1
|
He X, Huang H, Liu Y, Li H, Ren H. Analysis of the function, mechanism and clinical application prospect of TRPS1, a new marker for breast cancer. Gene 2025; 932:148880. [PMID: 39181273 DOI: 10.1016/j.gene.2024.148880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.
Collapse
Affiliation(s)
- Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Huifen Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huayan Ren
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Ramadesikan S, Showpnil IA, Marhabaie M, Daley A, Varga EA, Gurusamy U, Pastore MT, Sites ER, Manickam M, Bartholomew DW, Hunter JM, White P, Wilson RK, Stottmann RW, Koboldt DC. Expanding the phenotypic spectrum of CSNK2A1-associated Okur-Chung neurodevelopmental syndrome. HGG ADVANCES 2025; 6:100379. [PMID: 39497417 PMCID: PMC11621934 DOI: 10.1016/j.xhgg.2024.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024] Open
Abstract
De novo variants in CSNK2A1 cause autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS has an evolving clinical phenotype predominantly characterized by intellectual disability, global delays, dysmorphic features, and immunological manifestations. Microcephaly, defined as a small head circumference, is not widely recognized as a classical clinical presentation. Here, we describe four individuals from three unrelated families who shared several clinical features characteristic of an underlying syndromic neurodevelopmental condition. Trio clinical exome and research genome sequencing revealed that all affected individuals had heterozygous pathogenic missense variants in CSNK2A1. Two variants (c.468T>A p.Asp156Glu and c.149A>G p.Tyr50Cys) were de novo and previously reported, but the third variant (c.137G>T p.Gly46Val) is novel and segregated in two affected individuals in a family. This adds to growing evidence of inherited disease-causing variants in CSNK2A1, an observation reported only twice previously. A detailed phenotypic analysis of our cohort together with those individuals reported in the literature revealed that OCNDS individuals, on average, have a smaller head circumference with one-third presenting with microcephaly. We also show that the incidence of microcephaly is significantly correlated with the location of the variant in the encoded protein. Our findings suggest that small head circumference is a common but under-recognized feature of OCNDS, which may not be apparent at birth.
Collapse
Affiliation(s)
- Swetha Ramadesikan
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Iftekhar A Showpnil
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mohammad Marhabaie
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Allison Daley
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A Varga
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Umamaheswaran Gurusamy
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew T Pastore
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily R Sites
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Murugu Manickam
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dennis W Bartholomew
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jesse M Hunter
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rolf W Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
3
|
Goel H, O'Donnell S. Inherited loss of function variant in CSNK2A1: the oldest reported cases of Okur-Chung syndrome in a single family. Clin Dysmorphol 2024; 33:121-124. [PMID: 38818820 DOI: 10.1097/mcd.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
- Himanshu Goel
- General Genetics Service, Hunter Genetics, Waratah, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | | |
Collapse
|
4
|
Zhuri D, Dusenkalkan F, Tunca Alparslan G, Gurkan H. A Case of Okur-Chung Neurodevelopmental Syndrome with a Novel, de novo Variant on the CSNK2A1 Gene in a Turkish Patient. Mol Syndromol 2024; 15:43-50. [PMID: 38357263 PMCID: PMC10862324 DOI: 10.1159/000530585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/02/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Okur-Chung neurodevelopmental syndrome (OCNDS; #617062) has been associated with heterozygous mutations in the CSNK2A1 gene (*115440) mapped on the chromosome's 20p13 region. Case Presentation The analysis was performed on a 2-year-old patient who was admitted to our genetic diseases evaluation center by his family with a complaint of hypotonia. We detected a heterozygous NM_177559.3 (CSNK2A1):c.1139_1140dupGG (p.Met381GlyfsTer32) variant in the CSNK2A1 gene from a whole-exome sequence analysis. Conclusion The variant that we detected has not been reported in open-access databases to date, so it was evaluated as a novel likely pathogenic variant according to the ACMG-2015 criteria. No variant was detected upon segregation analysis of the patient's parents; therefore, the related variant was evaluated as de novo. In this study, we offer the first report of a pathogenic frameshift variant in the CSNK2A1 gene that has a relationship with OCNDS.
Collapse
Affiliation(s)
- Drenushe Zhuri
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Fulya Dusenkalkan
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Guzin Tunca Alparslan
- Department of Genetics and Bioengineering, Trakya University Faculty of Engineering, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
5
|
Brauner R, Bignon-Topalovic J, Bashamboo A, McElreavey K. Exome sequencing in 16 patients with pituitary stalk interruption syndrome: A monocentric study. PLoS One 2023; 18:e0292664. [PMID: 38096238 PMCID: PMC10721018 DOI: 10.1371/journal.pone.0292664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 12/17/2023] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare disorder characterized by an absent or ectopic posterior pituitary, absent or interrupted pituitary stalk and anterior pituitary hypoplasia on magnetic resonance imaging (MRI), as well in some cases a range of heterogeneous somatic anomalies. The triad can be incomplete. Here, we performed exome sequencing on 16 sporadic patients, aged 0.4 to 13.7 years diagnosed with isolated or complex PSIS. Growth hormone deficiency was isolated in 10 cases, or associated with thyrotropin deficiency in 6 others (isolated (2 cases), associated with adrenocorticotropin deficiency (1 case), gonadotropins deficiency (1 case), or multiple deficiencies (2 cases)). Additional phenotypic anomalies were present in six cases (37.5%) including four with ophthalmic disorders. In 13 patients variants were identified that may contribute to the phenotype. However, only a single individual carried a variant classified as pathogenic. This child presented with the typical clinical presentation of Okur-Chung neurodevelopmental syndrome due to a CSNK2A1 missense variant. We also identified variants in the holoprosencephaly associated genes GLI2 and PTCH1. A likely pathogenic novel splice site variant in the GLI2 gene was observed in a child with PSIS and megacisterna magna. In the remaining 11 cases 26 variants in genes associated with pituitary development or function were identified and were classified of unknown significance. Compared with syndromic forms the diagnostic yield in the isolated forms of PSIS is low. Although we identified rare or novel missense variants in several hypogonadotropic hypogonadism genes (e.g. FGF17, HS6ST1, KISS1R, CHD7, IL17RD) definitively linking them to the PSIS phenotype is premature. A major challenge remains to identify pathogenic variants in cases with isolated PSIS.
Collapse
Affiliation(s)
- Raja Brauner
- Pediatric Endocrinology Unit, Hôpital Fondation Adolphe de Rothschild and Université Paris Cité, Paris, France
| | | | - Anu Bashamboo
- Human Developmental Genetic Unit, Institut Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetic Unit, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Belnap N, Price-Smith A, Ramsey K, Leka K, Abraham A, Lieberman E, Hassett K, Potu S, Rudy N, Smith K, Mikhail FM, Monaghan KG, Hendershot A, Mourmans J, Descartes M, Huentelman MJ, Sills J, Rangasamy S, Narayanan V. Inherited CSNK2A1 variants in families with Okur-Chung neurodevelopmental syndrome. Clin Genet 2023; 104:607-609. [PMID: 37491870 DOI: 10.1111/cge.14408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023]
Abstract
Pedigree showing the autosomal dominant inheritance pattern of CSNK21 variants in families presenting with OCNDS. (A) Maternal inheritance to two daughters in Family 1, (B) Paternal inheritance to a daughter in Family 2, and (C) Maternal inheritance to two sons in Family 3.
Collapse
Affiliation(s)
- Newell Belnap
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Aiai Price-Smith
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Keri Ramsey
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Kamawela Leka
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Anna Abraham
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Emma Lieberman
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Katie Hassett
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Sai Potu
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Natasha Rudy
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirstin Smith
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | - Maria Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | | | - Sampath Rangasamy
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Vinodh Narayanan
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| |
Collapse
|
7
|
Jafari Khamirani H, Zoghi S, Motealleh A, Dianatpour M, Tabei SMB, Mohammadi S, Dastgheib SA. Clinical Features of Okur-Chung Neurodevelopmental Syndrome: Case Report and Literature Review. Mol Syndromol 2022; 13:381-388. [PMID: 36588763 PMCID: PMC9801326 DOI: 10.1159/000522353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction Autosomal dominant pathogenic variations in the CSNK2A1 gene cause Okur-Chung neurodevelopmental syndrome (OCNDS). Methods The proband and her parents were examined thoroughly and observed for any issues related to OCNDS. Furthermore, peripheral blood samples were collected from each subject for further investigations. Whole-exome sequencing identified a pathogenic variant in CSNK2A1 (NM_001895: c.62G>A, p.R21Q; rs1402734448). Results The proband has global developmental delay, speech disorders, epilepsy, and behavioral issues. Despite the previously reported cases, she manifested both atonic and myoclonic seizures simultaneously. Lastly, we provide a review of the reported cases with OCNDS. Discussion p.R21Q causes OCNDS. Further studies are highly recommended concerning this mutation to validate the results of this study and expand the knowledge regarding CSNK2A1 and the phenotypic spectrum of OCNDS.
Collapse
Affiliation(s)
- Hossein Jafari Khamirani
- Comprehensive Medical Genetics Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Motealleh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran,Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran,Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Mohammadi
- Comprehensive Medical Genetics Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran,*Seyed Alireza Dastgheib,
| |
Collapse
|
8
|
Spedicati B, Morgan A, Pianigiani G, Musante L, Rubinato E, Santin A, Nardone GG, Faletra F, Girotto G. Challenging Occam’s Razor: Dual Molecular Diagnoses Explain Entangled Clinical Pictures. Genes (Basel) 2022; 13:genes13112023. [PMID: 36360260 PMCID: PMC9690221 DOI: 10.3390/genes13112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Dual molecular diagnoses are defined as the presence of pathogenic variants at two distinct and independently segregating loci that cause two different Mendelian conditions. In this study, we report the identification of double genetic disorders in a series of patients with complex clinical features. In the last 24 months, 342 syndromic patients have been recruited and clinically characterised. Whole Exome Sequencing analysis has been performed on the proband and on both parents and identified seven patients affected by a dual molecular diagnosis. Upon a detailed evaluation of both their clinical and molecular features, subjects are able to be divided into two groups: (A) five patients who present distinct phenotypes, due to each of the two different underlying genetic diseases; (B) two patients with overlapping clinical features that may be underpinned by both the identified genetic variations. Notably, only in one case a multilocus genomic variation was already suspected during the clinical evaluation. Overall, our findings highlight how dual molecular diagnoses represent a challenging model of complex inheritance that should always be considered whenever a patient shows atypical clinical features. Indeed, an accurate genetic characterisation is of the utmost importance to provide patients with a personalised and safe clinical management.
Collapse
Affiliation(s)
- Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Giulia Pianigiani
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
- Correspondence: ; Tel.: +39-040-3785539
| | - Luciana Musante
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Elisa Rubinato
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | | | - Flavio Faletra
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health-I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| |
Collapse
|
9
|
Miremarati A, Tabrizi M, Dalili S, Hoseini Nouri SA. A 15-Year-Old Girl with Trichorhinophalangeal Syndrome Type 1 with Non-ossifying Fibroma in Femur: A Case Report. JOURNAL OF COMPREHENSIVE PEDIATRICS 2022; 13. [DOI: 10.5812/compreped-129461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 09/13/2023]
Abstract
Introduction: Trichorhinophalangeal syndrome (TRPS) is a sporadic autosomal dominant disorder with approximately 200 reported cases worldwide. We aimed to report a 15-year-old girl with TRPS type 1 (TRPS1) and the second reported case with a rare non-ossifying fibroma (NOF) in the distal part of her left femur. Case Presentation: We introduce a 15-year-old girl who presented to the outpatient rheumatology clinic at 17 Shahrivar Children's Hospital, Rasht, Iran, with the chief complaint of osteoarticular pain and bone deformities. She had sparse hair, a recession of the fronto-temporal hairline, and unusually thick eyebrows at the medial and abnormal sparseness of the lateral margins. Physical examination of the limbs revealed short fingers and toes with proximal interphalangeal (PIP) ulnar deviation of the second and third fingers in both hands. Shortness of the fourth fingers, especially in the right hand, and the swelling of the PIP joints of both hands were prominent. Genetic analysis showed deletion mutation in the TRPS1 gene in chromosome 8q24 compatible with TRPS1. Conclusions: Several symptoms and signs, including distinctive craniofacial features and ectodermal and skeletal abnormalities, are used for proper TRPS diagnosis. A correct and on-time diagnosis is essential to perform supportive care for the patient to prevent morbidities. Bone lesions, such as NOF1, can also be presented in TRPS1 patients and may be correlated with TRPS1 mutation. Further investigations are required on the association of the TRPS gene with NOF bone lesions.
Collapse
|
10
|
Functional mechanisms of TRPS1 in disease progression and its potential role in personalized medicine. Pathol Res Pract 2022; 237:154022. [PMID: 35863130 DOI: 10.1016/j.prp.2022.154022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
The gene of transcriptional repressor GATA binding 1 (TRPS1), as an atypical GATA transcription factor, has received considerable attention in a plethora of physiological and pathological processes, and may become a promising biomarker for targeted therapies in diseases and tumors. However, there still lacks a comprehensive exploration of its functions and promising clinical applications. Herein, relevant researches published in English from 2000 to 2022 were retrieved from PubMed, Google Scholar and MEDLINE, concerning the roles of TRPS1 in organ differentiation and tumorigenesis. This systematic review predominantly focused on summarizing the structural characteristics and biological mechanisms of TRPS1, its involvement in tricho-rhino-phalangeal syndrome (TRPS), its participation in the development of multiple tissues, the recent advances of its vital features in metabolic disorders as well as malignant tumors, in order to prospect its potential applications in disease detection and cancer targeted therapy. From the clinical perspective, the deeply and thoroughly understanding of the complicated context-dependent and cell-lineage-specific mechanisms of TRPS1 would not only gain novel insights into the complex etiology of diseases, but also provide the fundamental basis for the development of therapeutic drugs targeting both TRPS1 and its critical cofactors, which would facilitate individualized treatment.
Collapse
|
11
|
Ballardin D, Cruz-Gamero JM, Bienvenu T, Rebholz H. Comparing Two Neurodevelopmental Disorders Linked to CK2: Okur-Chung Neurodevelopmental Syndrome and Poirier-Bienvenu Neurodevelopmental Syndrome—Two Sides of the Same Coin? Front Mol Biosci 2022; 9:850559. [PMID: 35693553 PMCID: PMC9182197 DOI: 10.3389/fmolb.2022.850559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.
Collapse
Affiliation(s)
- Demetra Ballardin
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Jose M. Cruz-Gamero
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
| | - Thierry Bienvenu
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’organe, Hôpital Cochin, APHP, Centre Université de Paris, Paris, France
| | - Heike Rebholz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
- *Correspondence: Heike Rebholz,
| |
Collapse
|
12
|
Werner C, Gast A, Lindenblatt D, Nickelsen A, Niefind K, Jose J, Hochscherf J. Structural and Enzymological Evidence for an Altered Substrate Specificity in Okur-Chung Neurodevelopmental Syndrome Mutant CK2αLys198Arg. Front Mol Biosci 2022; 9:831693. [PMID: 35445078 PMCID: PMC9014129 DOI: 10.3389/fmolb.2022.831693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Specific de novo mutations in the CSNK2A1 gene, which encodes CK2α, the catalytic subunit of protein kinase CK2, are considered as causative for the Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS is a rare congenital disease with a high phenotypic diversity ranging from neurodevelopmental disabilities to multi-systemic problems and characteristic facial features. A frequent OCNDS mutation is the exchange of Lys198 to Arg at the center of CK2α′s P+1 loop, a key element of substrate recognition. According to preliminary data recently made available, this mutation causes a significant shift of the substrate specificity of the enzyme. We expressed the CK2αLys198Arg recombinantly and characterized it biophysically and structurally. Using isothermal titration calorimetry (ITC), fluorescence quenching and differential scanning fluorimetry (Thermofluor), we found that the mutation does not affect the interaction with CK2β, the non-catalytic CK2 subunit, and that the thermal stability of the protein is even slightly increased. However, a CK2αLys198Arg crystal structure and its comparison with wild-type structures revealed a significant shift of the anion binding site harboured by the P+1 loop. This observation supports the notion that the Lys198Arg mutation causes an alteration of substrate specificity which we underpinned here with enzymological data.
Collapse
Affiliation(s)
- Christian Werner
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
- *Correspondence: Jennifer Hochscherf,
| |
Collapse
|
13
|
Liu L, Sun L, Chen Y, Wang M, Yu C, Huang Y, Zhao S, Du H, Chen S, Fan X, Tian W, Wu Z, Qiu G, Zhang TJ, Wu N. Delineation of dual molecular diagnosis in patients with skeletal deformity. Orphanet J Rare Dis 2022; 17:139. [PMID: 35346302 PMCID: PMC8962553 DOI: 10.1186/s13023-022-02293-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Skeletal deformity is characterized by an abnormal anatomical structure of bone and cartilage. In our previous studies, we have found that a substantial proportion of patients with skeletal deformity could be explained by monogenic disorders. More recently, complex phenotypes caused by more than one genetic defect (i.e., dual molecular diagnosis) have also been reported in skeletal deformities and may complicate the diagnostic odyssey of patients. In this study, we report the molecular and phenotypic characteristics of patients with dual molecular diagnosis and variable skeletal deformities. Results From 1108 patients who underwent exome sequencing, we identified eight probands with dual molecular diagnosis and variable skeletal deformities. All eight patients had dual diagnosis consisting of two autosomal dominant diseases. A total of 16 variants in 12 genes were identified, 5 of which were of de novo origin. Patients with dual molecular diagnosis presented blended phenotypes of two genetic diseases. Mendelian disorders occurred more than once include Osteogenesis Imperfecta Type I (COL1A1, MIM:166200), Neurofibromatosis, Type I (NF1, MIM:162200) and Marfan Syndrome (FBN1, MIM:154700). Conclusions This study demonstrated the complicated skeletal phenotypes associated with dual molecular diagnosis. Exome sequencing represents a powerful tool to detect such complex conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02293-x.
Collapse
Affiliation(s)
- Lian Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liying Sun
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yujun Chen
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Muchuan Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chenxi Yu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated To Shandong First Medical University, Shandong, 250021, China
| | - Yingzhao Huang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huakang Du
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shaoke Chen
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xin Fan
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Wen Tian
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
14
|
Wu RH, Tang WT, Qiu KY, Li XJ, Tang DX, Meng Z, He ZW. Identification of novel CSNK2A1 variants and the genotype-phenotype relationship in patients with Okur-Chung neurodevelopmental syndrome: a case report and systematic literature review. J Int Med Res 2021; 49:3000605211017063. [PMID: 34038195 PMCID: PMC8161887 DOI: 10.1177/03000605211017063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
De novo germline variants of the casein kinase 2α subunit (CK2α) gene (CSNK2A1) have been reported in individuals with the congenital neuropsychiatric disorder Okur-Chung neurodevelopmental syndrome (OCNS). Here, we report on two unrelated children with OCNS and review the literature to explore the genotype-phenotype relationship in OCNS. Both children showed facial dysmorphism, growth retardation, and neuropsychiatric disorders. Using whole-exome sequencing, we identified two novel de novo CSNK2A1 variants: c.479A>G p.(H160R) and c.238C>T p.(R80C). A search of the literature identified 12 studies that provided information on 35 CSNK2A1 variants in various protein-coding regions of CK2α. By quantitatively analyzing data related to these CSNK2A1 variants and their corresponding phenotypes, we showed for the first time that mutations in protein-coding CK2α regions appear to influence the phenotypic spectrum of OCNS. Mutations altering the ATP/GTP-binding loop were more likely to cause the widest range of phenotypes. Therefore, any assessment of clinical spectra for this disorder should be extremely thorough. This study not only expands the mutational spectrum of OCNS, but also provides a comprehensive overview to improve our understanding of the genotype-phenotype relationship in OCNS.
Collapse
Affiliation(s)
- Ruo-Hao Wu
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Wen-Ting Tang
- Department of Research and Molecular Diagnostics, Sun Yat-sen Cancer Center, Sun Yat-sen University Guangzhou, P. R. China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 71067Sun Yat-sen University Cancer Center Guangzhou, P. R. China
| | - Kun-Yin Qiu
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Xiao-Juan Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China.,Department of Research and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China
| | - Dan-Xia Tang
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Zhe Meng
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Zhan-Wen He
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| |
Collapse
|
15
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|