1
|
Zhang J, Dong X, Pang Q, Zhang A. Irisin Alleviates Cognitive Impairment by Inhibiting AhR/NF- κB-NLRP3-Mediated Pyroptosis of Hippocampal Neurons in Chronic Kidney Disease. Mediators Inflamm 2024; 2024:2662362. [PMID: 39698584 PMCID: PMC11655147 DOI: 10.1155/mi/2662362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction: Cognitive impairment is a vital complication of chronic kidney disease (CKD). The effect of irisin on CKD-induced cognitive impairment remains unclear. In the present study, we aimed to investigate the role of Irisin in mitigating cognitive impairment and explore the underlying mechanisms in CKD. Methods: A CKD mice model was established by adenine. Cognitive function was assessed via the novel object recognition (NOR). Interleukin-1β (IL-1β) levels were measured by enzyme-linked immunosorbent assay (ELISA), while pyroptosis-related protein expression was analyzed using western blotting. Results: Our data showed an upregulation of cell pyroptosis in hippocampus tissues of CKD mice, accompanied by significant cognitive impairment. Pyroptosis and cognitive impairment was both improved by Irisin treatment in vivo. Additionally, irisin markedly downregulated pyroptosis levels through aryl hydrocarbon receptor (AhR)/NF-κB p65 signaling in HT-22 cells pretreated with indoxyl sulfate (IS). In vitro experiments further confirmed that pyroptosis was inhibited by AhR and NF-κB p65 inhibitors. Conclusions: We first demonstrated that irisin alleviated cognitive impairment by inhibiting AhR/NF-κB-NLRP3-mediated pyroptosis of hippocampal neurons in CKD. Overall, irisin may have the potential to serve as a critical antipyroptotic agent for improving CKD-induced cognitive impairment.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wang Z, Wang Q, Gong X. Unveiling the Mysteries of Contrast-Induced Acute Kidney Injury: New Horizons in Pathogenesis and Prevention. TOXICS 2024; 12:620. [PMID: 39195722 PMCID: PMC11360536 DOI: 10.3390/toxics12080620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
The utilization of contrast media (CM) in clinical diagnostic imaging and interventional procedures has escalated, leading to a gradual increase in the incidence of contrast-induced acute kidney injury (CI-AKI). Presently, the scarcity of effective pharmacological treatments for CI-AKI poses significant challenges to clinical management. Firstly, we explore the pathogenesis of CI-AKI in this review. Beyond renal medullary ischemia and hypoxia, oxidative stress, cellular apoptosis, and inflammation, emerging mechanisms such as ferroptosis, release of neutrophil extracellular traps (NETs), and nitrosative stress, which offer promising avenues for the management of CI-AKI, are identified. Secondly, a comprehensive strategy for the early prevention of CI-AKI is introduced. Investigating the risk factors associated with CI-AKI is essential for the timely identification of high-risk groups. Additionally, exploring early sensitive biomarkers is crucial for early diagnosis. A synergistic approach that combines these sensitive biomarkers, CI-AKI risk factors, and disease risk prediction models enhances both the accuracy and efficiency of early diagnostic processes. Finally, we explore recent pharmacological and non-pharmacological interventions for the management of Cl-AKI. Beyond the traditional focus on the antioxidant N-acetylcysteine (NAC), we look at active compounds from traditional Chinese medicine, including tetramethylpyrazine (TMP), salvianolic acid B (Sal B), as well as emerging preventive medications like N-acetylcysteine amide (NACA), alprostadil, and others, which all showed potential benefits in animal and clinical studies for CI-AKI prevention. Furthermore, innovative strategies such as calorie restriction (CR), enhanced external counterpulsation (EECP), and mesenchymal stem cell therapy are highlighted as providing fresh insights into Cl-AKI prevention and management.
Collapse
Affiliation(s)
| | | | - Xuezhong Gong
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; (Z.W.); (Q.W.)
| |
Collapse
|
3
|
Mo C, Huang Q, Li L, Long Y, Shi Y, Lu Z, Wu N, Li Q, Zeng H, Li G, Qiu L, Gui C, Ji Q. High-mobility group box 1 and its related receptors: potential therapeutic targets for contrast-induced acute kidney injury. Int Urol Nephrol 2024; 56:2291-2299. [PMID: 38438703 DOI: 10.1007/s11255-024-03981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Percutaneous coronary intervention (PCI) is a crucial diagnostic and therapeutic approach for coronary heart disease. Contrast agents' exposure during PCI is associated with a risk of contrast-induced acute kidney injury (CI-AKI). CI-AKI is characterized by a sudden decline in renal function occurring as a result of exposure to intravascular contrast agents, which is associated with an increased risk of poor prognosis. The pathophysiological mechanisms underlying CI-AKI involve renal medullary hypoxia, direct cytotoxic effects, endoplasmic reticulum stress, inflammation, oxidative stress, and apoptosis. To date, there is no effective therapy for CI-AKI. High-mobility group box 1 (HMGB1), as a damage-associated molecular pattern molecule, is released extracellularly by damaged cells or activated immune cells and binds to related receptors, including toll-like receptors and receptor for advanced glycation end product. In renal injury, HMGB1 is expressed in renal tubular epithelial cells, macrophages, endothelial cells, and glomerular cells, involved in the pathogenesis of various kidney diseases by activating its receptors. Therefore, this review provides a theoretical basis for HMGB1 as a therapeutic intervention target for CI-AKI.
Collapse
Affiliation(s)
- Changhua Mo
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qili Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lixia Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yusheng Long
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ning Wu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qingkuan Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Huayuan Zeng
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Guihua Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lingyue Qiu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, China.
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China.
| |
Collapse
|
4
|
Song J, Li Y, Wu K, Hu Y, Fang L. MyD88 and Its Inhibitors in Cancer: Prospects and Challenges. Biomolecules 2024; 14:562. [PMID: 38785969 PMCID: PMC11118248 DOI: 10.3390/biom14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The interplay between the immune system and cancer underscores the central role of immunotherapy in cancer treatment. In this context, the innate immune system plays a critical role in preventing tumor invasion. Myeloid differentiation factor 88 (MyD88) is crucial for innate immunity, and activation of MyD88 promotes the production of inflammatory cytokines and induces infiltration, polarization, and immune escape of immune cells in the tumor microenvironment. Additionally, abnormal MyD88 signaling induces tumor cell proliferation and metastasis, which are closely associated with poor prognosis. Therefore, MyD88 could serve as a novel tumor biomarker and is a promising target for cancer therapy. Current strategies targeting MyD88 including inhibition of signaling pathways and protein multimerization, have made substantial progress, especially in inflammatory diseases and chronic inflammation-induced cancers. However, the specific role of MyD88 in regulating tumor immunity and tumorigenic mechanisms remains unclear. Therefore, this review describes the involvement of MyD88 in tumor immune escape and disease therapy. In addition, classical and non-classical MyD88 inhibitors were collated to provide insights into potential cancer treatment strategies. Despite several challenges and complexities, targeting MyD88 is a promising avenue for improving cancer treatment and has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiali Song
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Yuying Li
- Ruian People’s Hospital, Wenzhou Medical College Affiliated Third Hospital, Wenzhou 325000, China;
| | - Ke Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Yan Hu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| | - Luo Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; (J.S.); (K.W.)
| |
Collapse
|
5
|
Yang Y, Jiang S, Mu Y, Liu C, Han Y, Jiang J, Wang Y. Berberine alleviated contrast-induced acute kidney injury by mitophagy-mediated NLRP3 inflammasome inactivation in a mice model. Toxicol Appl Pharmacol 2024; 486:116952. [PMID: 38705399 DOI: 10.1016/j.taap.2024.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/13/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The incidence of contrast-induced acute kidney injury (CI-AKI) has escalated to become the third most prevalent cause of hospital-acquired AKI, with a lack of efficacious interventions. Berberine (BBR) possesses diverse pharmacological effects and exhibits renoprotective properties; however, limited knowledge exists regarding its impact on CI-AKI. Therefore, our study aimed to investigate the protective effects and underlying mechanisms of BBR on CI-AKI in a mice model, focusing on the nucleotide-binding oligomerization domain-like pyrin domain-containing protein 3 (NLRP3) inflammasome and mitophagy. The CI-AKI mice model was established by administering NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg), indomethacin (10 mg/kg), and iohexol (11 g/kg) following water deprivation. A pretreatment of 100 mg/kg of BBR was orally administered to the mice for two weeks. Renal injury markers, damage-associated molecular patterns (DAMPs), renal histopathology, mitochondrial morphology, autophagosomes, and potential mechanisms were investigated. BBR effectively reduced levels of renal injury biomarkers such as serum cystatin C, urea nitrogen, and creatinine, downregulated the protein level of kidney injury molecule 1 (KIM1), and mitigated renal histomorphological damage. Moreover, BBR reduced DAMPs, including high mobility group box-1 (HMGB1), heat shock protein 70 (HSP70), and uric acid (UA). It also alleviated oxidative stress and inflammatory factors such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β). Furthermore, the activation of NLRP3 inflammasome was attenuated in the BBR pretreatment group, as evidenced by both mRNA and protein levels. Electron microscopy and western blotting examination revealed that BBR mitigated mitochondrial damage and enhanced mitophagy. Additionally, BBR increased the P-AMPK/AMPK ratio. These findings indicated that BBR exerted a protective effect against CI-AKI by suppressing NLRP3 inflammasome activation and modulating mitophagy, providing a potential therapeutic strategy for its prevention.
Collapse
Affiliation(s)
- Yalin Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuang Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Mu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chilu Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yuhong Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Xiong J, Zhao J. Pyroptosis: The Determinator of Cell Death and Fate in Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:118-131. [PMID: 38751798 PMCID: PMC11095617 DOI: 10.1159/000535894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/15/2023] [Indexed: 05/18/2024]
Abstract
Background Acute kidney injury (AKI) is kidney damage that leads to a rapid decline in function. AKI primarily occurs when the tubular epithelium is damaged, causing swelling, loss of brush margin, and eventual apoptosis. Research has shown that tubular epithelial cell damage in AKI is linked to cell cycle arrest, autophagy, and regulation of cell death. Summary Pyroptosis, a type of programmed cell death triggered by inflammation, is believed to play a role in the pathophysiology of AKI. Cumulative evidence has shown that pyroptosis is the main cause of tubular cell death in AKI. Thus, targeted intervention of pyroptosis may be a promising therapeutic approach for AKI. This review delves deep into the cutting-edge research surrounding pyroptosis in the context of AKI, shedding light on its intricate mechanisms and potential implications for clinical practice. Additionally, we explore the exciting realm of potential preclinical treatment options for AKI, aiming to pave the way for future therapeutic advancements. Key Messages Pyroptosis, a highly regulated form of cell death, plays a crucial role in determining the fate of cells during the development of AKI. This intricate process involves the activation of inflammasomes, which are multi-protein complexes that initiate pyroptotic cell death. By understanding the mechanisms underlying pyroptosis, researchers aim to gain insights into the pathogenesis of AKI and potentially identify new therapeutic targets for this condition.
Collapse
Affiliation(s)
- Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
7
|
Lei Y, Xu T, Sun W, Wang X, Gao M, Lin H. Evodiamine alleviates DEHP-induced hepatocyte pyroptosis, necroptosis and immunosuppression in grass carp through ROS-regulated TLR4 / MyD88 / NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108995. [PMID: 37573970 DOI: 10.1016/j.fsi.2023.108995] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a neuroendocrine disruptor that can cause multi-tissue organ damage by inducing oxidative stress. Evodiamine (EVO) is an indole alkaloid with anti-inflammatory, antitumor, and antioxidant pharmacological activity. In this manuscript, the effects of DEHP and EVO on the pyroptosis, necroptosis and immunology of grass carp hepatocytes (L8824) were investigated using DCFH-DA staining, PI staining, IF staining, AO/EB staining, LDH kit, qRT-PCR and protein Western blot. The results showed that DEHP exposure upregulated reactive oxygen species (ROS) levels, promoted the expression of TLR4/MyD88/NF-κB pathway, increased the expression of genes involved in cell pyroptosis pathway (LDH, NLRP3, ASC, caspase1, IL-1β, IL-18 and GSDMD) and necroptosis-related genes (RIPK1, RIPK3 and MLKL). The expression of DEHP can also affect immune function, which can be demonstrated by variationsin the activation of antimicrobial peptides (LEAP2, HEPC, and β-defensin) and inflammatory cytokines (TNF-α, IL-2, IL-6 and IL-10). EVO regulates cellular antioxidant capacity by inhibiting ROS burst, reduces DEHP-induced cell pyroptosis and necroptosis to some extent, and restores cellular immune function, after co-exposure with EVO. The TLR4 pathway was inhibited by the co-treatment of TLR4 inhibitor TLR-IN-C34 and DEHP, which attenuated the expression of cell pyroptosis, necroptosis, and immunosuppression. Thus, DEHP induced pyroptosis, necroptosis and abnormal immune function in L8824 cells by activating TLR4/MyD88/NF-κB pathway. In addition, EVO has a therapeutic effect on DEHP-induced toxic injury. This study further provides a theoretical basis for the risk assessment of plasticizer DEHP on aquatic organisms.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaodan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|