1
|
Rab SO, Zwamel AH, Oghenemaro EF, Chandra M, Kaur I, Rani B, Abbot V, Kumar MR, Ullah MI, Kumar A. Cell death-associated lncRNAs in cancer immunopathogenesis: An exploration of molecular mechanisms and signaling pathways. Exp Cell Res 2025; 446:114439. [PMID: 39947388 DOI: 10.1016/j.yexcr.2025.114439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
Cancer remains one of the foremost causes of mortality worldwide, highlighting the urgent need for novel therapeutic targets due to the insufficient efficacy and adverse side effects associated with existing cancer treatments. Long non-coding RNAs (lncRNAs), defined as RNA transcripts longer than 200 nucleotides, have emerged as pivotal regulators in the initiation and progression of various malignancies. In oncology, programmed cell death (PCD) serves as the primary mechanism for tumor cell elimination, comprising processes such as apoptosis, pyroptosis, autophagy, and ferroptosis. Recent studies have elucidated a substantial relationship between lncRNAs and these PCD pathways, indicating that lncRNAs can modulate the apoptotic and non-apoptotic death mechanisms. This regulation may influence not only the dynamics of cancer progression but also the therapeutic response to clinical interventions. This review delves into the intricate role of lncRNAs within the context of PCD in cancer, unveiling the underlying pathogenic mechanisms while proposing innovative strategies for cancer therapy. Additionally, it discusses the potential therapeutic implications of targeting lncRNAs in PCD and related signaling pathways, aiming to enhance treatment outcomes for patients facing cancer.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Aljouf, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| |
Collapse
|
2
|
Shi X, Bu X, Zhou X, Shen N, Chang Y, Yu W, Wu Y. Prognostic analysis and risk assessment based on RNA editing in hepatocellular carcinoma. J Appl Genet 2024; 65:519-530. [PMID: 38217666 DOI: 10.1007/s13353-023-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, and prognosis assessment is crucial for guiding treatment decisions. In this study, we aimed to develop a personalized prognostic model for HCC based on RNA editing. RNA editing is a post-transcriptional process that can affect gene expression and, in some cases, play a role in cancer development. By analyzing RNA editing sites in HCC, we sought to identify a set of sites associated with patient prognosis and use them to create a prognostic model. We gathered RNA editing data from the Synapse database, comprising 9990 RNA editing sites and 250 HCC samples. Additionally, we collected clinical data for 377 HCC patients from the Cancer Genome Atlas (TCGA) database. We employed a multi-step approach to identify prognosis-related RNA editing sites (PR-RNA-ESs). We assessed how patients in the high-risk and low-risk groups, as defined by the model, fared in terms of survival. A nomogram was developed to predict the precise survival prognosis of HCC patients and assessed the prognostic model's utility through a receiver operating characteristic (ROC) analysis and decision curve analysis (DCA). Our analysis identified 33 prognosis-related RNA editing sites (PR-RNA-ESs) associated with HCC patient prognosis. Using a combination of LASSO regression and cross-validation, we constructed a prognostic model based on 13 PR-RNA-ESs. Survival analysis demonstrated significant differences in the survival outcomes of patients in the high-risk and low-risk groups defined by this model. Additionally, the differential expression of the 13 PR-RNA-ESs played a role in shaping patient survival. Risk-prognostic investigations further distinguished patients based on their risk levels. The nomogram enabled precise survival prognosis prediction. Our study has successfully developed a highly personalized and accurate prognostic model for individuals with HCC, leveraging RNA editing data. This model has the potential to revolutionize clinical evaluation and medical management by providing individualized prognostic information. The identification of specific RNA editing sites associated with HCC prognosis and their incorporation into a predictive model holds promise for improving the precision of treatment strategies and ultimately enhancing patient outcomes in HCC.
Collapse
Affiliation(s)
- Xintong Shi
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaoyuan Bu
- The Department of Respiratory Medicine, the Third Affiliated Hospital of the Naval Military Medical University, Shanghai, China
| | - Xinyu Zhou
- The Fifth Ward, Shanghai Mental Health Center, Shanghai, China
| | - Ningjia Shen
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Yanxin Chang
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Wenlong Yu
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China
| | - Yingjun Wu
- Department of Biliary Surgery, the Third Affiliated Hospital, Naval Military Medical University, Shanghai, China.
| |
Collapse
|
3
|
Syed RU, Afsar S, Aboshouk NAM, Salem Alanzi S, Abdalla RAH, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Satheesh Kumar G, Alshammari MD. LncRNAs in necroptosis: Deciphering their role in cancer pathogenesis and therapy. Pathol Res Pract 2024; 256:155252. [PMID: 38479121 DOI: 10.1016/j.prp.2024.155252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
Necroptosis, a controlled type of cell death that is different from apoptosis, has become a key figure in the aetiology of cancer and offers a possible target for treatment. A growing number of biological activities, including necroptosis, have been linked to long noncoding RNAs (lncRNAs), a varied family of RNA molecules with limited capacity to code for proteins. The complex interactions between LncRNAs and important molecular effectors of necroptosis, including mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting protein kinase 3 (RIPK3), will be investigated. We will explore the many methods that LncRNAs use to affect necroptosis, including protein-protein interactions, transcriptional control, and post-transcriptional modification. Additionally, the deregulation of certain LncRNAs in different forms of cancer will be discussed, highlighting their dual function in influencing necroptotic processes as tumour suppressors and oncogenes. The goal of this study is to thoroughly examine the complex role that LncRNAs play in controlling necroptotic pathways and how that regulation affects the onset and spread of cancer. In the necroptosis for cancer treatment, this review will also provide insight into the possible therapeutic uses of targeting LncRNAs. Techniques utilising LncRNA-based medicines show promise in controlling necroptotic pathways to prevent cancer from spreading and improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | | | - Amna Abakar Suleiman Khalifa
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - G Satheesh Kumar
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
4
|
Mao Y, Zhang H, He X, Chen J, Xi L, Chen Y, Zeng Y. A four-gene signature predicts overall survival of patients with esophageal adenocarcinoma. Transl Cancer Res 2024; 13:1382-1393. [PMID: 38617513 PMCID: PMC11009802 DOI: 10.21037/tcr-23-1798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024]
Abstract
Background Esophageal adenocarcinoma (EAC) is an aggressive cancer with poor prognosis. Thus, this study aimed to identify a prognostic molecular signature to predict the overall survival (OS) of patients with EAC. Methods The mRNA microarray data sets GSE13898 and GSE26886 were downloaded from the Gene Expression Omnibus (GEO) database. RNA sequencing profile and clinical data of EAC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) between EAC tissues and adjacent non-cancerous tissues were obtained using R software. DEGs associated with prognosis of OS were assessed by univariate Cox analysis, and a prognostic signature was built using stepwise multivariate Cox analysis. Time-dependent receiver operating characteristic (ROC) analysis and stratification analysis were conducted to evaluate its predictive performance. Functional enrichment analysis was performed for genes co-expressed with the signature to explore its biological functions in EAC. Results A total of 336 genes were identified to be differentially expressed between EAC tissues and adjacent non-cancerous tissues. After univariate and multivariate Cox regression analysis, four genes (ALAD, ABLIM3, IL17RB and IFI6) were screened out to construct a prognostic signature. According to this signature, patients could be assigned into high-risk and low-risk group with significantly different OS (P=4.92e-05<0.0001). Multivariate Cox regression analysis suggested that the four-gene signature served as an independent factor in OS prediction. In the time-dependent ROC analysis, the areas under the curves (AUCs) were 0.804, 0.792 and 0.695 for 1-, 3- and 5-year survival prediction, respectively, suggesting a good performance. Functional enrichment analysis showed that the signature was mainly clustered in cell proliferation related biological processes or pathways. Conclusions The four-gene signature identified in the current study may be a potential prognostic factor for predicting OS of EAC patients.
Collapse
Affiliation(s)
- Yanmei Mao
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Haibo Zhang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| | - Xin He
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Jing Chen
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Lanyan Xi
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yanping Chen
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|