1
|
Guan J, Xu X, Qiu G, He C, Lu X, Wang K, Liu X, Li Y, Ling Z, Tang X, Liang Y, Tao X, Cheng B, Yang B. Cellular hierarchy framework based on single-cell/multi-patient sample sequencing reveals metabolic biomarker PYGL as a therapeutic target for HNSCC. J Exp Clin Cancer Res 2023; 42:162. [PMID: 37420300 DOI: 10.1186/s13046-023-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/04/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND A growing body of research has revealed the connection of metabolism reprogramming and tumor progression, yet how metabolism reprogramming affects inter-patient heterogeneity and prognosis in head and neck squamous cell carcinoma (HNSCC) still requires further explorations. METHODS A cellular hierarchy framework based on metabolic properties discrepancy, METArisk, was introduced to re-analyze the cellular composition from bulk transcriptomes of 486 patients through deconvolution utilizing single-cell reference profiles from 25 primary and 8 metastatic HNSCC sample integration of previous studies. Machine learning methods were used to identify the correlations between metabolism-related biomarkers and prognosis. The functions of the genes screened out in tumor progression, metastasis and chemotherapy resistance were validated in vitro by cellular functional experiments and in vivo by xenograft tumor mouse model. RESULTS Incorporating the cellular hierarchy composition and clinical properties, the METArisk phenotype divided multi-patient cohort into two classes, wherein poor prognosis of METArisk-high subgroup was associated with a particular cluster of malignant cells with significant activity of metabolism reprogramming enriched in metastatic single-cell samples. Subsequent analysis targeted for phenotype differences between the METArisk subgroups identified PYGL as a key metabolism-related biomarker that enhances malignancy and chemotherapy resistance by GSH/ROS/p53 pathway, leading to poor prognosis of HNSCC. CONCLUSION PYGL was identified as a metabolism-related oncogenic biomarker that promotes HNSCC progression, metastasis and chemotherapy resistance though GSH/ROS/p53 pathway. Our study revealed the cellular hierarchy composition of HNSCC from the cell metabolism reprogramming perspective and may provide new inspirations and therapeutic targets for HNSCC in the future.
Collapse
Affiliation(s)
- Jiezhong Guan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo Qiu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chong He
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Lu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xinyu Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yuanyuan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuan Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
2
|
He XL, Lyu WY, Li XY, Zhao H, Qi L, Lu JJ. Identification of glycogen phosphorylase L as a potential target for lung cancer. Med Oncol 2023; 40:211. [PMID: 37347364 DOI: 10.1007/s12032-023-02069-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Traditional Chinese medicine (TCM) has been widely used for cancer treatment. Identification of anti-cancer targets of TCM is the first and principal step in discovering molecular mechanisms of TCM as well as obtaining novel targets for cancer therapy. In this study, glycogen phosphorylase L (PYGL) was identified as one of the targeted proteins for several TCMs and was upregulated in various cancer types. The expression level of PYGL was positively correlated with the stage of lung cancer and the poor prognosis of patients. Meanwhile, knockdown of PYGL significantly inhibited proliferation and migration in lung cancer cells. In addition, PYGL was associated with spindle, kinetochore, and microtubule, the cellular components that are closely related to mitosis, in lung cancer. Moreover, PYGL was more susceptible to be upregulated by 144 mutated genes. Taken together, PYGL is a potential target for lung cancer treatment and its molecular mechanism probably influences the mitotic function of cells by regulating energy metabolism.
Collapse
Affiliation(s)
- Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wen-Yu Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin-Yuan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hong Zhao
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310006, China
| | - Lu Qi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No.1023 Shatai Road Baiyun District, Guangzhou, 510515, Guangdong, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao, China.
| |
Collapse
|
3
|
Tang J, Wu Y, Zhang B, Liang S, Guo Z, Hu J, Zhou Z, Xie M, Hou S. Integrated liver proteomics and metabolomics identify metabolic pathways affected by pantothenic acid deficiency in Pekin ducks. ANIMAL NUTRITION 2022; 11:1-14. [PMID: 35950191 PMCID: PMC9356036 DOI: 10.1016/j.aninu.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 10/25/2022]
|
4
|
Dong R, Wei X, Zhang K, Song F, Lv Y, Gao M, Wang D, Ma J, Gai Z, Liu Y. Genotypic and phenotypic characteristics of 12 chinese children with glycogen storage diseases. Front Genet 2022; 13:932760. [PMID: 36105079 PMCID: PMC9465291 DOI: 10.3389/fgene.2022.932760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Glycogen storage diseases (GSDs) are known as a group of disorders characterized by genetic errors leading to accumulation of glycogen in various tissues. Since different types of GSD can sometimes be clinically indistinguishable, next generation sequencing is becoming a powerful tool for clinical diagnosis. Methods: 12 patients with suspected GSDs and their parents were enrolled in this study. The clinical and laboratory data of the patients were reviewed. Causative gene variants were identified in the patients using whole exome sequencing (WES) and verified by Sanger sequencing. Results: Genetic testing and analysis showed that 7 patients were diagnosed with GSD II (Pompe disease), 2 patients with GSD III, 1 patient with GSD VI, and 2 patients with GSD IXα. A total number of 18 variants were identified in 12 patients including 11 variants in GAA gene, 3 variants in AGL gene, 2 variants in PYGL gene and 2 variants in PHKA2 gene, of which 9 variants were reported and 9 variants were novel. SIFT, Polyphen-2, Mutation Taster, and REVEL predicted the novel variants (except GAA c.1052_1075 + 47del) to be disease-causing. The 3D structures of wild/mutant type GAA protein were predicted indicating that variants p. Trp621Gly, p. Pro541Leu, p. Ser800Ile and p. Gly293Trp might affect the proteins function via destroying hydrogen bonds or conformational constraints. Neither liver size nor laboratory findings allow for a differentiation among GSD III, GSD VI and GSD IXα. Conclusion: Our study expanded the variation spectrum of genes associated with GSDs. WES, in combination with clinical, biochemical, and pathological hallmarks, could provide accurate results for diagnosing and sub-typing GSD and related diseases in clinical setting.
Collapse
Affiliation(s)
- Rui Dong
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Xuxia Wei
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
- Gastroenterology, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
| | - Kaihui Zhang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Fengling Song
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
- Children’s Health Department, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
| | - Yuqiang Lv
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Min Gao
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Dong Wang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Jian Ma
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Zhongtao Gai
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
- *Correspondence: Zhongtao Gai, ; Yi Liu,
| | - Yi Liu
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
- *Correspondence: Zhongtao Gai, ; Yi Liu,
| |
Collapse
|
5
|
Wang G, Tao X, Peng L. miR-155-5p regulates hypoxia-induced pulmonary artery smooth muscle cell function by targeting PYGL. Bioengineered 2022; 13:12985-12997. [PMID: 35611851 PMCID: PMC9275946 DOI: 10.1080/21655979.2022.2079304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiovascular disease that has high incidence and causes massive deaths. miR-155-5p/PYGL pathway was revealed to play a crucial role in PAH by weighted gene co-expression network analysis (WGCNA). The potential mechanism of miR-155-5p in regulating hypoxia-induced pulmonary artery smooth muscle cell (PASMC) function was analyzed through in vitro experiments. Hypoxia treatment stimulated the proliferation of PASMCs and increased the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α). At the same time, revealed by qRT-PCR and western blot, the level of miR-155-5p was raised, and the level of PYGL was decreased in hypoxia-induced PASMCs. Through CCK-8 assay, transwell assay and flow cytometry, it was revealed that miR-155-5p inhibitor remarkably inhibited the cell proliferation and migration and decreased the proportion of hypoxia-stimulated PASMCs in S and G2/M phases. Dual-luciferase reporter system was subsequently applied to validate the straight regulation of miR-155-5p on PYGL based on the analysis of online database. Furthermore, siPYGL was revealed to reverse the influence of miR-155-5p inhibitor on hypoxia-induced PASMCs. These outcomes indicate that the increased level of miR-155-5p in hypoxia-stimulated PASMCs could enhance the cell proliferation, cell migration, and cell cycle progression by targeting PYGL directly. This study may supply novel treatment strategies for PAH.Abbreviations: PH, pulmonary hypertension; PAH, pulmonary arterial hypertension; WGCNA, weighted gene co-expression network analysis; PASMCs, pulmonary artery smooth muscle cells; VEGF, vascular endothelial growth factor; HIF-1α, hypoxia-inducible factor-1α; SMCs, smooth muscle cells; DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FBS, fetal bovine serum; OD, optical density; BCA, bicinchoninic acid; PVDF, polyvinylidene fluoride; PBS, phosphate-buffered saline; BP, biological process; MF, molecular function; CC, cell component.
Collapse
Affiliation(s)
- Guowen Wang
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Xuefang Tao
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Linlin Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Luo X, Duan Y, Fang D, Sun Y, Xiao B, Zhang H, Han L, Liang L, Gong Z, Gu X, Yu Y, Qiu W. Diagnosis and follow-up of Glycogen Storage Disease (GSD) Type VI from the largest GSD center in China. Hum Mutat 2022; 43:557-567. [PMID: 35143115 DOI: 10.1002/humu.24345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/10/2022]
Abstract
Glycogen storage disease (GSD) type VI is a glycogenolysis disorder caused by variants of PYGL. Knowledge about this disease is limited because only approximately 50 cases have been reported. we investigated the clinical profiles, molecular diagnosis, and treatment outcomes in patients with gsd VI from 2000 to 2021. The main initial clinical features of this cohort include hepatomegaly, short stature, elevated liver transaminases, hypertriglyceridemia, fasting hypoglycemia, and hyperuricemia. After uncooked cornstarch treatment, the stature and biochemical parameters improved significantly (P < 0.05). However, hyperuricemia recurred in most patients during adolescence. Among the 56 GSD VI patients, 54 biallelic variants and two single allelic variants of PYGL were identified, of which 43 were novel. There were two hotspot variants, c.1621-258_2178-23del and c.2467C>T p.(Gln823*), mainly in patients from Southwest and South China. c.1621-258_2178-23del is a 3.6 kb deletion that results in an out-of-frame deletion r.1621_2177del and an in-frame deletion r.1621_2265del. Our data show for the first time that long-term monitoring of uric acid is recommended for older GSD VI patients. This study also broadens the variant spectrum of PYGL and indicates that there are two hot-spot variants in China. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Duan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Di Fang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Yu Sun
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Bing Xiao
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
7
|
Li XY, You JX, Zhang LY, Su LX, Yang XT. A Novel Model Based on Necroptosis-Related Genes for Predicting Prognosis of Patients With Prostate Adenocarcinoma. Front Bioeng Biotechnol 2022; 9:814813. [PMID: 35111740 PMCID: PMC8802148 DOI: 10.3389/fbioe.2021.814813] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Necroptosis is a newly recognized form of cell death. Here, we applied bioinformatics tools to identify necroptosis-related genes using a dataset from The Cancer Genome Atlas (TCGA) database, then constructed a model for prognosis of patients with prostate cancer. Methods: RNA sequence (RNA‐seq) data and clinical information for Prostate adenocarcinoma (PRAD) patients were obtained from the TCGA portal (http://tcga-data.nci.nih.gov/tcga/). We performed comprehensive bioinformatics analyses to identify hub genes as potential prognostic biomarkers in PRAD u followed by establishment and validation of a prognostic model. Next, we assessed the overall prediction performance of the model using receiver operating characteristic (ROC) curves and the area under curve (AUC) of the ROC. Results: A total of 5 necroptosis-related genes, namely ALOX15, BCL2, IFNA1, PYGL and TLR3, were used to construct a survival prognostic model. The model exhibited excellent performance in the TCGA cohort and validation group and had good prediction accuracy in screening out high-risk prostate cancer patients. Conclusion: We successfully identified necroptosis-related genes and constructed a prognostic model that can accurately predict 1- 3-and 5-years overall survival (OS) rates of PRAD patients. Our riskscore model has provided novel strategy for the prediction of PRAD patients’ prognosis.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jian-Xiong You
- Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Yu Zhang
- Department of Urologic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Xin Su
- Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Tao Yang
- Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zhou Z, Su X, Cai Y, Ting TH, Zhang W, Lin Y, Xu A, Mao X, Zeng C, Liu L, Li X. Features of chinese patients with sitosterolemia. Lipids Health Dis 2022; 21:11. [PMID: 35042526 PMCID: PMC8764812 DOI: 10.1186/s12944-021-01619-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Sitosterolemia is a lipid disorder characterized by the accumulation of phytosterols in plasma and organs, caused by mutations in the ABCG5 and/or ABCG8 genes. The disease is frequently misdiagnosed and mistreated as familial hypercholesterolemia (FH). To gain a better understanding of the disease, the current status of diagnosis and treatment of Chinese patients with sitosterolemia was reviewed and summarized. Method Literature search was performed. The clinical features and molecular characteristics of Chinese patients with sitosterolemia were analysed. Four children with sitosterolemia and the treatment experience were described. Results Fifty-five patients with sitosterolemia have been reported in China. These patients were aged from 3 months to 67 years at diagnosis, and the median was 8 years of age. Several complications, such as xanthomas in 47 patients (85%), thrombocytopenia in 17 patients (31%), anemia in 14 patients (25%), and cardiovascular damage in 12 patients (22%), were observed. Thirty-nine patients (71%) exhibited mutations in the ABCG5 gene, 15 patients (27%) showed mutations in ABCG8, and variations in both genes occurred in one patient (2%). A patient with two clinically rare diseases, namely, sitosterolemia and glycogen storage disease type VI (GSD VI)), is reported here for the first time. The four reported patients were treated with low cholesterol and phytosterol-limited diet alone or combined with cholestyramine. Even though decreases were observed for total plasma cholesterol (TC) and low-density-lipoprotein cholesterol (LDL-C), and these levels were as low as normal in some patients, the levels of plant sterols remained above the normal range. However, TC, LDL-C and plant sterol levels remained at high levels in patients treated with a control diet control only. Conclusions The analysis reveals that different from Caucasians carrying mainly variations in ABCG8, most Chinese patients have mutations in the ABCG5 gene, and Arg446Ter, Gln251Ter, anArg389His might be hot-spot mutations in Chinese patients. The current survey provides clinical data to enable the development of a standardized protocol for the diagnosis and treatment of sitosterolemia in China.
Collapse
Affiliation(s)
- Zhizi Zhou
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Xueying Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Yanna Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Tzer Hwu Ting
- Department of Pediatrics, Faculty of Medicine & Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Xiaojian Mao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China.
| | - Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, 510623, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Maiorana A, Lepri FR, Novelli A, Dionisi-Vici C. Hypoglycaemia Metabolic Gene Panel Testing. Front Endocrinol (Lausanne) 2022; 13:826167. [PMID: 35422763 PMCID: PMC9001947 DOI: 10.3389/fendo.2022.826167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
A large number of inborn errors of metabolism present with hypoglycemia. Impairment of glucose homeostasis may arise from different biochemical pathways involving insulin secretion, fatty acid oxidation, ketone bodies formation and degradation, glycogen metabolism, fructose and galactose metabolism, branched chain aminoacids and tyrosine metabolism, mitochondrial function and glycosylation proteins mechanisms. Historically, genetic analysis consisted of highly detailed molecular testing of nominated single genes. However, more recently, the genetic heterogeneity of these conditions imposed to perform extensive molecular testing within a useful timeframe via new generation sequencing technology. Indeed, the establishment of a rapid diagnosis drives specific nutritional and medical therapies. The biochemical and clinical phenotypes are critical to guide the molecular analysis toward those clusters of genes involved in specific pathways, and address data interpretation regarding the finding of possible disease-causing variants at first reported as variants of uncertain significance in known genes or the discovery of new disease genes. Also, the trio's analysis allows genetic counseling for recurrence risk in further pregnancies. Besides, this approach is allowing to expand the phenotypic characterization of a disease when pathogenic variants give raise to unexpected clinical pictures. Multidisciplinary input and collaboration are increasingly key for addressing the analysis and interpreting the significance of the genetic results, allowing rapidly their translation from bench to bedside.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesca Romana Lepri
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| |
Collapse
|
10
|
Zhan Q, Lv Z, Tang Q, Huang L, Chen X, Yang M, Lan L, Shan Q. Glycogen storage disease type VI with a novel PYGL mutation: Two case reports and literature review. Medicine (Baltimore) 2021; 100:e25520. [PMID: 33879691 PMCID: PMC8078372 DOI: 10.1097/md.0000000000025520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Glycogen storage disease (GSD) type VI is a rare disease caused by the inherited deficiency of liver phosphorylase. PATIENT CONCERNS The proband, a 61-month-old Chinese boy, manifested intermittent hematochezia, growth retardation, hepatomegaly, damage of liver function, mild hypoglycemia, and hyperlactatemia. The other patient was a 107-month-old Chinese girl with growth retardation, hepatomegaly, mild hypoglycemia, and hyperlactatemia. In order to further confirm the diagnosis, we conducted a liver biopsy and detected blood samples for their gene using IDT exon chip capture and high-throughput sequencing. DIAGNOSES According to the clinical symptoms, physical examination, laboratory examinations, liver biopsy, and the genetic test finding, the 2 patients were diagnosed GSD VI. INTERVENTIONS They were treated mainly with uncooked cornstarch. OUTCOMES There were 2 mutations of PYGL gene in this pedigree. c.2467C>T (p. Q823X) and c.2178-2A>C occurred both in the proband and his second sister. LESSONS As a novel mutation, c.2178-2A>C enriches the mutation spectrum of PYGL gene. The different degrees of elevated lactate is an unusual phenotype in GSD VI patients. It is not clear if this is caused by the new mutation of c. 2178-2A > C. Long-term complications remains to be observed.
Collapse
Affiliation(s)
| | - Zili Lv
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Eghbali M, Fatemi KS, Salehpour S, Abiri M, Saei H, Talebi S, Olyaei NA, Yassaee VR, Modarressi MH. Whole-Exome Sequencing Uncovers Novel Causative Variants and Additional Findings in Three Patients Affected by Glycogen Storage Disease Type VI and Fanconi-Bickel Syndrome. Front Genet 2021; 11:601566. [PMID: 33505429 PMCID: PMC7831547 DOI: 10.3389/fgene.2020.601566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Glycogen storage diseases (GSDs) are the heterogeneous group of disorders caused by mutations in at least 30 different genes. Different types of GSDs, especially liver GSDs, take overlapping symptoms and can be clinically indistinguishable. This survey evaluated the use of whole-exome sequencing (WES) for the genetic analysis of the liver GSD-suspected patients in three unrelated families. An in-house filtering pipeline was used to assess rare pathogenic variants in GSD-associated genes, autosomal recessive/mendelian disorder genes (carrier status for genetic counseling subjects), and the ACMG's list of 59 actionable genes. For the interpretation of the causative variants and the incidental/secondary findings, ACMG guidelines were applied. Additionally, we have explored PharmGKB class IA/IB pharmacogenetic variants. The segregation analysis was performed using Sanger sequencing for the novel causative variants. Bioinformatics analysis of the exome data in three individuals revealed three novel homozygous causative variants in the GSD-associated genes. The first variant, c.298_307delATGATCAACC in PYGL gene has related to HERS disease (GSD VI). Both variants of c.1043dupT and c.613-1G > C in SLC2A2 gene have been associated with Fanconi-Bickel syndrome (GSDXI). Eight pathogenic/likely pathogenic medical actionable findings in Mendelian disease genes and 10 pharmacogenetic variants with underlying drug response phenotypes have been identified. No known/expected pathogenic variants were detected in the ACMG's list of 59 actionable genes. The logical filtering steps can help in finding other medical actionable secondary/incidental findings as well as effectively identifying the causative variants in heterogeneous conditions such as GSDs. Three novel variants related to GSD genes recognized in liver GSD-suspected patients with early infantile and childhood-age onset.
Collapse
Affiliation(s)
- Maryam Eghbali
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiyana Sadat Fatemi
- Dr. Zenali’s Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Shadab Salehpour
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pediatric Endocrinology and Metabolism, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abiri
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Saei
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Alipour Olyaei
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Yassaee
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|