1
|
Hanaford A, Johnson SC. The immune system as a driver of mitochondrial disease pathogenesis: a review of evidence. Orphanet J Rare Dis 2022; 17:335. [PMID: 36056365 PMCID: PMC9438277 DOI: 10.1186/s13023-022-02495-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Genetic mitochondrial diseases represent a significant challenge to human health. These diseases are extraordinarily heterogeneous in clinical presentation and genetic origin, and often involve multi-system disease with severe progressive symptoms. Mitochondrial diseases represent the most common cause of inherited metabolic disorders and one of the most common causes of inherited neurologic diseases, yet no proven therapeutic strategies yet exist. The basic cell and molecular mechanisms underlying the pathogenesis of mitochondrial diseases have not been resolved, hampering efforts to develop therapeutic agents. MAIN BODY In recent pre-clinical work, we have shown that pharmacologic agents targeting the immune system can prevent disease in the Ndufs4(KO) model of Leigh syndrome, indicating that the immune system plays a causal role in the pathogenesis of at least this form of mitochondrial disease. Intriguingly, a number of case reports have indicated that immune-targeting therapeutics may be beneficial in the setting of genetic mitochondrial disease. Here, we summarize clinical and pre-clinical evidence suggesting a key role for the immune system in mediating the pathogenesis of at least some forms of genetic mitochondrial disease. CONCLUSIONS Significant clinical and pre-clinical evidence indicates a key role for the immune system as a significant in the pathogenesis of at least some forms of genetic mitochondrial disease.
Collapse
Affiliation(s)
- Allison Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave., JMB-925, Seattle, WA, 98101, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave., JMB-925, Seattle, WA, 98101, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Department of Neurology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Alves CAPF, Goldstein A, Teixeira SR, Martin-Saavedra JS, de Barcelos IP, Fadda G, Caschera L, Kidd M, Gonçalves FG, McCormick EM, Falk MJ, Zolkipli-Cunningham Z, Vossough A, Zuccoli G. Involvement of the Spinal Cord in Primary Mitochondrial Disorders: A Neuroimaging Mimicker of Inflammation and Ischemia in Children. AJNR Am J Neuroradiol 2021; 42:389-396. [PMID: 33384291 PMCID: PMC7872189 DOI: 10.3174/ajnr.a6910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Little is known about imaging features of spinal cord lesions in mitochondrial disorders. The aim of this research was to assess the frequency, imaging features, and pathogenic variants causing primary mitochondrial disease in children with spinal cord lesions. MATERIALS AND METHODS This retrospective analysis included patients seen at Children's Hospital of Philadelphia between 2000 and 2019 who had a confirmed diagnosis of a primary (genetic-based) mitochondrial disease and available MR imaging of the spine. The MR imaging included at least both sagittal and axial fast spin-echo T2-weighted images. Spine images were independently reviewed by 2 neuroradiologists. Location and imaging features of spinal cord lesions were correlated and tested using the Fisher exact test. RESULTS Of 119 children with primary mitochondrial disease in whom MR imaging was available, only 33 of 119 (28%) had available spine imaging for reanalysis. Nineteen of these 33 individuals (58%) had evidence of spinal cord lesions. Two main patterns of spinal cord lesions were identified: group A (12/19; 63%) had white ± gray matter involvement, and group B (7/19; 37%) had isolated gray matter involvement. Group A spinal cord lesions were similar to those seen in patients with neuromyelitis optica spectrum disorder, multiple sclerosis, anti-myelin oligodendrocyte glycoprotein-IgG antibody disease, and leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Group B patients had spinal cord findings similar to those that occur with ischemia and viral infections. Significant associations were seen between the pattern of lesions (group A versus group B) and the location of lesions in cervical versus thoracolumbar segments, respectively (P < .01). CONCLUSIONS Spinal cord lesions are frequently observed in children with primary mitochondrial disease and may mimic more common causes such as demyelination and ischemia.
Collapse
Affiliation(s)
- C A P F Alves
- From the Division of Neuroradiology, Department of Radiology (C.A.P.F.A., S.R.T., J.S.M.S., L.C., F.G.G., A.V., G.Z.)
| | - A Goldstein
- Division of Human Genetics, Department of Pediatrics (A.G., E.M.M., M.J.F., Z.Z.-C.), Mitochondrial Medicine Frontier Program
- Pediatrics (A.G., M.J.F., Z.Z.-C.) University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - S R Teixeira
- From the Division of Neuroradiology, Department of Radiology (C.A.P.F.A., S.R.T., J.S.M.S., L.C., F.G.G., A.V., G.Z.)
| | - J S Martin-Saavedra
- From the Division of Neuroradiology, Department of Radiology (C.A.P.F.A., S.R.T., J.S.M.S., L.C., F.G.G., A.V., G.Z.)
| | - I P de Barcelos
- Division of Human Genetics (I. P.d.B.), Department of Pediatrics, Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - G Fadda
- Departments of Neurology (G.F.)
| | - L Caschera
- From the Division of Neuroradiology, Department of Radiology (C.A.P.F.A., S.R.T., J.S.M.S., L.C., F.G.G., A.V., G.Z.)
- Neuroradiology Unit (L.C.), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - M Kidd
- Centre for Statistical Consultation (M.K.), University of Stellenbosch, South Africa
| | - F G Gonçalves
- From the Division of Neuroradiology, Department of Radiology (C.A.P.F.A., S.R.T., J.S.M.S., L.C., F.G.G., A.V., G.Z.)
| | - E M McCormick
- Division of Human Genetics, Department of Pediatrics (A.G., E.M.M., M.J.F., Z.Z.-C.), Mitochondrial Medicine Frontier Program
| | - M J Falk
- Division of Human Genetics, Department of Pediatrics (A.G., E.M.M., M.J.F., Z.Z.-C.), Mitochondrial Medicine Frontier Program
- Pediatrics (A.G., M.J.F., Z.Z.-C.) University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Z Zolkipli-Cunningham
- Division of Human Genetics, Department of Pediatrics (A.G., E.M.M., M.J.F., Z.Z.-C.), Mitochondrial Medicine Frontier Program
- Pediatrics (A.G., M.J.F., Z.Z.-C.) University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - A Vossough
- From the Division of Neuroradiology, Department of Radiology (C.A.P.F.A., S.R.T., J.S.M.S., L.C., F.G.G., A.V., G.Z.)
| | - G Zuccoli
- From the Division of Neuroradiology, Department of Radiology (C.A.P.F.A., S.R.T., J.S.M.S., L.C., F.G.G., A.V., G.Z.)
- The Program for the Study of Neurodevelopment in Rare Disorders (G.Z.), Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Cleaver J, Morrison H, Reynolds G, James R, Palace J, Chohan G. Late-onset Leber's hereditary optic neuropathy presenting with longitudinally extensive myelitis harbouring the m.14484T>C mutation: Extending the genotype-phenotype spectrum. Mult Scler Relat Disord 2020; 48:102688. [PMID: 33360266 DOI: 10.1016/j.msard.2020.102688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease leading to visual loss, typically in young men, and rarely displays extra-ocular manifestations including spinal cord disease. We report the case of a 57-year-old man who presented with a longitudinally extensive dorsal column lesion as the first manifestation of LHON, with the onset of bilateral progressive optic neuropathy 11 months later, harbouring the m.14484T>C mutation. To our knowledge this is the most extensive cord lesion preceding optic neuropathy traversing the cervical and thoracic cord. We review the literature of all published cases of LHON in which spinal cord involvement was the presenting feature of the disease, summarising the clinical phenotype, demographics, radiological characteristics and genotype. We highlight the importance for diagnostic vigilance in patients with either longitudinally extensive dorsal column myelopathy, optic neuropathy or both.
Collapse
Affiliation(s)
- Jonathan Cleaver
- Department of Neurology, Southmead Hospital, Bristol, United Kingdom.
| | - Hamish Morrison
- Department of Neurology, Southmead Hospital, Bristol, United Kingdom; Clinical Neuroscience, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Gavin Reynolds
- Department of Ophthalmology, Royal United Hospitals, Bath, United Kingdom
| | - Richard James
- Department of Neuroradiology, Royal United Hospitals, Bath, United Kingdom
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gurjit Chohan
- Department of Neurology, Royal United Hospitals, Bath, United Kingdom
| |
Collapse
|