1
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
2
|
Boongird A, Termsarasab P, Pulkes T. Spinocerebellar Ataxia type 17 presenting with progressive myoclonic epilepsy. eNeurologicalSci 2023; 31:100463. [PMID: 37152277 PMCID: PMC10160684 DOI: 10.1016/j.ensci.2023.100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
•SCA17 should be included in the differential diagnoses of PMEs.•SCA17 is characterized by cerebellar features, myoclonic epilepsy, cognitive decline, psychiatric features, and chorea.•Subtle clinical signs like chorea can provide additional diagnostic clues to SCA17(HDL4), a Huntington disease phenocopy.
Collapse
Affiliation(s)
- Apisit Boongird
- Corresponding author at: Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| | | | | |
Collapse
|
3
|
Mutation analysis of the TATA box-binding protein (TBP) gene in Russian patients with spinocerebellar ataxia and Huntington disease-like phenotype. Clin Neurol Neurosurg 2022; 222:107473. [DOI: 10.1016/j.clineuro.2022.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
|
4
|
van Prooije T, Ibrahim NM, Azmin S, van de Warrenburg B. Spinocerebellar ataxias in Asia: Prevalence, phenotypes and management. Parkinsonism Relat Disord 2021; 92:112-118. [PMID: 34711523 DOI: 10.1016/j.parkreldis.2021.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
This paper reviews and summarizes three main aspects of spinocerebellar ataxias (SCA) in the Asian population. First, epidemiological studies were comprehensively reviewed. Overall, the most common subtypes include SCA1, SCA2, SCA3, and SCA6, but there are large differences in the relative prevalence of these and other SCA subtypes between Asian countries. Some subtypes such as SCA12 and SCA31 are rather specific to certain Asian populations. Second, we summarized distinctive phenotypic manifestations of SCA patients of Asian origin, for example a frequent co-occurrence of parkinsonism in some SCA subtypes. Lastly, we have conducted an exploratory survey study to map SCA-specific expertise, resources, and management in various Asian countries. This showed large differences in accessibility, genetic testing facilities, and treatment options between lower and higher income Asian countries. Currently, many Asian SCA patients remain without a final genetic diagnosis. Lack of prevalence data on SCA, lack of patient registries, and insufficient access to genetic testing facilities hamper a wider understanding of these diseases in several (particularly lower income) Asian countries.
Collapse
Affiliation(s)
- Teije van Prooije
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Shahrul Azmin
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Choi KE, Yoo SW, Kim JS. Very late-onset sporadic spinocerebellar ataxia type 17. Acta Neurol Belg 2021; 122:1107-1109. [PMID: 33772453 DOI: 10.1007/s13760-021-01657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Ko-Eun Choi
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sang-Won Yoo
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Joong-Seok Kim
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
6
|
I D, Proskokova T, Sikora N, Abramycheva N, Illarioshkin S. Spinocerebellar ataxia 17: full phenotype in a 42 CAG/CAA-repeats carrier. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:100-105. [DOI: 10.17116/jnevro2021121121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Abstract
The spinocerebellar ataxias (SCAs) comprise more than 40 autosomal dominant neurodegenerative disorders that present principally with progressive ataxia. Within the past few years, studies of pathogenic mechanisms in the SCAs have led to the development of promising therapeutic strategies, especially for SCAs caused by polyglutamine-coding CAG repeats. Nucleotide-based gene-silencing approaches that target the first steps in the pathogenic cascade are one promising approach not only for polyglutamine SCAs but also for the many other SCAs caused by toxic mutant proteins or RNA. For these and other emerging therapeutic strategies, well-coordinated preparation is needed for fruitful clinical trials. To accomplish this goal, investigators from the United States and Europe are now collaborating to share data from their respective SCA cohorts. Increased knowledge of the natural history of SCAs, including of the premanifest and early symptomatic stages of disease, will improve the prospects for success in clinical trials of disease-modifying drugs. In addition, investigators are seeking validated clinical outcome measures that demonstrate responsiveness to changes in SCA populations. Findings suggest that MRI and magnetic resonance spectroscopy biomarkers will provide objective biological readouts of disease activity and progression, but more work is needed to establish disease-specific biomarkers that track target engagement in therapeutic trials. Together, these efforts suggest that the development of successful therapies for one or more SCAs is not far away.
Collapse
|
8
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Abstract
Spinocerebellar ataxia type 19 (SCA19), allelic with spinocerebellar ataxia type 22 (SCA22), is a rare syndrome caused by mutations in the KCND3 gene which encodes the potassium channel Kv4.3. Only 18 SCA19/22 families and sporadic cases of different ethnic backgrounds have been previously reported. As in other SCAs, the SCA19/22 phenotype is variable and usually consists of adult-onset slowly progressive ataxia and cognitive impairment; myoclonus and seizures; mild Parkinsonism occurs in some cases. Here we describe a Swedish SCA19/22 family spanning five generations and harboring the T377M mutation in KCND3. For the first time for this disease, 18F-fluorodeoxyglucose PET was assessed revealing widespread brain hypometabolism. In addition, we identified white matter abnormalities and found unusual features for SCA19/22 including early age of onset and fast rate of progression in the late course of disease in the oldest patient of this family.
Collapse
|
10
|
Comparable progression of spinocerebellar ataxias between Caucasians and Chinese. Parkinsonism Relat Disord 2019; 62:156-162. [DOI: 10.1016/j.parkreldis.2018.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
|
11
|
Srivastava A, Kumar D, Faruq M, Gundluru V. Spinocerebellar ataxia type 12: An update. ANNALS OF MOVEMENT DISORDERS 2019. [DOI: 10.4103/aomd.aomd_5_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Aydin G, Dekomien G, Hoffjan S, Gerding WM, Epplen JT, Arning L. Frequency of SCA8, SCA10, SCA12, SCA36, FXTAS and C9orf72 repeat expansions in SCA patients negative for the most common SCA subtypes. BMC Neurol 2018; 18:3. [PMID: 29316893 PMCID: PMC5761156 DOI: 10.1186/s12883-017-1009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) subtypes are often caused by expansions in non-coding regions of genes like SCA8, SCA10, SCA12 and SCA36. Other ataxias are known to be associated with repeat expansions such as fragile X-associated tremor ataxia syndrome (FXTAS) or expansions in the C9orf72 gene. When no mutation has been identified in the aforementioned genes next-generation sequencing (NGS)-based diagnostics may also be applied. In order to define an optimal diagnostic strategy, more information about the frequency and phenotypic characteristics of rare repeat expansion disorders associated with ataxia should be at hand. METHODS We analyzed a consecutive cohort of 440 German unrelated patients with symptoms of cerebellar ataxia, dysarthria and other unspecific symptoms who were referred to our center for SCA diagnostics. They showed alleles in the normal range for the most common SCA subtypes SCA1-3, SCA6, SCA7 and SCA17. These patients were screened for expansions causing SCA8, SCA10, SCA12, SCA36 and FXTAS as well as for the pathogenic hexanucleotide repeat in the C9orf72 gene. RESULTS Expanded repeats for SCA10, SCA12 or SCA36 were not identified in the analyzed patients. Five patients showed expanded SCA8 CTA/CTG alleles with 92-129 repeats. One 51-year-old male with unclear dementia symptoms was diagnosed with a large GGGGCC repeat expansion in C9orf72. The analysis of the fragile X mental retardation 1 gene (FMR1) revealed one patient with a premutation (>50 CGG repeats) and seven patients with alleles in the grey zone (41 to 54 CGG repeats). CONCLUSIONS Altogether five patients showed 92 or more SCA8 CTA/CTG combined repeats. Our results support the assumption that smaller FMR1 gene expansions could be associated with the risk of developing neurological signs. The results do not support genetic testing for C9orf72 expansion in ataxia patients.
Collapse
Affiliation(s)
- Gülsah Aydin
- Faculty of Health, University Witten-Herdecke, Alfred-Herrhausen-Strasse 50, 58448 Witten, Germany
| | - Gabriele Dekomien
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
| | - Wanda Maria Gerding
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jörg T. Epplen
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
- Faculty of Health, University Witten-Herdecke, Alfred-Herrhausen-Strasse 50, 58448 Witten, Germany
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
13
|
Wetchaphanphesat S, Mungaomklang A, Papsing C, Pulkes T. Epidemiological, clinical, and genotype characterization of spinocerebellar ataxia type in families in Buriram province, northeast Thailand. ASIAN BIOMED 2017. [DOI: 10.1515/abm-2018-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
In Thais, the most prevalent type of spinocerebellar ataxia (SCA) is type 3, most commonly known as Machado–Joseph disease (MJD), followed by SCA type 1 (SCA1), SCA2, and SCA6.
Objectives
To describe the epidemiological, clinical, and genotypic features of SCA in northeastern Thailand and to study 2 associations: between syndromic features and the genotype of SCA, and between health determinants and scores on the scale for the assessment and rating of ataxia (SARA).
Methods
We conducted a cross-sectional study of 24 patients with autosomal dominant SCA from 13 families recruited from Buriram province in northeast Thailand between December 2009 and January 2014. Patients provided a clinical history and were examined by a neurologist. DNA was extracted from the peripheral blood of each patient. We analyzed associations between the type of SCA and sex, age, family history, clinical features, any underlying disease, age at onset, body weight, smoking status, family history, alcohol consumption, head injury history, and SARA.
Results
Seven of the families were positive for SCA1 and 6 for MJD. There were 24 index patients from these autosomal dominant SCA families, including 13 with SCA1 and 11 with MJD. Their average age was 43.7 years (range 20–72 years), whereas their average age at disease onset was 36.9 years (range 18–59 years). Pyramidal signs between MJD and SCA1 were not significantly different. Extrapyramidal features appeared uncommon. Horizontal nystagmus and upward gaze paresis were significantly associated with MJD. There were no significant differences in demographic data between the groups with SARA scores ≥15 or <15.
Conclusions
MJD and SCA1 were the 2 adult-onset cerebellar degenerative diseases found in Buriram province. Clinical clues for differentiating between them were upward gaze paresis and horizontal nystagmus, which were significantly more common in MJD.
Collapse
Affiliation(s)
| | - Anek Mungaomklang
- Department of Occupational Health, Debaratana Nakhon Ratchasima Hospital , Nakhon Ratchasima 30280 , Thailand
| | - Chutima Papsing
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital , Mahidol University , Bangkok 10400 , Thailand
| | - Teeratorn Pulkes
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital , Mahidol University , Bangkok 10400 , Thailand
| |
Collapse
|
14
|
Kuo PH, Gan SR, Wang J, Lo RY, Figueroa KP, Tomishon D, Pulst SM, Perlman S, Wilmot G, Gomez CM, Schmahmann JD, Paulson H, Shakkottai VG, Ying SH, Zesiewicz T, Bushara K, Geschwind MD, Xia G, Subramony SH, Ashizawa T, Kuo SH. Dystonia and ataxia progression in spinocerebellar ataxias. Parkinsonism Relat Disord 2017; 45:75-80. [PMID: 29089256 DOI: 10.1016/j.parkreldis.2017.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dystonia is a common feature in spinocerebellar ataxias (SCAs). Whether the presence of dystonia is associated with different rate of ataxia progression is not known. OBJECTIVES To study clinical characteristics and ataxia progression in SCAs with and without dystonia. METHODS We studied 334 participants with SCA 1, 2, 3 and 6 from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA) and compared the clinical characteristics of SCAs with and without dystonia. We repeatedly measured ataxia progression by the Scale for Assessment and Rating of Ataxia every 6 months for 2 years. Regression models were employed to study the association between dystonia and ataxia progression after adjusting for age, sex and pathological CAG repeats. We used logistic regression to analyze the impact of different repeat expansion genes on dystonia in SCAs. RESULTS Dystonia was most commonly observed in SCA3, followed by SCA2, SCA1, and SCA6. Dystonia was associated with longer CAG repeats in SCA3. The CAG repeat number in TBP normal alleles appeared to modify the presence of dystonia in SCA1. The presence of dystonia was associated with higher SARA scores in SCA1, 2, and 3. Although relatively rare in SCA6, the presence of dystonia was associated with slower progression of ataxia. CONCLUSIONS The presence of dystonia is associated with greater severity of ataxia in SCA1, 2, and 3, but predictive of a slower progression in SCA6. Complex genetic interactions among repeat expansion genes can lead to diverse clinical symptoms and progression in SCAs.
Collapse
Affiliation(s)
- Pei-Hsin Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Shi-Rui Gan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Jie Wang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Raymond Y Lo
- Department of Neurology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Darya Tomishon
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - George Wilmot
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah H Ying
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Guangbin Xia
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - S H Subramony
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainsville, FL, USA
| | | | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Naito H, Takahashi T, Kamada M, Morino H, Yoshino H, Hattori N, Maruyama H, Kawakami H, Matsumoto M. First report of a Japanese family with spinocerebellar ataxia type 10: The second report from Asia after a report from China. PLoS One 2017; 12:e0177955. [PMID: 28542277 PMCID: PMC5438172 DOI: 10.1371/journal.pone.0177955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal-dominant cerebellar ataxia that is variably accompanied by epilepsy and other neurological disorders. It is caused by an expansion of the ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. Until now, SCA10 was almost exclusively found in the American continents, while no cases had been identified in Japan. Here, we report the first case of an SCA10 family from Japan. The clinical manifestations in our cases were cerebellar ataxia accompanied by epilepsy, hyperreflexia and cognitive impairment. Although the primary pathology in SCA10 in humans is reportedly the loss of Purkinje cells, brain MRI revealed frontal lobe atrophy with white matter lesions. This pathology might be associated with cognitive dysfunction, indicating that the pathological process is not limited to the cerebellum. Examination of the SNPs surrounding the SCA10 locus in the proband showed the “C-expansion-G-G-C” haplotype, which is consistent with previously reported SCA10-positive individuals. This result was consistent with the findings that the SCA10 mutation may have occurred before the migration of Amerindians from East Asia to North America and the subsequent spread of their descendants throughout North and South America.
Collapse
Affiliation(s)
- Hiroyuki Naito
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- * E-mail:
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Kagawa University School of Medicine, Kagawa, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Japan Community Health care Organization, Hoshigaoka Medical Center, Osaka, Japan
| |
Collapse
|
16
|
Marcián V, Filip P, Bareš M, Brázdil M. Cerebellar Dysfunction and Ataxia in Patients with Epilepsy: Coincidence, Consequence, or Cause? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2016; 6:376. [PMID: 27375960 PMCID: PMC4925921 DOI: 10.7916/d8kh0nbt] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/05/2016] [Indexed: 12/15/2022]
Abstract
Basic epilepsy teachings assert that seizures arise from the cerebral cortex, glossing over infratentorial structures such as the cerebellum that are believed to modulate rather than generate seizures. Nonetheless, ataxia and other clinical findings in epileptic patients are slowly but inevitably drawing attention to this neural node. Tracing the evolution of this line of inquiry from the observed coincidence of cerebellar atrophy and cerebellar dysfunction (most apparently manifested as ataxia) in epilepsy to their close association, this review considers converging clinical, physiological, histological, and neuroimaging evidence that support incorporating the cerebellum into epilepsy pathology. We examine reports of still controversial cerebellar epilepsy, studies of cerebellar stimulation alleviating paroxysmal epileptic activity, studies and case reports of cerebellar lesions directly associated with seizures, and conditions in which ataxia is accompanied by epileptic seizures. Finally, the review substantiates the role of this complex brain structure in epilepsy whether by coincidence, as a consequence of deleterious cortical epileptic activity or antiepileptic drugs, or the very cause of the disease.
Collapse
Affiliation(s)
- Václav Marcián
- First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Pavel Filip
- First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Martin Bareš
- First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Milan Brázdil
- First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| |
Collapse
|
17
|
Choubtum L, Witoonpanich P, Kulkantrakorn K, Hanchaiphiboolkul S, Pongpakdee S, Tiamkao S, Pulkes T. Trinucleotide repeat expansion of TATA-binding protein gene associated with Parkinson's disease: A Thai multicenter study. Parkinsonism Relat Disord 2016; 28:146-9. [PMID: 27172828 DOI: 10.1016/j.parkreldis.2016.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Spinocerebellar ataxia type 17 (SCA17) is an inherited cerebellar degeneration associated with trinucleotide repeat expansions in the TATA-binding protein gene (TBP). Low-range expansions of TBP have recently been described in association with Parkinson's disease (PD). However, these low-range expansion alleles were also observed in healthy individuals. Prior distinct findings may result from reduced penetrance or age-dependent susceptibility, which may influence phenotypic expression. METHODS A case-control study of 456 PD patients and 374 control subjects was conducted. Data and blood samples were collected during 2008-2013. Control subjects were individuals over 65 years old without parkinsonism. Sizes of TBP trinucleotide repeats were analyzed. All available carriers of the TBP repeat of ≥40 repeats were re-examined. RESULTS A high prevalence of carriers of TBP repeat expansion ≥41 developed PD, mainly at an advanced age. Half of these carriers had onset after 70 years of age (range 34-84). Seven participants carried expansion alleles of ≥42, and all had PD. Fourteen participants (six patients and eight controls) carried a heterozygous 41-repeat allele. At the current mean age of 79 years and mean follow-up period of 4 years, three out of the eight control carriers of the 41-repeat allele developed PD, while none of the thirteen asymptomatic carriers of the 40-repeat allele did. CONCLUSIONS A high prevalence of PD was observed in carriers of low-range expansions of TBP (41-45 repeats), especially in elderly. This finding suggests that cut-off value for pathological TBP repeat expansion appear to be 41.
Collapse
Affiliation(s)
- Lulin Choubtum
- Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pirada Witoonpanich
- Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kongkiat Kulkantrakorn
- Division of Neurology, Department of Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | - Sunsanee Pongpakdee
- Division of Neurology, Department of Medicine, Bhumibol Adulyadej Hospital, Bangkok, Thailand
| | - Somsak Tiamkao
- Division of Neurology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Teeratorn Pulkes
- Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|