1
|
Sönmezler E, Stuani C, Hız Kurul S, Güngör S, Buratti E, Oktay Y. Characterization and Engineered U1 snRNA Rescue of Splicing Variants in a Turkish Neurodevelopmental Disease Cohort. Hum Mutat 2024; 2024:7760556. [PMID: 40225931 PMCID: PMC11925005 DOI: 10.1155/2024/7760556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 04/15/2025]
Abstract
Although they are rare in the population, rare neurodevelopmental disorders (RNDDs) constitute a significant portion of all rare diseases. While advancements in sequencing technologies led to improvements in diagnosing and managing rare neurodevelopmental diseases, accurate pathogenicity classification of the identified variants is still challenging. Sequence variants altering pre-mRNA splicing make up a significant part of pathogenic variants. Despite advances in the in silico prediction tools, noncanonical splice site variants are one of the groups of variants that pose a challenge in their clinical interpretation. In this study, we analyzed the effects of seven splicing variants we had previously proposed as disease-causing and demonstrated that all but one of the seven variants had a strong or moderate effect on splicing, as assessed by a minigene assay. Next, applying U1 snRNAs engineered for different splicing variants in the corresponding genes and expressed with minigene plasmids in HeLa cells provided a partial correction in four of the studied genes to varying degrees. Findings from our study highlight the importance of in vitro minigene-based assays for the reclassification of putative splice-altering variants of uncertain significance and the therapeutic potential of modified U1 snRNAs in RNDDs.
Collapse
Affiliation(s)
- Ece Sönmezler
- Izmir Biomedicine and Genome CenterDokuz Eylul University Health Campus35340 Izmir, Türkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University35340 Izmir, Türkiye
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB)34149 Trieste, Italy
| | - Semra Hız Kurul
- Izmir Biomedicine and Genome CenterDokuz Eylul University Health Campus35340 Izmir, Türkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University35340 Izmir, Türkiye
- Department of Paediatric NeurologySchool of MedicineDokuz Eylul University35340 Izmir, Türkiye
| | - Serdal Güngör
- Department of Paediatric NeurologySchool of MedicineInonu UniversityMalatya 44210, Türkiye
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB)34149 Trieste, Italy
| | - Yavuz Oktay
- Izmir Biomedicine and Genome CenterDokuz Eylul University Health Campus35340 Izmir, Türkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University35340 Izmir, Türkiye
- Department of Medical BiologySchool of MedicineDokuz Eylul UniversityIzmir 35340, Türkiye
| |
Collapse
|
2
|
Bouchard C, Tremblay JP. Limb-Girdle Muscular Dystrophies Classification and Therapies. J Clin Med 2023; 12:4769. [PMID: 37510884 PMCID: PMC10381329 DOI: 10.3390/jcm12144769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are caused by mutations in multiple genes. This review article presents 39 genes associated with LGMDs. Some forms are inherited in a dominant fashion, while for others this occurs recessively. The classification of LGMDs has evolved through time. Lately, to be considered an LGMD, the mutation has to cause a predominant proximal muscle weakness and must be found in two or more unrelated families. This article also presents therapies for LGMDs, examining both available treatments and those in development. For now, only symptomatic treatments are available for patients. The goal is now to solve the problem at the root of LGMDs instead of treating each symptom individually. In the last decade, multiple other potential treatments were developed and studied, such as stem-cell transplantation, exon skipping, gene delivery, RNAi, and gene editing.
Collapse
Affiliation(s)
- Camille Bouchard
- Departement de Médecine Moléculaire, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Quebec, Quebec, QC G1E 6W2, Canada
| | - Jacques P Tremblay
- Departement de Médecine Moléculaire, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Quebec, Quebec, QC G1E 6W2, Canada
| |
Collapse
|
3
|
Cubilla M, Papazoglu G, Asteggiano C. Dystroglycanopathies: Genetic Bases of Muscular Dystrophies Due to Alteration in the O-Glycosylation of α-Dystroglycan. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2023; 11. [DOI: 10.1590/2326-4594-jiems-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Affiliation(s)
- M.A. Cubilla
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - G.M. Papazoglu
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - C.G. Asteggiano
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; Universidad Católica de Córdoba, Argentina
| |
Collapse
|
4
|
Tokuoka H, Imae R, Nakashima H, Manya H, Masuda C, Hoshino S, Kobayashi K, Lefeber DJ, Matsumoto R, Okada T, Endo T, Kanagawa M, Toda T. CDP-ribitol prodrug treatment ameliorates ISPD-deficient muscular dystrophy mouse model. Nat Commun 2022; 13:1847. [PMID: 35422047 PMCID: PMC9010444 DOI: 10.1038/s41467-022-29473-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2022] [Indexed: 01/05/2023] Open
Abstract
Ribitol-phosphate modification is crucial for the functional maturation of α-dystroglycan. Its dysfunction is associated with muscular dystrophy, cardiomyopathy, and central nervous system abnormalities; however, no effective treatments are currently available for diseases caused by ribitol-phosphate defects. In this study, we demonstrate that prodrug treatments can ameliorate muscular dystrophy caused by defects in isoprenoid synthase domain containing (ISPD), which encodes an enzyme that synthesizes CDP-ribitol, a donor substrate for ribitol-phosphate modification. We generated skeletal muscle-selective Ispd conditional knockout mice, leading to a pathogenic reduction in CDP-ribitol levels, abnormal glycosylation of α-dystroglycan, and severe muscular dystrophy. Adeno-associated virus-mediated gene replacement experiments suggested that the recovery of CDP-ribitol levels rescues the ISPD-deficient pathology. As a prodrug treatment strategy, we developed a series of membrane-permeable CDP-ribitol derivatives, among which tetraacetylated CDP-ribitol ameliorated the dystrophic pathology. In addition, the prodrug successfully rescued abnormal α-dystroglycan glycosylation in patient fibroblasts. Consequently, our findings provide proof-of-concept for supplementation therapy with CDP-ribitol and could accelerate the development of therapeutic agents for muscular dystrophy and other diseases caused by glycosylation defects.
Collapse
Affiliation(s)
- Hideki Tokuoka
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Rieko Imae
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Hitomi Nakashima
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Hiroshi Manya
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Chiaki Masuda
- grid.410821.e0000 0001 2173 8328Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Shunsuke Hoshino
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Kazuhiro Kobayashi
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Dirk J. Lefeber
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Riki Matsumoto
- grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Takashi Okada
- grid.26999.3d0000 0001 2151 536XDivision of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639 Japan
| | - Tamao Endo
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Motoi Kanagawa
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.255464.40000 0001 1011 3808Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Tatsushi Toda
- grid.26999.3d0000 0001 2151 536XDepartment of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
5
|
Yang M, Xing RX. Homozygous deletion, c. 1114-1116del, in exon 8 of the CRPPA gene causes congenital muscular dystrophy in Chinese family: A case report. World J Clin Cases 2021; 9:5226-5231. [PMID: 34307571 PMCID: PMC8283581 DOI: 10.12998/wjcc.v9.i19.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. Mutations in the CRPPA gene (encoding CDPLribitol pyrophosphorylase A) are recognized as causative factors of dystroglycanopathies, a subtype of CMD with defects in glycosylation.
CASE SUMMARY The present study examined a Chinese family, whose proband presented mainly with muscle weakness in both lower limbs but without brain and eye symptoms. In this family, a homozygous deletion, c. 1114-1116del (p.V372del), was identified in exon 8 of CRPPA in the proband, while a heterozygous deletion was identified in the proband’s father and mother, who lacked symptoms. A mild dystroglycanopathy of CMD was diagnosed.
CONCLUSION The findings of this study expanded the clinical and mutational spectrum of patients with CMD associated with CRPPA mutations.
Collapse
Affiliation(s)
- Mi Yang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Ru-Xin Xing
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| |
Collapse
|
6
|
Zaganas I, Mastorodemos V, Spilioti M, Mathioudakis L, Latsoudis H, Michaelidou K, Kotzamani D, Notas K, Dimitrakopoulos K, Skoula I, Ioannidis S, Klothaki E, Erimaki S, Stavropoulos G, Vassilikos V, Amoiridis G, Efthimiadis G, Evangeliou A, Mitsias P. Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients. Mol Genet Metab Rep 2020; 25:100682. [PMID: 33304817 PMCID: PMC7711282 DOI: 10.1016/j.ymgmr.2020.100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inherited muscle disorders are caused by pathogenic changes in numerous genes. Herein, we aimed to investigate the etiology of muscle disease in 24 consecutive Greek patients with myopathy suspected to be genetic in origin, based on clinical presentation and laboratory and electrophysiological findings and absence of known acquired causes of myopathy. Of these, 16 patients (8 females, median 24 years-old, range 7 to 67 years-old) were diagnosed by Whole Exome Sequencing as suffering from a specific type of inherited muscle disorder. Specifically, we have identified causative variants in 6 limb-girdle muscular dystrophy genes (6 patients; ANO5, CAPN3, DYSF, ISPD, LAMA2, SGCA), 3 metabolic myopathy genes (4 patients; CPT2, ETFDH, GAA), 1 congenital myotonia gene (1 patient; CLCN1), 1 mitochondrial myopathy gene (1 patient; MT-TE) and 3 other myopathy-associated genes (4 patients; CAV3, LMNA, MYOT). In 6 additional family members affected by myopathy, we reached genetic diagnosis following identification of a causative variant in an index patient. In our patients, genetic diagnosis ended a lengthy diagnostic process and, in the case of Multiple acyl-CoA dehydrogenase deficiency and Pompe's disease, it enabled specific treatment to be initiated. These results further expand the genotypic and phenotypic spectrum of inherited myopathies.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | | | - Martha Spilioti
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Notas
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Irene Skoula
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stefanos Ioannidis
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Eirini Klothaki
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Sophia Erimaki
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Stavropoulos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Vassilikos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Amoiridis
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Efthimiadis
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Evangeliou
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Mitsias
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
- Department of Neurology, Henry Ford Hospital/Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
7
|
Cerino M, Campana-Salort E, Salvi A, Cintas P, Renard D, Juntas Morales R, Tard C, Leturcq F, Stojkovic T, Bonello-Palot N, Gorokhova S, Mortreux J, Maues De Paula A, Lévy N, Pouget J, Cossée M, Bartoli M, Krahn M, Attarian S. Novel CAPN3 variant associated with an autosomal dominant calpainopathy. Neuropathol Appl Neurobiol 2020; 46:564-578. [PMID: 32342993 DOI: 10.1111/nan.12624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
AIMS The most common autosomal recessive limb girdle muscular dystrophy is associated with the CAPN3 gene. The exclusively recessive inheritance of this disorder has been recently challenged by the description of the recurrent variants, c.643_663del21 [p.(Ser215_Gly221del)] and c.598_612del15 [p.(Phe200_Leu204del)], associated with autosomal dominant inheritance. Our objective was to confirm the existence of autosomal dominant calpainopathies. METHODS Through our activity as one of the reference centres for genetic diagnosis of calpainopathies in France and the resulting collaborations through the French National Network for Rare Neuromuscular Diseases (FILNEMUS), we identified four families harbouring the same CAPN3 heterozygous variant with supposedly autosomal dominant inheritance. RESULTS We identified a novel dominantly inherited CAPN3 variant, c.1333G>A [p.(Gly445Arg)] in 14 affected patients from four unrelated families. The complementary phenotypic, functional and genetic findings correlate with an autosomal dominant inheritance in these families, emphasizing the existence of this novel transmission mode for calpainopathies. The mild phenotype associated with these autosomal dominant cases widens the phenotypic spectrum of calpainopathies and should therefore be considered in clinical practice. CONCLUSIONS We confirm the existence of autosomal dominant calpainopathies as an entity beyond the cases related to the in-frame deletions c.643_663del21 and c.598_612del15, with the identification of a novel dominantly inherited and well-documented CAPN3 missense variant, c.1333G>A [p.(Gly445Arg)]. In addition to the consequences for genetic counselling, the confirmation of an autosomal dominant transmission mode for calpainopathies underlines the importance of re-assessing other myopathies for which the inheritance is considered as strictly autosomal recessive.
Collapse
Affiliation(s)
- M Cerino
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France.,APHM, Laboratoire de Biochimie, Hôpital de la Conception, Marseille, France
| | - E Campana-Salort
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, centre de référence des maladies neuromusculaires et de la SLA, CHU La Timone, Marseille, France
| | - A Salvi
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France
| | - P Cintas
- Centre de référence de pathologie neuromusculaires, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - D Renard
- Service de Neurologie, CHU de Nîmes, Univ. Montpellier, Nîmes, France
| | - R Juntas Morales
- Laboratoire de Génétique de Maladies Rares, Université de Montpellier, Montpellier, France.,Service de Neurologie, CHU de Montpellier, Montpellier, France
| | - C Tard
- U1172, Service de Neurologie, CHU de Lille, Lille, France.,Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - F Leturcq
- APHP, Laboratoire de génétique et biologie moléculaires, HUPC Cochin, Paris, France
| | - T Stojkovic
- APHP, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Hôpital Pitié-Salpêtrière, Paris, France
| | - N Bonello-Palot
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - S Gorokhova
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - J Mortreux
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - A Maues De Paula
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Service d'anatomie pathologique et de neuropathologie, CHU La Timone, Marseille, France
| | - N Lévy
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - J Pouget
- APHM, centre de référence des maladies neuromusculaires et de la SLA, CHU La Timone, Marseille, France
| | - M Cossée
- Laboratoire de Génétique de Maladies Rares, Université de Montpellier, Montpellier, France.,Laboratoire de Génétique moléculaire, CHRU Montpellier, Montpellier, France
| | - M Bartoli
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France
| | - M Krahn
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Département de Génétique Médicale, Marseille, France
| | - S Attarian
- Aix Marseille Univ, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France.,APHM, centre de référence des maladies neuromusculaires et de la SLA, CHU La Timone, Marseille, France
| |
Collapse
|
8
|
Angelini C, Fanin M. Limb girdle muscular dystrophies: clinical-genetical diagnostic update and prospects for therapy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1367283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Corrado Angelini
- Department of Neurodegenerative Disorders, Neuromuscular Center, San Camillo Hospital IRCCS, Venice, Italy
| | - Marina Fanin
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Sframeli M, Sarkozy A, Bertoli M, Astrea G, Hudson J, Scoto M, Mein R, Yau M, Phadke R, Feng L, Sewry C, Fen ANS, Longman C, McCullagh G, Straub V, Robb S, Manzur A, Bushby K, Muntoni F. Congenital muscular dystrophies in the UK population: Clinical and molecular spectrum of a large cohort diagnosed over a 12-year period. Neuromuscul Disord 2017; 27:793-803. [PMID: 28688748 DOI: 10.1016/j.nmd.2017.06.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/09/2017] [Accepted: 06/15/2017] [Indexed: 12/27/2022]
Abstract
Congenital muscular dystrophies (CMDs) are clinically and genetically heterogeneous conditions; some fatal in the first few years of life and with central nervous system involvement, whereas others present a milder course. We provide a comprehensive report of the relative frequency and clinical and genetic spectrum of CMD in the UK. Genetic analysis of CMD genes in the UK is centralised in London and Newcastle. Between 2001 and 2013, a genetically confirmed diagnosis of CMD was obtained for 249 unrelated individuals referred to these services. The most common CMD subtype was laminin-α2 related CMD (also known as MDC1A, 37.4%), followed by dystroglycanopathies (26.5%), Ullrich-CMD (15.7%), SEPN1 (11.65%) and LMNA (8.8%) gene related CMDs. The most common dystroglycanopathy phenotype was muscle-eye-brain-like disease. Fifteen patients carried mutations in the recently discovered ISPD, GMPPB and B3GALNT2 genes. Pathogenic allelic mutations in one of the CMD genes were also found in 169 unrelated patients with milder phenotypes, such as limb girdle muscular dystrophy and Bethlem myopathy. In all, we identified 362 mutations, 160 of which were novel. Our results provide one of the most comprehensive reports on genetics and clinical features of CMD subtypes and should help diagnosis and counselling of families with this group of conditions.
Collapse
Affiliation(s)
- Maria Sframeli
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK; Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Marta Bertoli
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, University of Newcastle, Central Parkway, Newcastle upon Tyne, UK
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Judith Hudson
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, University of Newcastle, Central Parkway, Newcastle upon Tyne, UK
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | | | | | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Adeline Ngoh Seow Fen
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Southern General Hospital, Glasgow, UK
| | | | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, University of Newcastle, Central Parkway, Newcastle upon Tyne, UK
| | - Stephanie Robb
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, University of Newcastle, Central Parkway, Newcastle upon Tyne, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.
| |
Collapse
|