1
|
Shi Y, Hu M, Wu J, Liu T, Qi Y, Li A. Association between gut microbiota in HIV-infected patients and immune reconstitution following antiretroviral therapy (ART). BMC Infect Dis 2025; 25:666. [PMID: 40329177 DOI: 10.1186/s12879-025-10995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND This study aims to examine the potential link between incomplete immune reconstitution following ART treatment and gut microbiota dysbiosis. METHODS We collected clinical data and fecal samples from 50 HIV patients undergoing ART and 30 untreated patients. Based on the observed immune function reconstruction, we further categorized the ART(+) group into a responder group (n = 30) and a non-responder group (n = 20). The gut microbiota composition differences were assessed using Alpha diversity and Beta diversity analysis, while differential genera were identified through linear discriminant analysis effect size (LEfSe). Subsequently, functional disparities in the gut microbiota were investigated using PICRUSt2 and metagenomeSeq software. RESULTS The results of Alpha diversity and Beta diversity revealed significant differences in the composition of gut microbiota among the three groups. Differential genus analysis identified Morganella as an exclusive genus present only in the Non-responder group, exhibiting a significantly higher relative abundance. Correlation analysis demonstrated a positive association between Morganella and LDL levels. The CAZY analysis revealed that glycosyltransferase 25 (GT25) was significantly expressed in the Non-responder group, whereas it was either undetectable or exhibited extremely low expression levels in both the Responder group and the ART(-) group. Importantly, the correlation analysis indicated a positive association between Morganella and GT25 secretion. CONCLUSIONS The ecological imbalance of Morganella might be associated with incomplete immune reconstitution following ART, potentially mediated by GT25 secretions. Consequently, Morganella could serve as a promising biomarker for predicting incomplete immune reconstitution in AIDS patients undergoing ART.
Collapse
Affiliation(s)
- Yuru Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (Hefei Infectious Disease Hospital), Hefei, Anhui, 230000, China
| | - Miaomiao Hu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd, Hangzhou, Zhejiang, 310030, China
| | - Jing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (Hefei Infectious Disease Hospital), Hefei, Anhui, 230000, China
| | - Ting Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (Hefei Infectious Disease Hospital), Hefei, Anhui, 230000, China
| | - Yingjie Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (Hefei Infectious Disease Hospital), Hefei, Anhui, 230000, China.
| | - Ang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Lu J, Huang Y, Yin Y, Tang B. Exploring blood immune cells in the protective effects of gut microbiota on rheumatic heart disease based on Mendelian randomization analysis. Sci Rep 2025; 15:10745. [PMID: 40155605 PMCID: PMC11953348 DOI: 10.1038/s41598-025-92356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
Rheumatic Heart Disease (RHD) remains a significant health burden, particularly in regions with scarce healthcare resources, research on its immunological aspects remains insufficient. This study employed a two-sample Mendelian Randomization approach, utilizing GWAS data from the largest available datasets for gut microbiota and immune cells as exposures, with outcome data for Rheumatic Valve Diseases (RVD) and Rheumatic Heart Disease affecting other parts of the heart (RHD-other) obtained from the FinnGen study. The primary analytical method was the Inverse Variance Weighted (IVW) approach, complemented by heterogeneity analyses and MR-Egger regression to assess horizontal pleiotropy. Furthermore, a two-step mediation analysis was conducted to investigate the potential mediating role of immune cells in the association between gut microbiota and RHD. This study revealed significant inverse associations between gut microbiota abundance and Rheumatic Heart Disease (RHD) risk. Specifically, the gut abundance of genus Blautia was negatively correlated with RHD-other risk (P_IVW: 0.00932, OR [95%CI]: 0.000734[3.22e-06, 0.16937]), and genus Ruminococcaceae UCG005 showed a similar negative association (P_IVW: 0.038, OR [95%CI]: 0.165[0.02994, 0.90811]). Additionally, the proportions of CD4-CD8- T cell %leukocyte and CD4-CD8- T cell %T cell were inversely related to RHD-other risk (P_IVW: 0.02222, OR [95%CI]: 5.08027 [1.26133, 20.46191] and P: 0.01601, OR[95%CI]: 6.55576 [1.4196, 30.27582], respectively). Moreover, IgD on IgD + CD24 + B cells was found to be negatively correlated with RHD-other risk (P_IVW: 0.01867, OR [95%CI]: 2.17171 [1.1380, 4.14443]). The study also highlighted the protective effects of gut microbiota through mediation analyses: Blautia's impact via IgD on IgD + CD24 + B cells showed a mediation proportion of 8.62514%; Ruminococcaceae UCG005's influence via CD4-CD8- T cell %T cell and CD4-CD8- T cell %leukocyte resulted in mediation proportions of 35.25817% and 30.86827%, respectively. Significant inverse associations were observed between gut microbiota abundance and risk of Rheumatic Heart Disease (RHD), with specific findings for Rheumatic Valve Disease (RVD) and RHD affecting other parts of the heart (RHD-other). For RHD-other, higher abundance of Blautia (OR: 0.0007, 95% CI: 3.22e-06 to 0.169, p = 0.009) and Ruminococcaceae UCG005 (OR: 0.165, 95% CI: 0.030 to 0.908, p = 0.038) were associated with lower risk. Additionally, lower proportions of CD4-CD8- T cells (%leukocyte and %T cell) and IgD on IgD + CD24 + B cells were inversely related to RHD-other risk (ORs: 5.08 and 6.56, p = 0.022 and p = 0.016, respectively). For RVD, higher abundance of Candidatus Soleaferrea was protective (OR: 0.670, 95% CI: 0.460 to 0.976, p = 0.037), while higher levels of CD11c on granulocytes were associated with increased risk (OR: 1.310, 95% CI: 1.023 to 1.679, p = 0.032). Mediation analyses indicated that gut microbiota influence RHD risk through distinct immune pathways, with Blautia affecting RHD-other via IgD on B cells (8.62% mediation), Ruminococcaceae UCG005 via CD4-CD8- T cells (%T cell: 35.26%, %leukocyte: 30.87%). Genus Candidatus Soleaferrea affecting RVD through CD11c on granulocyte (15.01% mediation). The study concludes that higher gut abundance of Candidatus Soleaferrea protects against RVD through the mechanism involving CD11c on granulocytes. Additionally, Blautia exerts a protective effect against RHD-other through its influence on IgD on IgD + CD24 + B cells. Similarly, the abundance of genus Ruminococcaceae UCG005 provides protection against RHD-other by influencing CD4-CD8- T cell %T cell and CD4-CD8- T cell %leukocyte.
Collapse
Affiliation(s)
- Juexiu Lu
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yujie Huang
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yangguang Yin
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Biqiong Tang
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
3
|
Tian X, Gao Z, Xie Y, Lu X, Zhao Y, Yao P, Dong M, Yu L, Wu N. Interrelationship between altered metabolites and the gut microbiota in people living with HIV with different immune responses to antiretroviral therapy. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100340. [PMID: 39897701 PMCID: PMC11783423 DOI: 10.1016/j.crmicr.2025.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background Antiretroviral therapy (ART) effectively reduces opportunistic infections and mortality in people living with HIV (PLWH); however, some patients exhibit poor immune recovery. This study explores the connections among immune responses, metabolites, and the gut microbiota in PLWH with differing reactions to ART. Methods We analyzed the gut microbiota composition, metabolites, and immune markers in 38 PLWH who showed an immunological response (IR) and 32 who did not (INR), as classified according to CD4+ T-cell levels after 24 months of ART. Additionally, in vitro assays using cell counting kit 8, flow cytometry, and quantitative real-time reverse transcription PCR were employed to assess the effects of the metabolites on cell viability, immune marker expression, and cytokine levels. Results Gut microbiota and metabolic profiles differed significantly between the IR and INR groups. Enterococcus was more abundant in the INR group, whereas [Ruminococcus]_gnavus_group levels were reduced. Significant metabolic pathway alterations included decreased folate biosynthesis and biotin metabolism. We observed negative associations of Parabacteroides with activation markers on CD4+ T-cells, and positive correlations with CD4/CD8 ratios. Enterococcus showed inverse relationships with these markers. Indole-3-acetyl-beta-1-D-glucoside (area under the curve value = 0.8931), had the best discriminatory ability. Further experiments showed that Indole-3-acetyl-beta-1-D-glucoside significantly decreased the proportions of CD4+CD57+, effector CD4+, CD4+PD1+, CD8+CD57+, effector CD8+, and CD8+HLA-DR+ T cells. Moreover, mRNA expression analysis showed that Indole-3-acetyl-beta-1-D-glucoside treatment led to a suppression of pro-inflammatory cytokines. Conclusion The multi-omics approach highlighted potential biomarkers for immune recovery in HIV, suggesting avenues for further research into treatment strategies.
Collapse
Affiliation(s)
- Xuebin Tian
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongyao Gao
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yiwen Xie
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yulong Zhao
- Shandong First Medical University, Jinan, Shandong, China
| | - Peng Yao
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Hangzhou, Zhejiang, China
| | - Mingqing Dong
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Hangzhou, Zhejiang, China
| | - Lifeng Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Nanping Wu
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Sun X, Xie Z, Wu Z, Song M, Zhang Y, Zhang Z, Cui X, Liu A, Li K. Mechanisms of HIV-immunologic non-responses and research trends based on gut microbiota. Front Immunol 2024; 15:1378431. [PMID: 39802299 PMCID: PMC11718445 DOI: 10.3389/fimmu.2024.1378431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
With the increasing number of people with HIV (PWH) and the use of antiretroviral treatment (ART) for PWH, HIV has gradually become a chronic infectious disease. However, some infected individuals develop issues with immunologic non-responses (INRs) after receiving ART, which can lead to secondary infections and seriously affect the life expectancy and quality of life of PWH. Disruption of the gut microbiota is an important factor in immune activation and inflammation in HIV/AIDS, thus stabilizing the gut microbiota to reduce immune activation and inflammation and promoting immune reconstitution may become a direction for the treatment of HIV/AIDS. This paper, based on extensive literature review, summarizes the definition, mechanisms, and solutions for INRs, starting from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Xiangbin Sun
- Medical School of Shihezi University, Shihezi, China
| | - Zhanpeng Xie
- Medical School of Shihezi University, Shihezi, China
| | - Zhen Wu
- Medical School of Shihezi University, Shihezi, China
| | - Meiyang Song
- Medical School of Shihezi University, Shihezi, China
| | - Youxian Zhang
- Medical School of Shihezi University, Shihezi, China
| | - Zezhan Zhang
- Medical School of Shihezi University, Shihezi, China
| | - Xinxin Cui
- Medical School of Shihezi University, Shihezi, China
| | - Aodi Liu
- Medical School of Shihezi University, Shihezi, China
| | - Ke Li
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
| |
Collapse
|
5
|
Rosario SR, Long MD, Chilakapati S, Gomez EC, Battaglia S, Singh PK, Wang J, Wang K, Attwood K, Hess SM, McGray AJR, Odunsi K, Segal BH, Paragh G, Liu S, Wargo JA, Zsiros E. Integrative multi-omics analysis uncovers tumor-immune-gut axis influencing immunotherapy outcomes in ovarian cancer. Nat Commun 2024; 15:10609. [PMID: 39638782 PMCID: PMC11621351 DOI: 10.1038/s41467-024-54565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Recurrent ovarian cancer patients, especially those resistant to platinum, lack effective curative treatments. To address this, we conducted a phase 2 clinical trial (NCT02853318) combining pembrolizumab with bevacizumab, to increase T cell infiltration into the tumor, and oral cyclophosphamide, to reduce the number of regulatory T cells. The trial accrued 40 heavily pretreated recurrent ovarian cancer patients. The primary endpoint, progression free survival, was extended to a median of 10.2 months. The secondary endpoints demonstrated an objective response rate of 47.5%, and disease control in 30% of patients for over a year while maintaining a good quality of life. We performed comprehensive molecular, immune, microbiome, and metabolic profiling on samples of trial patients. Here, we show increased T and B cell clusters and distinct microbial patterns with amino acid and lipid metabolism are linked to exceptional clinical responses. This study suggests the immune milieu and host-microbiome can be leveraged to improve antitumor response in future immunotherapy trials.
Collapse
Affiliation(s)
- Spencer R Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Shanmuga Chilakapati
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, 02111, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Sebastiano Battaglia
- Computational Biology Office of Translational Research, Janssen Pharmaceuticals, Buffalo, NY, 14263, USA
| | - Prashant K Singh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Katy Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kristopher Attwood
- Department of Clinical Research, American College of Radiology, Reston, VA, 20191, USA
| | - Suzanne M Hess
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - A J Robert McGray
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago Comprehensive Cancer Center, Chicago, IL, 60637, USA
| | - Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
6
|
Gáspár Z, Nagavci B, Szabó BG, Lakatos B. Gut Microbiome Alteration in HIV/AIDS and the Role of Antiretroviral Therapy-A Scoping Review. Microorganisms 2024; 12:2221. [PMID: 39597610 PMCID: PMC11596264 DOI: 10.3390/microorganisms12112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: The gut microbiota plays a crucial role in chronic immune activation associated with human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS) pathogenesis, non-AIDS-related comorbidities, and mortality among people living with HIV (PLWH). The effects of antiretroviral therapy on the microbiome remain underexplored. This study aims to map the evidence of the impact of integrase strand transfer inhibitors (INSTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) on the gut microbiota of PLWH. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: Evidence suggests that INSTI-based regimes generally promote the restoration of alpha diversity, bringing it closer to that of seronegative controls, while beta diversity remains largely unchanged. INSTI-based therapies are suggested to be associated with improvements in microbiota composition and a tendency toward reduced inflammatory markers. In contrast, NNRTI-based treatments demonstrate limited recovery of alpha diversity and are linked to an increase in proinflammatory bacteria. (4) Conclusions: Based on the review of the current literature, it is indicated that INSTI-based antiretroviral therapy (ART) therapy facilitates better recovery of the gut microbiome.
Collapse
Affiliation(s)
- Zsófia Gáspár
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Blin Nagavci
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Bálint Gergely Szabó
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| | - Botond Lakatos
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| |
Collapse
|
7
|
Trøseid M, Nielsen SD, Vujkovic-Cvijin I. Gut microbiome and cardiometabolic comorbidities in people living with HIV. MICROBIOME 2024; 12:106. [PMID: 38877521 PMCID: PMC11177534 DOI: 10.1186/s40168-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Despite modern antiretroviral therapy (ART), people living with HIV (PLWH) have increased relative risk of inflammatory-driven comorbidities, including cardiovascular disease (CVD). The gut microbiome could be one of several driving factors, along with traditional risk factors and HIV-related risk factors such as coinfections, ART toxicity, and past immunodeficiency. RESULTS PLWH have an altered gut microbiome, even after adjustment for known confounding factors including sexual preference. The HIV-related microbiome has been associated with cardiometabolic comorbidities, and shares features with CVD-related microbiota profiles, in particular reduced capacity for short-chain fatty acid (SCFA) generation. Substantial inter-individual variation has so far been an obstacle for applying microbiota profiles for risk stratification. This review covers updated knowledge and recent advances in our understanding of the gut microbiome and comorbidities in PLWH, with specific focus on cardiometabolic comorbidities and inflammation. It covers a comprehensive overview of HIV-related and comorbidity-related dysbiosis, microbial translocation, and microbiota-derived metabolites. It also contains recent data from studies in PLWH on circulating metabolites related to comorbidities and underlying gut microbiota alterations, including circulating levels of the SCFA propionate, the histidine-analogue imidazole propionate, and the protective metabolite indole-3-propionic acid. CONCLUSIONS Despite recent advances, the gut microbiome and related metabolites are not yet established as biomarkers or therapeutic targets. The review gives directions for future research needed to advance the field into clinical practice, including promises and pitfalls for precision medicine. Video Abstract.
Collapse
Affiliation(s)
- Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Oe, 2100, Denmark
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
8
|
Liu J, Ding C, Shi Y, Wang Y, Zhang X, Huang L, Fang Q, Shuai C, Gao Y, Wu J. Advances in Mechanism of HIV-1 Immune Reconstitution Failure: Understanding Lymphocyte Subpopulations and Interventions for Immunological Nonresponders. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1609-1620. [PMID: 38768409 DOI: 10.4049/jimmunol.2300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
In individuals diagnosed with AIDS, the primary method of sustained suppression of HIV-1 replication is antiretroviral therapy, which systematically increases CD4+ T cell levels and restores immune function. However, there is still a subset of 10-40% of people living with HIV who not only fail to reach normal CD4+ T cell counts but also experience severe immune dysfunction. These individuals are referred to as immunological nonresponders (INRs). INRs have a higher susceptibility to opportunistic infections and non-AIDS-related illnesses, resulting in increased morbidity and mortality rates. Therefore, it is crucial to gain new insights into the primary mechanisms of immune reconstitution failure to enable early and effective treatment for individuals at risk. This review provides an overview of the dynamics of key lymphocyte subpopulations, the main molecular mechanisms of INRs, clinical diagnosis, and intervention strategies during immune reconstitution failure, primarily from a multiomics perspective.
Collapse
Affiliation(s)
- Jiamin Liu
- School of Public Health, Anhui Medical University, Hefei, China
| | - Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Shi
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yiyu Wang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiangyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lina Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qin Fang
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Chenxi Shuai
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianjun Wu
- School of Public Health, Anhui Medical University, Hefei, China
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
9
|
Salvador PBU, Altavas PJDR, del Rosario MAS, Ornos EDB, Dalmacio LMM. Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia-Pacific Region: A Systematic Review. Clin Pract 2024; 14:846-861. [PMID: 38804398 PMCID: PMC11130874 DOI: 10.3390/clinpract14030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to present a global health issue. Recent studies have explored the potential role of the gut microbiome in HIV infection for novel therapeutic approaches. We investigated the gut microbiome composition of people living with HIV (PLHIV) in the Asia-Pacific region. This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. An electronic search was conducted in the PubMed/MEDLINE, Scopus, and ScienceDirect databases using keywords such as "HIV", "PLHIV", "AIDS", "gut microbiome", "gut dysbiosis", and "metagenomics". Only peer-reviewed and full-text studies published in English were included. A total of 15 studies from the Asia-Pacific region were included for analysis. Compared to healthy controls, PLHIV showed an increased abundance of Proteobacteria and its genera, which may be considered pathobionts, and decreased abundances of Bacteroidetes and several genera under Firmicutes with known short-chain fatty acid and immunoregulatory activities. Predominant taxa such as Ruminococcaceae and Prevotellaceae were also associated with clinical factors such as CD4 count, the CD4/CD8 ratio, and inflammatory cytokines. This review highlights gut microbiome changes among PLHIV in the Asia-Pacific region, indicating potential bacterial signatures for prognostication. The partial restoration of the microbiome toward beneficial taxa may ensure the long-term success of treatment, promoting immune recovery while maintaining viral load suppression.
Collapse
Affiliation(s)
- Paul Benedic U. Salvador
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| | - Patrick Josemaria d. R. Altavas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| | - Mark Angelo S. del Rosario
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (M.A.S.d.R.); (E.D.B.O.)
| | - Eric David B. Ornos
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (M.A.S.d.R.); (E.D.B.O.)
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Leslie Michelle M. Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| |
Collapse
|
10
|
Meléndez-Vázquez NM, Nguyen TT, Fan X, López-Rivas AR, Fueyo J, Gomez-Manzano C, Godoy-Vitorino F. Gut microbiota composition is associated with the efficacy of Delta-24-RGDOX in malignant gliomas. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200787. [PMID: 38596290 PMCID: PMC10951704 DOI: 10.1016/j.omton.2024.200787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Glioblastoma, the most common primary brain tumor, has a 6.8% survival rate 5 years post diagnosis. Our team developed an oncolytic adenovirus with an OX-40L expression cassette named Delta-24-RGDOX. While studies have revealed the interaction between the gut microbiota and immunotherapy agents, there are no studies linking the gut microbiota with viroimmunotherapy efficacy. We hypothesize that gut bacterial signatures will be associated with oncolytic viral therapy efficacy. To test this hypothesis, we evaluated the changes in gut microbiota in two mouse cohorts: (1) GSC-005 glioblastoma-bearing mice treated orally with indoximod, an immunotherapeutic agent, or with Delta-24-RGDOX by intratumoral injection and (2) a mouse cohort harboring GL261-5 tumors used to mechanistically evaluate the importance of CD4+ T cells in relation to viroimmunotherapy efficacy. Microbiota assessment indicated significant differences in the structure of the gut bacterial communities in viroimmunotherapy-treated animals with higher survival compared with control or indoximod-treated animals. Moreover, viroimmunotherapy-treated mice with prolonged survival had a higher abundance of Bifidobacterium. The CD4+ T cell depletion was associated with gut dysbiosis, lower mouse survival, and lower antitumor efficacy of the therapy. These findings suggest that microbiota modulation along the gut-glioma axis contributes to the clinical efficacy and patient survival of viroimmunotherapy treated animals.
Collapse
Affiliation(s)
- Natalie M. Meléndez-Vázquez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan 00918 PR, USA
| | - Teresa T. Nguyen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuejun Fan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrés R. López-Rivas
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan 00918 PR, USA
| |
Collapse
|
11
|
Lu D, Wang YX, Geng ST, Zhang Z, Xu Y, Peng QY, Li SY, Zhang JB, Wang KH, Kuang YQ. Whole-protein enteral nutrition formula supplementation reduces Escherichia and improves intestinal barrier function in HIV-infected immunological nonresponders. Appl Physiol Nutr Metab 2024; 49:319-329. [PMID: 37922515 DOI: 10.1139/apnm-2022-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
People living with human immunodeficiency virus (PLWH) have persistent malnutrition, intestinal barrier dysfunction, and gut microbial imbalance. The interplay between gut microbiota and nutrients is involved in the immune reconstitution of PLWH. To evaluate the effects of whole-protein enteral nutrition formula supplementation on T-cell levels, intestinal barrier function, nutritional status, and gut microbiota composition in human immunodeficiency virus (HIV)-infected immunological nonresponders (INRs) who failed to normalize CD4+ T-cell counts, with a number <350 cells/µL, a pilot study was carried out in 13 HIV-infected INRs undergoing antiretroviral therapy who received a 3-month phase supplementation of 200 mL/200 kcal/45 g whole-protein enteral nutrition formula once daily. Our primary endpoint was increased CD4+ T-cell counts. Secondary outcome parameters were changes in intestinal barrier function, nutritional status, and gut microbiota composition. We showed that CD4+ T-cell counts of HIV-infected INRs increased significantly after the 3-month supplementation. Dietary supplementation for 3 months improved the intestinal barrier function and nutritional status of HIV-infected INRs. Furthermore, the enteral nutrition formula significantly decreased the relative abundance of Escherichia at the genus level and increased the alpha diversity of gut microbiota in HIV-infected INRs. The findings demonstrated that the whole-protein enteral nutrition formula aids in reducing Escherichia and improving intestinal barrier function in HIV-infected INRs. This study provides insight into the role of nutrients in the improvement of immune reconstitution in HIV-infected INRs. This study is registered in the Chinese Clinical Trial Registry (Document No. ChiCTR2000037839; http://www.chictr.org.cn/index.aspx).
Collapse
Affiliation(s)
- Danfeng Lu
- School of Medicine, Kunming University, Kunming, China
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Yue-Xin Wang
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shi-Tao Geng
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing-Yan Peng
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Shao-You Li
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Jian-Bo Zhang
- Department of Dermatology, Second People's Hospital of Dali City, Dali, China
| | - Kun-Hua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Runtuwene LR, Parbie PK, Mizutani T, Ishizaka A, Matsuoka S, Abana CZY, Kushitor D, Bonney EY, Ofori SB, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Longitudinal analysis of microbiome composition in Ghanaians living with HIV-1. Front Microbiol 2024; 15:1359402. [PMID: 38426062 PMCID: PMC10902004 DOI: 10.3389/fmicb.2024.1359402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus (HIV) 1 infection is known to cause gut microbiota dysbiosis. Among the causes is the direct infection of HIV-1 in gut-resident CD4+ T cells, causing a cascade of phenomena resulting in the instability of the gut mucosa. The effect of HIV infection on gut microbiome dysbiosis remains unresolved despite antiretroviral therapy. Here, we show the results of a longitudinal study of microbiome analysis of people living with HIV (PLWH). We contrasted the diversity and composition of the microbiome of patients with HIV at the first and second time points (baseline_case and six months later follow-up_case, respectively) with those of healthy individuals (baseline_control). We found that despite low diversity indices in the follow-up_case, the abundance of some genera was recovered but not completely, similar to baseline_control. Some genera were consistently in high abundance in PLWH. Furthermore, we found that the CD4+ T-cell count and soluble CD14 level were significantly related to high and low diversity indices, respectively. We also found that the abundance of some genera was highly correlated with clinical features, especially with antiretroviral duration. This includes genera known to be correlated with worse HIV-1 progression (Achromobacter and Stenotrophomonas) and a genus associated with gut protection (Akkermansia). The fact that a protector of the gut and genera linked to a worse progression of HIV-1 are both enriched may signify that despite the improvement of clinical features, the gut mucosa remains compromised.
Collapse
Affiliation(s)
- Lucky Ronald Runtuwene
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Prince Kofi Parbie
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Taketoshi Mizutani
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Christopher Zaab-Yen Abana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dennis Kushitor
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Badu Ofori
- Department of Internal Medicine, Eastern Regional Hospital Koforidua, Ghana Health Service, Koforidua, Ghana
| | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California San Diego, San Diego, CA, United States
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - William Kwabena Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Liang X, Wang Z, Shu Q, Huang X, Wang J, Wu J, Liu N, Xie N. A bidirectional two-sample Mendelian randomization using the gut microbiota to reveal potential therapeutic targets for primary sclerosing cholangitis. Eur J Gastroenterol Hepatol 2024; 36:147-154. [PMID: 38131422 DOI: 10.1097/meg.0000000000002666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
BACKGROUND Previous studies indicate that gut microbiota correlates to primary sclerosing cholangitis (PSC), but the causation is still unclear. We sought to reveal the causal relationship between gut microbiota and PSC with a bidirectional two-sample Mendelian randomization (MR) analysis. METHODS The large-scale genome-wide association study (GWAS) summary statistics and a bidirectional two-sample MR study were used to assess the causality between gut microbiota and PSC. Multiple sensitivity analyses were used to identify the robustness of our results. RESULTS Three microbial taxa causally correlated to PSC. Genus Ruminococcaceae UCG002 (OR: 1.855, 95% CI: 1.068-3.220, P = 0.028) increased the risk of PSC. Class Betaproteobacteria (OR: 0.360, 95% CI: 0.171-0.758, P = 0.007), and genus Ruminiclostridium6 (OR: 0.474, 95% CI: 0.219-0.820, P = 0.011) had protective effects on PSC. In addition, we found the causal relationship of PSC with higher abundance of genus Dialister (beta: 0.059, 95% CI: 0.017-0.102, P = 0.006), genus Veillonella (beta: 0.065, 95% CI: 0.016-0.113, P = 0.009), class Melainabacteria (beta: 0.073, 95% CI: 0.012-0.133, P = 0.019), and order Gastranaerophilales (beta: 0.072, 95% CI: 0.011-0.113, P = 0.133). CONCLUSION Our study reveals the causality between gut microbiota and PSC, providing new insights into the pathological mechanisms of PSC and facilitating the development of novel biomarkers and disease-modifying therapeutics for PSC from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Xiru Liang
- Department of Gastroenterology, the Second Affiliated Hospital, Xi'an Jiaotong University
| | - Ziwei Wang
- Department of Gastroenterology, the Second Affiliated Hospital, Xi'an Jiaotong University
| | - Qiuai Shu
- Department of Gastroenterology, the Second Affiliated Hospital, Xi'an Jiaotong University
| | - Xindi Huang
- Department of Gastroenterology, the Second Affiliated Hospital, Xi'an Jiaotong University
| | - Jinhai Wang
- Department of Gastroenterology, the Second Affiliated Hospital, Xi'an Jiaotong University
| | - Jian Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University
| | - Na Liu
- Department of Gastroenterology, the Second Affiliated Hospital, Xi'an Jiaotong University
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ning Xie
- Department of Gastroenterology, the Second Affiliated Hospital, Xi'an Jiaotong University
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
15
|
Wang Y, Guo J, Yang F, Dong R, Song D, Huang P, Wen L, Xiang G, Wang S, Teng J, Miao W. Predictive effect of the decline in CD4 + T cell levels in blood on infection in patients with severe hemorrhagic stroke and mechanism. Front Neurol 2023; 14:1118282. [PMID: 37360336 PMCID: PMC10288285 DOI: 10.3389/fneur.2023.1118282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Objective The purpose of this research was to evaluate the influence of immunity on infection in patients with severe hemorrhagic stroke and explore the mechanism underlying this connection. Methods Clinical data obtained from 126 patients with severe hemorrhagic stroke were retrospectively analyzed, and the factors affecting infection were screened by multivariable logistic regression models. Nomograms, calibration curves, the Hosmer-Lemeshow goodness-of-fit test, and decision curve analysis were used to examine the effectiveness of the models in evaluating infection. The mechanism underlying the reduction in CD4+ T-cell levels in blood was explored by analysis of lymphocyte subsets and cytokines in cerebrospinal fluid (CSF) and blood. Results The results showed that CD4+ T-cell levels of <300/μL was an independent risk factor for early infection. The models for multivariable logistic regression involving the CD4+ T-cell levels and other influencing factors had good applicability and effectiveness in evaluating early infection. CD4+ T-cell levels decreased in blood but increased in CSF. Similarly, interleukin (IL)-6 and IL-8 levels in CSF had a significant increase, generating a substantial concentration gradient between the CSF and the blood. Conclusion Reduced blood CD4+ T-cell counts among patients who had severe hemorrhagic stroke increased the risk of early infection. CSF IL-6 and IL-8 may be involved in inducing the migration of CD4+ T cells into the CSF and decreasing blood CD4+ T-cell levels.
Collapse
Affiliation(s)
- Yating Wang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junshuang Guo
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fan Yang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruirui Dong
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Song
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peipei Huang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Wen
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guoliang Xiang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuiyu Wang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfang Teng
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Miao
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Liu Y, Li Z, Lu X, Kuang YQ, Kong D, Zhang X, Yang X, Wang X, Mu T, Wang H, Zhang Y, Jin J, Xia W, Wu H, Zhang T, Moog C, Su B. Dysregulation of memory B cells and circulating T follicular helper cells is a predictor of poor immune recovery in HIV-infected patients on antiretroviral therapy. J Med Virol 2023; 95:e28559. [PMID: 36755363 DOI: 10.1002/jmv.28559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
T follicular helper (Tfh) cells and their interactions with B cells within the germinal center play extensive roles in human immunodeficiency virus (HIV) pathology. However, their association with immune reconstitution during antiretroviral therapy (ART) is still unclear. The aim of this study was to determine the impact of Tfh and memory B cell function on T helper cell recovery in patients with acute or chronic HIV infection. A total of 100 HIV-infected individuals were enrolled in our study, classified into acute and chronic HIV infection groups (60 and 40, respectively), and subsequently classified into immunological responder (IR) and immunological nonresponder (INR) subgroups according to immune recovery outcomes after 96 weeks of ART. Liquid chromatography-mass spectrometry was used to quantify the temporal regulation patterns of B and CD4+ T-cell profiles among patients, and flow cytometry was used to investigate certain subsets of B and T cells. Here we showed that the prevalence of Tfh cells in the T helper cell population correlated negatively with CD4+ T-cell recovery. The proportion of CXCR3- Tfh cells in patients with acute or chronic infection was associated with CD4+ T-cell count recovery, and the proportion of CD21+ memory B cells at baseline was significantly higher in those with improved immune recovery outcomes. Universal proteomic dysregulation of B and CD4+ T cells at baseline was detected in patients with acute infected and poor CD4+ T-cell recovery. Proteomics analysis revealed distinct temporal regulation profiles of both T helper cells and B cells between IRs and INRs among patients with acute infection. Our results suggest that the functions of memory B cells in INRs are dysregulated at the early stage of ART, possibly through disruption of Tfh cell function. The frequency and function of Tfh cells and their subsets are potential predictors of poor immune recovery.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tingting Mu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yihang Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Gut microbiota alterations after switching from a protease inhibitor or efavirenz to raltegravir in a randomized, controlled study. AIDS 2023; 37:323-332. [PMID: 36541643 DOI: 10.1097/qad.0000000000003419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To study gut microbiota before and 24 weeks after a single antiretroviral agent switch. DESIGN HIV-positive patients with efavirenz (EFV) or a protease inhibitor (PI)-based antiretroviral therapy (ART) were randomized to switch EFV or PI to raltegravir (RAL group, n = 19) or to continue unchanged ART (EFV/PI group, n = 22). Age and weight-matched HIV-negative participants (n = 10) were included for comparison. METHODS Microbiota was analyzed using 16S rRNA sequencing. Serum intestinal fatty acid-binding protein (I-FABP) and serum lipopolysaccharide-binding protein (LBP) were measured as gut permeability markers. Three-day food diaries were collected. RESULTS At week 24, microbiota diversity (Chao1 index) was higher in RAL than the EFV/PI group (P = 0.014), and RAL group did not differ from HIV-negative participants. In subgroup analysis switching from EFV (P = 0.043), but not from a PI to RAL increased Chao1. At week 24, RAL and EFV/PI group differed in the relative abundance of Prevotella 9 (higher in RAL, P = 0.01), Phascolarctobacterium and Bacteroides (lower in RAL, P = 0.01 and P = 0.03). Dietary intakes did not change during the study and do not explain microbiota differences. Also, I-FABP and LBP remained unchanged. CONCLUSION Here we demonstrate that a single ART agent switch caused microbiota alterations, most importantly, an increase in diversity with EFV to RAL switch. Previously, we reported weight gain, yet reduced inflammation in this cohort. The observed microbiota differences between RAL and EFV/PI groups may be associated with reduced inflammation and/or increase in weight. Further studies are needed to evaluate inflammatory and metabolic capacity of microbiota with ART switches.
Collapse
|
18
|
Shim JA, Ryu JH, Jo Y, Hong C. The role of gut microbiota in T cell immunity and immune mediated disorders. Int J Biol Sci 2023; 19:1178-1191. [PMID: 36923929 PMCID: PMC10008692 DOI: 10.7150/ijbs.79430] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota was only considered as a commensal organism that aids in digestion, but recent studies revealed that the microbiome play a critical role in both physiological and pathological immune system. The gut microbiome composition is altered by environmental factors such as diet and hygiene, and the alteration affects immune cells, especially T cells. Advanced genomic techniques in microbiome research defined that specific microbes regulate T cell responses and the pathogenesis of immune-mediated disorders. Here, we review features of specific microbes-T cell crosstalk and relationship between the microbes and immunopathogenesis of diseases including in cancers, autoimmune disorders and allergic inflammations. We also discuss the limitations of current experimental animal models, cutting-edge developments and current challenges to overcome in the field, and the possibility of considering gut microbiome in the development of new drug.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jeong Ha Ryu
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
19
|
Yan L, Xu K, Xiao Q, Tuo L, Luo T, Wang S, Yang R, Zhang F, Yang X. Cellular and molecular insights into incomplete immune recovery in HIV/AIDS patients. Front Immunol 2023; 14:1152951. [PMID: 37205108 PMCID: PMC10185893 DOI: 10.3389/fimmu.2023.1152951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Highly active antiretroviral therapy (ART) can effectively inhibit virus replication and restore immune function in most people living with human immunodeficiency virus (HIV). However, an important proportion of patients fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called incomplete immune reconstitution or immunological nonresponse (INR). Patients with INR have an increased risk of clinical progression and higher rates of mortality. Despite widespread attention to INR, the precise mechanisms remain unclear. In this review, we will discuss the alterations in the quantity and quality of CD4+ T as well as multiple immunocytes, changes in soluble molecules and cytokines, and their relationship with INR, aimed to provide cellular and molecular insights into incomplete immune reconstitution.
Collapse
Affiliation(s)
- Liting Yan
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Kaiju Xu
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Xiao
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Lin Tuo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tingting Luo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shuqiang Wang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Renguo Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Fujie Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Xingxiang Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| |
Collapse
|
20
|
Tincati C, Ficara M, Ferrari F, Augello M, Dotta L, Tagliabue C, Diana A, Camelli V, Iughetti L, Badolato R, Cellini M, Marchetti G. Gut-dependent inflammation and alterations of the intestinal microbiota in individuals with perinatal HIV exposure and different HIV serostatus. AIDS 2022; 36:1917-1925. [PMID: 35848569 PMCID: PMC9612678 DOI: 10.1097/qad.0000000000003324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV-exposed infected (HEI) and uninfected (HEU) children represent the two possible outcomes of maternal HIV infection. Modifications of the intestinal microbiome have been linked to clinical vulnerability in both settings, yet whether HEI and HEU differ in terms of gut impairment and peripheral inflammation/activation is unknown. DESIGN We performed a cross-sectional, pilot study on fecal and plasma microbiome as well as plasma markers of gut damage, microbial translocation, inflammation and immune activation in HIV-infected and uninfected children born from an HIV-infected mother. METHODS Fecal and plasma microbiome were determined by means of 16S rDNA amplification with subsequent qPCR quantification. Plasma markers were quantified via ELISA. RESULTS Forty-seven HEI and 33 HEU children were consecutively enrolled. The two groups displayed differences in fecal beta-diversity and relative abundance, yet similar microbiome profiles in plasma as well as comparable gut damage and microbial translocation. In contrast, monocyte activation (sCD14) and systemic inflammation (IL-6) were significantly higher in HEI than HEU. CONCLUSION In the setting of perinatal HIV infection, enduring immune activation and inflammation do not appear to be linked to alterations within the gut. Given that markers of activation and inflammation are independent predictors of HIV disease progression, future studies are needed to understand the underlying mechanisms of such processes and elaborate adjuvant therapies to reduce the clinical risk in individuals with perinatal HIV infection.
Collapse
Affiliation(s)
- Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | - Monica Ficara
- Division of Paediatric Oncology-Haematology, Policlinico Hospital, Modena
| | - Francesca Ferrari
- Division of Paediatric Oncology-Haematology, Policlinico Hospital, Modena
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | - Laura Dotta
- Pediatric Clinic and ‘A. Nocivelli’ Institute for Molecular Medicine, Spedali Civili Hospital, Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | | | - Alfredo Diana
- Section of Pediatrics, Department of Translational Medical Science, University Federico II, Naples
| | - Vittoria Camelli
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin
| | - Lorenzo Iughetti
- Division of Paediatric Oncology-Haematology, Policlinico Hospital, Modena
- Pediatric Unit, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Raffaele Badolato
- Pediatric Clinic and ‘A. Nocivelli’ Institute for Molecular Medicine, Spedali Civili Hospital, Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Monica Cellini
- Division of Paediatric Oncology-Haematology, Policlinico Hospital, Modena
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| |
Collapse
|
21
|
Xiao Q, Yu F, Yan L, Zhao H, Zhang F. Alterations in circulating markers in HIV/AIDS patients with poor immune reconstitution: Novel insights from microbial translocation and innate immunity. Front Immunol 2022; 13:1026070. [PMID: 36325329 PMCID: PMC9618587 DOI: 10.3389/fimmu.2022.1026070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
After long-term anti-retroviral therapy (ART) treatment, most human immunodeficiency virus (HIV)/Acquired Immure Deficiency Syndrome (AIDS) patients can achieve virological suppression and gradual recovery of CD4+ T-lymphocyte (CD4+ T cell) counts. However, some patients still fail to attain normal CD4+ T cell counts; this group of patients are called immune non-responders (INRs), and these patients show severe immune dysfunction. The potential mechanism of poor immune reconstitution (PIR) remains unclear and the identification of uniform biomarkers to predict the occurrence of PIR is particularly vital. But limited information is available on the relationship between circulating markers of INRs and immune recovery. Hence, this review summarises alterations in the intestine microbiota and associated markers in the setting of PIR to better understand host-microbiota-metabolite interactions in HIV immune reconstitution and to identify biomarkers that can predict recovery of CD4+ T cell counts in INRs.
Collapse
Affiliation(s)
- Qing Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Liting Yan
- Infectious Disease Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| |
Collapse
|