1
|
Hasegawa K, Tamaki M, Shibata E, Inagaki T, Minato M, Yamaguchi S, Shimizu I, Miyakami S, Tada M, Wakino S. Ability of NAD and Sirt1 to epigenetically suppress albuminuria. Clin Exp Nephrol 2024; 28:599-607. [PMID: 38587753 PMCID: PMC11190001 DOI: 10.1007/s10157-024-02502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Masanori Tamaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Eriko Shibata
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Taizo Inagaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masanori Minato
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sumiyo Yamaguchi
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ikuko Shimizu
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinji Miyakami
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Miho Tada
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shu Wakino
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
2
|
Bae S, Yun D, Lee SW, Jhee JH, Lee JP, Chang TI, Oh J, Kwon YJ, Kim SG, Lee H, Kim DK, Joo KW, Moon KC, Chin HJ, Han SS. Glomerular crescents are associated with the risk of type 2 diabetic kidney disease progression: a retrospective cohort study. BMC Nephrol 2024; 25:172. [PMID: 38769500 PMCID: PMC11106926 DOI: 10.1186/s12882-024-03578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) stands as the predominant cause of chronic kidney disease and end-stage kidney disease. Its diverse range of manifestations complicates the treatment approach for patients. Although kidney biopsy is considered the gold standard for diagnosis, it lacks precision in predicting the progression of kidney dysfunction. Herein, we addressed whether the presence of glomerular crescents is linked to the outcomes in patients with biopsy-confirmed type 2 DKD. METHODS We performed a retrospective evaluation, involving 327 patients diagnosed with biopsy-confirmed DKD in the context of type 2 diabetes, excluding cases with other glomerular diseases, from nine tertiary hospitals. Hazard ratios (HRs) were calculated using a Cox regression model to assess the risk of kidney disease progression, defined as either ≥ 50% decrease in estimated glomerular filtration rates or the development of end-stage kidney disease, based on the presence of glomerular crescents. RESULTS Out of the 327 patients selected, ten patients had glomerular crescents observed in their biopsied tissues. Over the follow-up period (median of 19 months, with a maximum of 18 years), the crescent group exhibited a higher risk of kidney disease progression than the no crescent group, with an adjusted HR of 2.82 (1.32-6.06) (P = 0.008). The presence of heavy proteinuria was associated with an increased risk of developing glomerular crescents. CONCLUSION The presence of glomerular crescents is indeed linked to the progression of type 2 DKD. Therefore, it is important to determine whether there is an additional immune-mediated glomerulonephritis requiring immunomodulation, and it may be prudent to monitor the histology and repeat a biopsy.
Collapse
Affiliation(s)
- Sohyun Bae
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Donghwan Yun
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Woo Lee
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Gyeonggi-Do, Korea
| | - Jong Hyun Jhee
- Department of Internal Medicine, Gangnam Severance Hospital, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Division of Nephrology, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Tae Ik Chang
- Department of Internal Medicine, National Health Insurance Service Medical Center Ilsan Hospital, Gyeonggi-Do, Korea
| | - Jieun Oh
- Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Young Joo Kwon
- Department of Internal Medicine, Korea University Medical Center, Seoul, Korea
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Gyeonggi-Do, Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea.
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-Ro, 173-Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 03080, Korea.
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea.
| |
Collapse
|
3
|
Yamamoto K, Oda T, Uchida T, Takechi H, Oshima N, Kumagai H. Evaluating the State of Glomerular Disease by Analyzing Urinary Sediments: mRNA Levels and Immunofluorescence Staining for Various Markers. Int J Mol Sci 2024; 25:744. [PMID: 38255818 PMCID: PMC10815027 DOI: 10.3390/ijms25020744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Renal biopsy is the gold standard for making the final diagnosis and for predicting the progression of renal disease, but monitoring disease status by performing biopsies repeatedly is impossible because it is an invasive procedure. Urine tests are non-invasive and may reflect the general condition of the whole kidney better than renal biopsy results. We therefore investigated the diagnostic value of extensive urinary sediment analysis by immunofluorescence staining for markers expressed on kidney-derived cells (cytokeratin: marker for tubular epithelial cells, synaptopodin: marker for podocytes, claudin1: marker for parietal epithelial cells, CD68: marker for macrophages (MΦ), neutrophil elastase: marker for neutrophils). We further examined the expression levels of the mRNAs for these markers by real-time reverse transcription polymerase chain reaction. We also examined the levels of mRNAs associated with the M1 (iNOS, IL-6) and M2 (CD163, CD204, CD206, IL-10) MΦ phenotypes. Evaluated markers were compared with clinical and histological findings for the assessment of renal diseases. Claudin1- and CD68-positive cell counts in urinary sediments were higher in patients with glomerular crescents (especially cellular crescents) than in patients without crescents. The relative levels of mRNA for CD68 and the M2 MΦ markers (CD163, CD204, CD206, and IL-10) in urinary sediments were also higher in patients with glomerular crescents. These data suggest that immunofluorescence staining for claudin1 and CD68 in urinary sediments and the relative levels of mRNA for CD68 and M2 MΦ markers in urinary sediments are useful for evaluating the state of glomerular diseases.
Collapse
Affiliation(s)
- Kojiro Yamamoto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Takashi Oda
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Japan;
| | - Takahiro Uchida
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Japan;
| | - Hanako Takechi
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
- Department of Nephrology, Sayama General Clinic, Sayama 350-1305, Japan
| |
Collapse
|