. Consensus on a non-invasive, accurate diagnostic modality for the use in ongoing clinical trials is also required, particularly considering a current lack of any registered drug for the treatment of NAFLD/NASH. The aim of this narrative review was to present current information on methods used to assess liver steatosis and fibrosis. There are several imaging modalities for the assessment of hepatic steatosis ranging from simple density analysis by computed tomography or conventional B-mode ultrasound to magnetic resonance spectroscopy (MRS), magnetic resonance imaging proton density fat fraction (MRI-PDFF) or controlled attenuation parameter (CAP). Fibrosis stage can be assessed by magnetic resonance elastography (MRE) or different ultrasound-based techniques: transient elastography (TE), shear-wave elastography (SWE) and acoustic radiation force impulse (ARFI). Although all of these methods have been validated against liver biopsy as the reference standard and provided good accuracy, the MRS and MRI-PDFF currently outperform other methods in terms of diagnosis of steatosis, and MRE in terms of evaluation of fibrosis.
Collapse
Affiliation(s)
- Karolina Grąt
- Second Department of Clinical Radiology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Olgierd Rowiński
- Second Department of Clinical Radiology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
26
|
Huang M, Lu X, Wang X, Shu J. Diffusion tensor imaging quantifying the severity of chronic hepatitis in rats. BMC Med Imaging 2020; 20:74. [PMID: 32615932 PMCID: PMC7333377 DOI: 10.1186/s12880-020-00466-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is mainly used for detecting white matter fiber in the brain. DTI was applied to assess fiber in liver disorders in previous studies. However, the data obtained have been insufficient in determining if DTI can be used to exactly stage chronic hepatitis. This study assessed the value of DTI for staging of liver fibrosis (F), necroinflammatory activity (A) and steatosis (S) with chronic hepatitis in rats. METHODS Seventy male Sprague-Dawley rats were divided into a control group(n = 10) and an experimental group(n = 60). The rat models of chronic hepatitis were established by abdominal subcutaneous injections of 40% CCl4. All of the rats underwent 3.0 T MRI. Regions of interest (ROIs) were subjected to DTI to estimate the MR parameters (rADC value and FA value). Histopathology was used as the reference standard. Multiple linear regression was used to analyze the associations between the MR parameters and pathology. The differences in the MR parameters among the pathological stages were evaluated by MANOVA or ANOVA. The LSD test was used to test for differences between each pair of groups. ROC analysis was also performed. RESULTS The count of each pathology was as follows: F0(n = 15), F1(n = 11), F2(n = 6), F3(n = 9), F4(n = 6); A0(n = 8), A1(n = 16), A2(n = 16), A3(n = 7); S0(n = 10), S1(n = 7), S2(n = 3), S3(n = 11), S4(n = 16). The rADC value had a negative correlation with liver fibrosis (r = - 0.392, P = 0.008) and inflammation (r = - 0.359, P = 0.015). The FA value had a positive correlation with fibrosis (r = 0.409, P = 0.005). Significant differences were found in the FA values between F4 and F0 ~ F3 (P = 0.03), while no significant differences among F0 ~ F3 were found (P > 0.05). The AUC of the FA value differentiating F4 from F0 ~ F3 was 0.909 (p < 0.001) with an 83.3% sensitivity and an 85.4% specificity when the FA value was at the cut-off of 588.089 (× 10- 6 mm2/s). CONCLUSION The FA value for DTI can distinguish early cirrhosis from normal, mild and moderate liver fibrosis, but the rADC value lacked the ability to differentiate among the fibrotic grades. Both the FA and rADC values were unable to discriminate the stages of necroinflammatory activity and steatosis.
Collapse
Affiliation(s)
- Mengping Huang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, People's Republic of China
| | - Xin Lu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, People's Republic of China
| | - Xiaofeng Wang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, People's Republic of China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|