1
|
Tatsumi Y, Yano M, Wakusawa S, Miyajima H, Ishikawa T, Imashuku S, Takano A, Nihei W, Kato A, Kato K, Hayashi H, Yoshioka K, Hayashi K. A Revised Classification of Primary Iron Overload Syndromes. J Clin Transl Hepatol 2024; 12:346-356. [PMID: 38638373 PMCID: PMC11022062 DOI: 10.14218/jcth.2023.00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/02/2023] [Accepted: 12/11/2023] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND AIMS The clinical introduction of hepcidin25 (Hep25) has led to a more detailed understanding of its relationship with ferroportin (FP) and divalent metal transporter1 in primary iron overload syndromes (PIOSs). In 2012, we proposed a classification of PIOSs based on the Hep25/FP system, which consists of prehepatic aceruloplasminemia, hepatic hemochromatosis (HC), and posthepatic FP disease (FP-D). However, in consideration of accumulated evidence on PIOSs, we aimed to renew the classification. METHODS We reviewed the 2012 classification and retrospectively renewed it according to new information on PIOSs. RESULTS Iron-loading anemia was included in PIOSs as a prehepatic form because of the newly discovered erythroferrone-induced suppression of Hep25, and the state of traditional FP-D was remodeled as the BIOIRON proposal. The key molecules responsible for prehepatic PIOSs are low transferrin saturation in aceruloplasminemia and increased erythroferrone production by erythroblasts in iron-loading anemia. Hepatic PIOSs comprise four genotypes of HC, in each of which the synthesis of Hep25 is inappropriately reduced in the liver. Hepatic Hep25 synthesis is adequate in posthepatic PIOSs; however, two mutant FP molecules may resist Hep25 differently, resulting in SLC40A1-HC and FP-D, respectively. PIOS phenotypes are diagnosed using laboratory tests, including circulating Hep25, followed by suitable treatments. Direct sequencing of the candidate genes may be outsourced to gene centers when needed. Laboratory kits for the prevalent mutations, such as C282Y, may be the first choice for a genetic analysis of HC in Caucasians. CONCLUSIONS The revised classification may be useful worldwide.
Collapse
Affiliation(s)
- Yasuaki Tatsumi
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Japan
| | - Motoyoshi Yano
- Department of Gastroenterology, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | - Shinya Wakusawa
- Department of Medical Technology, Shubun University, Ichinomiya, Japan
| | - Hiroaki Miyajima
- Department of Medicine and Neurology, Tenryu Kohseikai Clinic, Hamamatsu, Japan
| | - Tetsuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsaku Imashuku
- Department of Laboratory Medicine, Uji-Tokushukai Medical Center, Uji, Japan
| | - Atsuko Takano
- Department of Medicine, Saiseikai Takaoka Hospital, Takaoka, Japan
| | - Wataru Nihei
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Nagoya, Japan
| | - Ayako Kato
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Nagoya, Japan
| | - Koichi Kato
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Nagoya, Japan
| | - Hisao Hayashi
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Nagoya, Japan
| | - Kentaro Yoshioka
- Department of Gastroenterology, FNPS Meijo Hospital, Nagoya, Japan
| | - Kazuhiko Hayashi
- Department of Gastroenterology, FNPS Meijo Hospital, Nagoya, Japan
| |
Collapse
|
2
|
Ali N, Ferrao K, Mehta KJ. Liver Iron Loading in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1427-1439. [PMID: 36306827 DOI: 10.1016/j.ajpath.2022.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023]
Abstract
Alcohol-associated liver disease (ALD) is a common chronic liver disease with increasing incidence worldwide. Alcoholic liver steatosis/steatohepatitis can progress to liver fibrosis/cirrhosis, which can cause predisposition to hepatocellular carcinoma. ALD diagnosis and management are confounded by several challenges. Iron loading is a feature of ALD which can exacerbate alcohol-induced liver injury and promote ALD pathologic progression. Knowledge of the mechanisms that mediate liver iron loading can help identify cellular/molecular targets and thereby aid in designing adjunct diagnostic, prognostic, and therapeutic approaches for ALD. Herein, the cellular mechanisms underlying alcohol-induced liver iron loading are reviewed and how excess iron in patients with ALD can promote liver fibrosis and aggravate disease pathology is discussed. Alcohol-induced increase in hepatic transferrin receptor-1 expression and up-regulation of high iron protein in Kupffer cells (proposed) facilitate iron deposition and retention in the liver. Iron is loaded in both parenchymal and nonparenchymal liver cells. Iron-loaded liver can promote ferroptosis and thereby contribute to ALD pathology. Iron and alcohol can independently elevate oxidative stress. Therefore, a combination of excess iron and alcohol amplifies oxidative stress and accelerates liver injury. Excess iron-stimulated hepatocytes directly or indirectly (through Kupffer cell activation) activate the hepatic stellate cells via secretion of proinflammatory and profibrotic factors. Persistently activated hepatic stellate cells promote liver fibrosis, and thereby facilitate ALD progression.
Collapse
Affiliation(s)
- Najma Ali
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kevin Ferrao
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
3
|
Hu J, Li Y, Zhang L, Peng G, Zhang F, Zhao X. Iron overload due to SLC40A1 mutation of type 4 hereditary hemochromatosis. Med Mol Morphol 2023; 56:233-238. [PMID: 37382698 DOI: 10.1007/s00795-023-00359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Hereditary hemochromatosis type 4 is an autosomal-dominant inherited disease characterized by a mutation in the SLC40A1 gene encoding ferroportin. This condition can be further subdivided into types 4A (loss-of-function mutations) and 4B (gain-of-function mutations). To date, only a few cases of type 4B cases have been reported, and the treatment has not been clearly mentioned. Here, we report a genotype of hereditary hemochromatosis type 4B involving the heterozygous mutation c.997 T > C (p. Tyr333His) in SLC40A1. The patient was treated with red blood cell apheresis every month for 1 year, followed by oral deferasirox, and the combined therapy was found to be effective.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guangxin Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fengkui Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xin Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Hino K, Yanatori I, Hara Y, Nishina S. Iron and liver cancer: an inseparable connection. FEBS J 2022; 289:7810-7829. [PMID: 34543507 DOI: 10.1111/febs.16208] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Iron is an essential element for all organisms. Iron-containing proteins play critical roles in cellular functions. The biological importance of iron is largely attributable to its chemical properties as a transitional metal. However, an excess of 'free' reactive iron damages the macromolecular components of cells and cellular DNA through the production of harmful free radicals. On the contrary, most of the body's excess iron is stored in the liver. Not only hereditary haemochromatosis but also some liver diseases with mild-to-moderate hepatic iron accumulation, such as chronic hepatitis C, alcoholic liver disease and nonalcoholic steatohepatitis, are associated with a high risk for liver cancer development. These findings have attracted attention to the causative and promotive roles of iron in the development of liver cancer. In the last decade, accumulating evidence regarding molecules regulating iron metabolism or iron-related cell death programmes such as ferroptosis has shed light on the relationship between hepatic iron accumulation and hepatocarcinogenesis. In this review, we briefly present the current molecular understanding of iron regulation in the liver. Next, we describe the mechanisms underlying dysregulated iron metabolism depending on the aetiology of liver diseases. Finally, we discuss the causative and promotive roles of iron in cancer development.
Collapse
Affiliation(s)
- Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Sohji Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
5
|
Role of Iron in Aging Related Diseases. Antioxidants (Basel) 2022; 11:antiox11050865. [PMID: 35624729 PMCID: PMC9137504 DOI: 10.3390/antiox11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Iron progressively accumulates with age and can be further exacerbated by dietary iron intake, genetic factors, and repeated blood transfusions. While iron plays a vital role in various physiological processes within the human body, its accumulation contributes to cellular aging in several species. In its free form, iron can initiate the formation of free radicals at a cellular level and contribute to systemic disorders. This is most evident in high iron conditions such as hereditary hemochromatosis, when accumulation of iron contributes to the development of arthritis, cirrhosis, or cardiomyopathy. A growing body of research has further identified iron’s contributory effects in neurodegenerative diseases, ocular disorders, cancer, diabetes, endocrine dysfunction, and cardiovascular diseases. Reducing iron levels by repeated phlebotomy, iron chelation, and dietary restriction are the common therapeutic considerations to prevent iron toxicity. Chelators such as deferoxamine, deferiprone, and deferasirox have become the standard of care in managing iron overload conditions with other potential applications in cancer and cardiotoxicity. In certain animal models, drugs with iron chelating ability have been found to promote health and even extend lifespan. As we further explore the role of iron in the aging process, iron chelators will likely play an increasingly important role in our health.
Collapse
|
6
|
Rana S, Prabhakar N. Iron disorders and hepcidin. Clin Chim Acta 2021; 523:454-468. [PMID: 34755647 DOI: 10.1016/j.cca.2021.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Iron is an essential element due to its role in a wide variety of physiological processes. Iron homeostasis is crucial to prevent iron overload disorders as well as iron deficiency anemia. The liver synthesized peptide hormone hepcidin is a master regulator of systemic iron metabolism. Given its role in overall health, measurement of hepcidin can be used as a predictive marker in disease states. In addition, hepcidin-targeting drugs appear beneficial as therapeutic agents. This review emphasizes recent development on analytical techniques (immunochemical, mass spectrometry and biosensors) and therapeutic approaches (hepcidin agonists, stimulators and antagonists). These insights highlight hepcidin as a potential biomarker as well as an aid in the development of new drugs for iron disorders.
Collapse
Affiliation(s)
- Shilpa Rana
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|