1
|
Otsuka H, Endo Y, Ohtsu H, Inoue S, Kuraoka M, Koh M, Yagi H, Nakamura M, Soeta S. Changes in histidine decarboxylase expression influence extramedullary hematopoiesis in postnatal mice. Anat Rec (Hoboken) 2020; 304:1136-1150. [PMID: 33034098 DOI: 10.1002/ar.24533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Histidine decarboxylase (HDC), histamine synthase, is expressed in hematopoietic stem cells and in lineage-committed progenitors in the bone marrow (BM). However, the role of histamine in hematopoiesis is not well described. To evaluate the role of histamine in hematopoiesis, we analyzed the changes in HDC expression at hematopoietic sites, the BM, spleen, and liver of 2-, 3-, and 6-week-old wild-type mice. We also performed morphological analyses of the hematopoietic sites using HDC-deficient (HDC-KO) mice. In wild-type adults, HDC expression in the BM was higher than that in the spleen and liver and showed an age-dependent increase. Histological analysis showed no significant change in the adult BM and spleen of HDC-KO mice compared to wild-type mice. In the liver, HDC expression was temporarily increased at 3 weeks and decreased at 6 weeks of age. Morphological analysis of the liver revealed more numerous hematopoietic colonies and megakaryocytes in HDC-KO mice compared to wild-type mice at 2 and 3 weeks of age, whereas no changes were observed in adults. Most of these hematopoietic colonies consisted of B220-positive B-lymphocytes and TER119-positive erythroblasts and were positive for the cell proliferation marker PCNA. Notably, these hematopoietic colonies declined in HDC-KO mice upon N-acetyl histamine treatment. A significant increase in the expression of hematopoiesis-related cytokines, Il3, Il7, Epo, Gcsf, and Cxcl12 mRNA was observed in the liver of 3-week-old HDC-KO mice compared to wild-type mice. These results suggest that histamine-deficiency may maintain an microenvironment suitable for hematopoiesis by regulating hematopoiesis-related cytokine expression in the liver of postnatal mice.
Collapse
Affiliation(s)
- Hirotada Otsuka
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hiroshi Ohtsu
- Tekiju Rehabilitation Hospital, Kobe-shi, Hyogo, Japan.,Tohoku University, Sendai, Japan
| | - Satoshi Inoue
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Miki Koh
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Hideki Yagi
- Department of Pharmaceutical, Faculty of Pharmacy, International University of Health and Welfare, Otawara-shi, Tochigi, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| |
Collapse
|
2
|
Delic D, Wunderlich F, Al-Quraishy S, Abdel-Baki AAS, Dkhil MA, Araúzo-Bravo MJ. Vaccination accelerates hepatic erythroblastosis induced by blood-stage malaria. Malar J 2020; 19:49. [PMID: 31996238 PMCID: PMC6988251 DOI: 10.1186/s12936-020-3130-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Vaccination induces survival of otherwise lethal blood-stage infections of the experimental malaria Plasmodium chabaudi. Blood-stage malaria induces extramedullary erythropoiesis in the liver. This study investigates how vaccination affects the course of malaria-induced expression of erythrocytic genes in the liver. Methods Female Balb/c mice were vaccinated at week 3 and week 1 before challenging with 106P. chabaudi-parasitized erythrocytes. The non-infectious vaccine consisted of erythrocyte ghosts isolated from P. chabaudi-infected erythrocytes. Gene expression microarrays and quantitative real-time PCR were used to compare mRNA expression of different erythrocytic genes in the liver of vaccination-protected and non-protected mice during infections on days 0, 1, 4, 8, and 11 p.i. Results Global transcriptomics analyses reveal vaccination-induced modifications of malaria-induced increases in hepatic gene expression on days 4 and 11 p.i. On these days, vaccination also alters hepatic expression of the erythropoiesis-involved genes Ermap, Kel, Rhd, Rhag, Slc4a1, Gypa, Add2, Ank1, Epb4.1, Epb4.2, Epb4.9, Spta1, Sptb, Tmod1, Ahsp, Acyp1, Gata1, Gfi1b, Tal1, Klf1, Epor, and Cldn13. In vaccination-protected mice, expression of these genes, except Epb4.1, is significantly higher on day 4 p.i. than in un-protected non-vaccinated mice, reaches maximal expression at peak parasitaemia on day 8 p.i., and is slowed down or even decreased towards the end of crisis phase on day 11 p.i.. After day 1 p.i., Epor expression takes about the same course as that of the other erythroid genes. Hepatic expression of Epo, however, is delayed in both vaccinated and non-vaccinated mice for the first 4 days p.i. and is maximal at significantly higher levels in vaccinated mice on day 8 p.i., before declining towards the end of crisis phase on day 11 p.i. Conclusion The present data indicate that vaccination accelerates malaria-induced erythroblastosis in the liver for 1–2 days. This may contribute to earlier replenishment of peripheral red blood cells by liver-derived reticulocytes, which may favour final survival of otherwise lethal blood-stage malaria, since reticulocytes are not preferred as host cells by P. chabaudi.
Collapse
Affiliation(s)
- Denis Delic
- Department of Biology, Heinrich-Heine-University, Duesseldorf, Germany. .,Boehringer Ingelheim Pharma, Biberach, Germany.
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdel-Azeem S Abdel-Baki
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mohamed A Dkhil
- Boehringer Ingelheim Pharma, Biberach, Germany.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Al-Quraishy S, Dkhil MA, Al-Shaebi EM, Abdel-Baki AAS, Araúzo-Bravo MJ, Delic D, Wunderlich F. Gene expression of the liver of vaccination-protected mice in response to early patent infections of Plasmodium chabaudi blood-stage malaria. Malar J 2018; 17:215. [PMID: 29843710 PMCID: PMC5975554 DOI: 10.1186/s12936-018-2366-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of the liver for survival of blood-stage malaria is only poorly understood. In experimental blood-stage malaria with Plasmodium chabaudi, protective vaccination induces healing and, thus, survival of otherwise lethal infections. This model is appropriate to study the role of the liver in vaccination-induced survival of blood-stage malaria. METHODS Female Balb/c mice were vaccinated with a non-infectious vaccine consisting of plasma membranes isolated in the form of erythrocyte ghosts from P. chabaudi-infected erythrocytes at week 3 and week 1 before infection with P. chabaudi blood-stage malaria. Gene expression microarrays and quantitative real-time PCR were used to investigate the response of the liver, in terms of expression of mRNA and long intergenic non-coding (linc)RNA, to vaccination-induced healing infections and lethal P. chabaudi malaria at early patency on day 4 post infection, when parasitized erythrocytes begin to appear in peripheral blood. RESULTS In vaccination-induced healing infections, 23 genes were identified to be induced in the liver by > tenfold at p < 0.01. More than one-third were genes known to be involved in erythropoiesis, such as Kel, Rhag, Ahsp, Ermap, Slc4a1, Cldn13 Gata1, and Gfi1b. Another group of > tenfold expressed genes include genes involved in natural cytotoxicity, such as those encoding killer cell lectin-like receptors Klrb1a, Klrc3, Klrd1, the natural cytotoxicity-triggering receptor 1 Ncr1, as well as the granzyme B encoding Gzmb. Additionally, a series of genes involved in the control of cell cycle and mitosis were identified: Ccnb1, Cdc25c, Ckap2l were expressed > tenfold only in vaccination-protected mice, and the expression of 22 genes was at least 100% higher in vaccination-protected mice than in non-vaccinated mice. Furthermore, distinct lincRNA species were changed by > threefold in livers of vaccination-protected mice, whereas lethal malaria induced different lincRNAs. CONCLUSION The present data suggest that protective vaccination accelerates the malaria-induced occurrence of extramedullary erythropoiesis, generation of liver-resident cytotoxic cells, and regeneration from malaria-induced injury in the liver at early patency, which may be critical for final survival of otherwise lethal blood-stage malaria of P. chabaudi.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - E M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Abdel-Azeem S Abdel-Baki
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Denis Delic
- Boehringer-Ingelheim Pharma, Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
4
|
Otsuka H, Yagi H, Endo Y, Soeta S, Nonaka N, Nakamura M. Nitrogen-containing bisphosphonate induces a newly discovered hematopoietic structure in the omentum of an anemic mouse model by stimulating G-CSF production. Cell Tissue Res 2017; 367:297-309. [PMID: 27817114 PMCID: PMC5269465 DOI: 10.1007/s00441-016-2525-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/09/2016] [Indexed: 12/19/2022]
Abstract
We previously reported that the injection of nitrogen-containing bisphosphonate (NBP) induced the site of erythropoiesis to shift from the bone marrow (BM) to the spleen. Our previous study established a severely anemic mouse model that was treated with a combination of NBP with phenylhydrazine (PHZ), which induced newly discovered hematopoietic organs in the omentum. No reports have shown that new hematopoietic organs form under any condition. We characterized the structures and factors related to the formation of these new organs. Splenectomized mice were treated with NBP to inhibit erythropoiesis in the BM and then injected with PHZ to induce hemolytic anemia. The mice showed severe anemia and wine-colored structures appeared in the omentum. Some hematopoietic cells, including megakaryocytes, and well-developed sinuses were observed in these structures. Numerous TER119-positive erythroblasts were located with cells positive for PCNA, a cell proliferation marker. C-kit-positive cells were detected and mRNAs related to hematopoiesis were expressed in these structures. Moreover, TER119-positive erythroblasts emerged and formed clusters and hematopoiesis-related factors were detected in the omentum of mice treated with NBP and PHZ. The levels of G-CSF in the serum and hematopoietic progenitor cells (HPCs) in the peripheral blood were increased upon treatment with both NBP and PHZ. These results suggest that the induced hematopoietic structures act as the sites of erythropoiesis and that NBP-induced G-CSF production causes HPC mobilization, homing and colonization in the omentum because they constitutively express some factors, including SDF-1; thus, the newly discovered hematopoietic structure in this study might be formed.
Collapse
Affiliation(s)
- Hirotada Otsuka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| | - Hideki Yagi
- Department of Pharmaceutical, Faculty of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanamaru, Otawara-shi, Tochigi 324-8501 Japan
| | - Yasuo Endo
- Division of Molecular Regulation, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Satoshi Soeta
- Department of Veterinary Anatomy, Nippon Veterinary and Animal Science University, 1-7–1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602 Japan
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555 Japan
| |
Collapse
|