1
|
Frolli A, Varvello S, Balbo Mussetto A, Gottardi D, Bullo M, Marini S, Saglio G, Cirillo S, Cilloni D, Parvis GE. A Radiation-Free Approach Based on the Whole-Body MRI Has Shown a High Level of Accuracy in the Follow-Up of Lymphoma Patients-A Single Center Retrospective Study. J Clin Med 2024; 13:3637. [PMID: 38999203 PMCID: PMC11242889 DOI: 10.3390/jcm13133637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Recurrence, even after years from the last treatment, characterizes lymphoproliferative disorders. Therefore, patients in complete remission from the disease should be followed up with periodic clinical checks. There is not a consensus on the role of imaging for this aim, because the radiological techniques used at the time of diagnosis expose patients to a risk of ionizing radiation damage. Whole-body magnetic resonance imaging with diffusion-weighted imaging (WB-MRI-DWI) has given similar results to gold standard techniques in detecting lymphoma in the involved sites without ionizing radiation. In this retrospective real-life study, we aimed to assess the accuracy of WB-MRI-DWI during follow-ups of lymphoma patients in terms of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Methods: Lymphoma patients who were subject to at least one WB-MRI-DWI during follow-up between February 2010 and February 2022 were enrolled. Results: Based on our investigation, the calculated sensitivity of WB-MRI-DWI was 100% (95% CI: 99.4-100.0), the specificity was 98.6% (95% CI: 97.4-99.3), PPV was 79% (95% CI: 75.9-81.9), and NPV was 100% (95% CI: 99.4-100.0). Conclusions: Despite the possibility of poor patient compliance and the identification of false positives, WB-MRI-DWI examination demonstrated an excellent sensitivity in ruling out the disease relapse.
Collapse
Affiliation(s)
- Antonio Frolli
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy
- Division of Hematology, Mauriziano Hospital, 10128 Turin, Italy
| | - Sivlia Varvello
- Division of Hematology, Mauriziano Hospital, 10128 Turin, Italy
| | | | | | - Martina Bullo
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy
- Division of Hematology, Mauriziano Hospital, 10128 Turin, Italy
| | - Silvia Marini
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy
| | - Stefano Cirillo
- Division of Radiology, Mauriziano Hospital, 10128 Turin, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy
| | | |
Collapse
|
2
|
Jannusch K, Morawitz J, Schweiger B, Weiss D, Schimmöller L, Minko P, Herrmann K, Fendler WP, Quick HH, Antoch G, Umutlu L, Kirchner J, Bruckmann NM. [ 18F]FDG PET/MRI in children suffering from lymphoma: does MRI contrast media make a difference? Eur Radiol 2023; 33:8366-8375. [PMID: 37338559 PMCID: PMC10598113 DOI: 10.1007/s00330-023-09840-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES Evaluate the influence of an MRI contrast agent application on primary and follow-up staging in pediatric patients with newly diagnosed lymphoma using [18F]FDG PET/MRI to avoid adverse effects and save time and costs during examination. METHODS A total of 105 [18F]FDG PET/MRI datasets were included for data evaluation. Two different reading protocols were analyzed by two experienced readers in consensus, including for PET/MRI-1 reading protocol unenhanced T2w and/or T1w imaging, diffusion-weighted imaging (DWI), and [18F]FDG PET imaging and for PET/MRI-2 reading protocol an additional T1w post contrast imaging. Patient-based and region-based evaluation according to the revised International Pediatric Non-Hodgkin's Lymphoma (NHL) Staging System (IPNHLSS) was performed, and a modified standard of reference was applied comprising histopathology and previous and follow-up cross-sectional imaging. Differences in staging accuracy were assessed using the Wilcoxon and McNemar tests. RESULTS In patient-based analysis, PET/MRI-1 and PET/MRI-2 both determined a correct IPNHLSS tumor stage in 90/105 (86%) exams. Region-based analysis correctly identified 119/127 (94%) lymphoma-affected regions. Sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for PET/MRI-1 and PET/MRI-2 were 94%, 97%, 90%, 99%, 97%, respectively. There were no significant differences between PET/MRI-1 and PET/MRI-2. CONCLUSIONS The use of MRI contrast agents in [18F]FDG PET/MRI examinations has no beneficial effect in primary and follow-up staging of pediatric lymphoma patients. Therefore, switching to a contrast agent-free [18F]FDG PET/MRI protocol should be considered in all pediatric lymphoma patients. CLINICAL RELEVANCE STATEMENT This study gives a scientific baseline switching to a contrast agent-free [18F]FDG PET/MRI staging in pediatric lymphoma patients. This could avoid side effects of contrast agents and saves time and costs by a faster staging protocol for pediatric patients. KEY POINTS • No additional diagnostic benefit of MRI contrast agents at [18F]FDG PET/MRI examinations of pediatric lymphoma primary and follow-up staging • Highly accurate primary and follow-up staging of pediatric lymphoma patients at MRI contrast-free [18F]FDG PET/MRI.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Bernd Schweiger
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Daniel Weiss
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Lars Schimmöller
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Peter Minko
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany.
| | - Nils-Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| |
Collapse
|
3
|
Georgi TW, Stoevesandt D, Kurch L, Bartelt JM, Hasenclever D, Dittmann H, Ferda J, Francis P, Franzius C, Furth C, Gräfe D, Gussew A, Hüllner M, Menezes LJ, Mustafa M, Stegger L, Umutlu L, Zöphel K, Zucchetta P, Körholz D, Sabri O, Mauz-Körholz C, Kluge R. Optimized Whole-Body PET MRI Sequence Workflow in Pediatric Hodgkin Lymphoma Patients. J Nucl Med 2023; 64:96-101. [PMID: 35835583 PMCID: PMC9841249 DOI: 10.2967/jnumed.122.264112] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/28/2023] Open
Abstract
18F-FDG PET/MRI might be the diagnostic method of choice for Hodgkin lymphoma patients, as it combines significant metabolic information from PET with excellent soft-tissue contrast from MRI and avoids radiation exposure from CT. However, a major issue is longer examination times than for PET/CT, especially for younger children needing anesthesia. Thus, a targeted selection of suitable whole-body MRI sequences is important to optimize the PET/MRI workflow. Methods: The initial PET/MRI scans of 84 EuroNet-PHL-C2 study patients from 13 international PET centers were evaluated. In each available MRI sequence, 5 PET-positive lymph nodes were assessed. If extranodal involvement occurred, 2 splenic lesions, 2 skeletal lesions, and 2 lung lesions were also assessed. A detection rate was calculated dividing the number of visible, anatomically assignable, and measurable lesions in the respective MRI sequence by the total number of lesions. Results: Relaxation time-weighted (T2w) transverse sequences with fat saturation (fs) yielded the best result, with detection rates of 95% for nodal lesions, 62% for splenic lesions, 94% for skeletal lesions, and 83% for lung lesions, followed by T2w transverse sequences without fs (86%, 49%, 16%, and 59%, respectively) and longitudinal relaxation time-weighted contrast-enhanced transverse sequences with fs (74%, 35%, 57%, and 55%, respectively). Conclusion: T2w transverse sequences with fs yielded the highest detection rates and are well suited for accurate whole-body PET/MRI in lymphoma patients. There is no evidence to recommend the use of contrast agents.
Collapse
Affiliation(s)
- Thomas W. Georgi
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | | - Lars Kurch
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Jörg M. Bartelt
- Department of Radiology, University of Halle, Halle/Saale, Germany
| | - Dirk Hasenclever
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Helmut Dittmann
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
| | - Jiri Ferda
- Department of Imaging, University Hospital Pilsen, Pilsen, Czech Republic
| | - Peter Francis
- Department of Nuclear Medicine, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Christiane Franzius
- Center for Modern Diagnostics–MRI and PET/MRI and Center for Nuclear Medicine and PET/CT, Bremen, Germany
| | - Christian Furth
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Department of Nuclear Medicine, Berlin Institute of Health, Berlin, Germany
| | - Daniel Gräfe
- Paediatric Radiology, Department of Radiology, University of Leipzig, Leipzig, Germany
| | - Alexander Gussew
- Department of Radiology, University of Halle, Halle/Saale, Germany
| | - Martin Hüllner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Leon J. Menezes
- UCL Institute of Nuclear Medicine, University College London Hospitals, London, United Kingdom
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Dieter Körholz
- Department of Pediatric Oncology, Justus Liebig University, Giessen, Germany; and
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Christine Mauz-Körholz
- Department of Pediatric Oncology, Justus Liebig University, Giessen, Germany; and,Medical Faculty, Martin Luther University of Halle–Wittenberg, Halle/Saale, Germany
| | - Regine Kluge
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Utility of PET Scans in the Diagnosis and Management of Gastrointestinal Tumors. Dig Dis Sci 2022; 67:4633-4653. [PMID: 35908126 DOI: 10.1007/s10620-022-07616-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
|
5
|
FDG PET/CT versus Bone Marrow Biopsy for Diagnosis of Bone Marrow Involvement in Non-Hodgkin Lymphoma: A Systematic Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The management of non-Hodgkin lymphoma (NHL) patients requires the identification of bone marrow involvement (BMI) using a bone marrow biopsy (BMB), as recommended by international guidelines. Multiple studies have shown that [18F]FDG positron emission tomography, combined with computed tomography (PET/CT), may provide important information and may detect BMI, but there is still an ongoing debate as to whether it is sensitive enough for NHL patients in order to replace or be used as a complimentary method to BMB. The objective of this article is to systematically review published studies on the performance of [18F]FDG PET/CT in detecting BMI compared to the BMB for NHL patients. A population, intervention, comparison, and outcome (PICO) search in PubMed and Scopus databases (until 1 November 2021) was performed. A total of 41 studies, comprising 6147 NHL patients, were found to be eligible and were included in the analysis conducted in this systematic review. The sensitivity and specificity for identifying BMI in NHL patients were 73% and 90% for [18F]FDG PET/CT and 56% and 100% for BMB. For aggressive NHL, the sensitivity and specificity to assess the BMI for the [18F]FDG PET/CT was 77% and 94%, while for the BMB it was 58% and 100%. However, sensitivity and specificity to assess the BMI for indolent NHL for the [18F]FDG PET/CT was 59% and 85%, while for the BMB it was superior, and equal to 94% and 100%. With regard to NHL, a [18F]FDG PET/CT scan can only replace BMB if it is found to be positive and if patients can be categorized as having advanced staged NHL with high certainty. [18F]FDG PET/CT might recover tumors missed by BMB, and is recommended for use as a complimentary method, even in indolent histologic subtypes of NHL.
Collapse
|
6
|
Furtado FS, Johnson MK, Catalano OA. PET imaging of hematological neoplasia. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
7
|
Spijkers S, Littooij AS, Kwee TC, Tolboom N, Beishuizen A, Bruin MCA, Enríquez G, Sábado C, Miller E, Granata C, de Lange C, Verzegnassi F, de Keizer B, Nievelstein RAJ. Whole-body MRI versus an [ 18F]FDG-PET/CT-based reference standard for early response assessment and restaging of paediatric Hodgkin's lymphoma: a prospective multicentre study. Eur Radiol 2021; 31:8925-8936. [PMID: 34021390 PMCID: PMC8589741 DOI: 10.1007/s00330-021-08026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To compare WB-MRI with an [18F]FDG-PET/CT-based reference for early response assessment and restaging in children with Hodgkin's lymphoma (HL). METHODS Fifty-one children (ages 10-17) with HL were included in this prospective, multicentre study. All participants underwent WB-MRI and [18F]FDG-PET/CT at early response assessment. Thirteen of the 51 patients also underwent both WB-MRI and [18F]FDG-PET/CT at restaging. Two radiologists independently evaluated all WB-MR images in two separate readings: without and with DWI. The [18F]FDG-PET/CT examinations were evaluated by a nuclear medicine physician. An expert panel assessed all discrepancies between WB-MRI and [18F]FDG-PET/CT to derive the [18F]FDG-PET/CT-based reference standard. Inter-observer agreement for WB-MRI was calculated using kappa statistics. Concordance, PPV, NPV, sensitivity and specificity for a correct assessment of the response between WB-MRI and the reference standard were calculated for both nodal and extra-nodal disease presence and total response evaluation. RESULTS Inter-observer agreement of WB-MRI including DWI between both readers was moderate (κ 0.46-0.60). For early response assessment, WB-MRI DWI agreed with the reference standard in 33/51 patients (65%, 95% CI 51-77%) versus 15/51 (29%, 95% CI 19-43%) for WB-MRI without DWI. For restaging, WB-MRI including DWI agreed with the reference standard in 9/13 patients (69%, 95% CI 42-87%) versus 5/13 patients (38%, 95% CI 18-64%) for WB-MRI without DWI. CONCLUSIONS The addition of DWI to the WB-MRI protocol in early response assessment and restaging of paediatric HL improved agreement with the [18F]FDG-PET/CT-based reference standard. However, WB-MRI remained discordant in 30% of the patients compared to standard imaging for assessing residual disease presence. KEY POINTS • Inter-observer agreement of WB-MRI including DWI between both readers was moderate for (early) response assessment of paediatric Hodgkin's lymphoma. • The addition of DWI to the WB-MRI protocol in early response assessment and restaging of paediatric Hodgkin's lymphoma improved agreement with the [18F]FDG-PET/CT-based reference standard. • WB-MRI including DWI agreed with the reference standard in respectively 65% and 69% of the patients for early response assessment and restaging.
Collapse
Affiliation(s)
- Suzanne Spijkers
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| | - Annemieke S Littooij
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
- Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Thomas C Kwee
- Department of Radiology, Medical Imaging Centre, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
- Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Auke Beishuizen
- Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
- Department of Paediatric Oncology/Haematology, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marrie C A Bruin
- Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Goya Enríquez
- Department of Pediatric Radiology, University Hospital Vall d'Hebron, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Constantino Sábado
- Department of Paediatric Oncology and Haematology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Elka Miller
- Department of Medical Imaging, CHEO, University of Ottawa, Ottawa, Canada
| | - Claudio Granata
- Department of Radiology, Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Charlotte de Lange
- Department of Diagnostic Imaging and Intervention, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Federico Verzegnassi
- Oncohematology Unit, Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Bart de Keizer
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
- Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Rutger A J Nievelstein
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht/Wilhelmina Children's Hospital, Utrecht University, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
- Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
8
|
Donners R, Yiin RSZ, Koh DM, De Paepe K, Chau I, Chua S, Blackledge MD. Whole-body diffusion-weighted MRI in lymphoma-comparison of global apparent diffusion coefficient histogram parameters for differentiation of diseased nodes of lymphoma patients from normal lymph nodes of healthy individuals. Quant Imaging Med Surg 2021; 11:3549-3561. [PMID: 34341730 DOI: 10.21037/qims-21-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Background Morphologic features yield low diagnostic accuracy to distinguish between diseased and normal lymph nodes. The purpose of this study was to compare diseased lymphomatous and normal lymph nodes using global apparent diffusion coefficient (gADC) histogram parameters derived from whole-body diffusion-weighted MRI (WB-DWI). Methods 1.5 Tesla WB-DWI of 23 lymphoma patients and 20 healthy volunteers performed between 09/2010 and 07/2015 were retrospectively reviewed. All diseased nodal groups in the lymphoma cohort and all nodes visible on b900 images in healthy volunteers were segmented from neck to groin to generate a total diffusion volume (tDV). A connected component-labelling algorithm separated spatially distinct nodes. Mean, median, skewness, kurtosis, minimum, maximum, interquartile range (IQR), standard deviation (SD), 10th and 90th centile of the gADC distribution were derived from the tDV of each patient/volunteer and from spatially distinct nodes. gADC and regional nodal ADC parameters were compared between malignant and normal nodes using t-tests and ROC curve analyses. A P value ≤0.05 was deemed statistically significant. Results Mean, median, IQR, 10th and 90th centiles of gADC and regional nodal ADC values were significantly lower in diseased compared with normal lymph nodes. Skewness, kurtosis and tDV were significantly higher in lymphoma. The SD, min and max gADC showed no significant difference between the two groups (P>0.128). The diagnostic accuracies of gADC parameters by AUC from highest to lowest were: 10th centile, mean, median, 90th centile, skewness, kurtosis and IQR. A 10th centile gADC threshold of 0.68×10-3 mm2/s identified diseased lymphomatous nodes with 91% sensitivity and 95% specificity. Conclusions WB-DWI derived gADC histogram parameters can distinguish between malignant lymph nodes of lymphoma patients and normal lymph nodes of healthy individuals.
Collapse
Affiliation(s)
- Ricardo Donners
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.,Department of Radiology, Royal Marsden Hospital, Sutton SM2 5PT, UK
| | | | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Sutton SM2 5PT, UK.,Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Katja De Paepe
- Department of Radiology, University Hospitals Leuven, Herestaat 49, Belgium
| | - Ian Chau
- Gastrointestinal and Lymphoma Unit, The Royal Marsden Hospital, Surrey SM2 5PT, UK
| | - Sue Chua
- Department of Nuclear Medicine and PET, Royal Marsden Hospital, Sutton SM2 5PT, UK
| | - Matthew D Blackledge
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, Sutton SM2 5NG, UK
| |
Collapse
|
9
|
Abstract
CLINICAL/METHODOLOGICAL ISSUE Lymphoma is the third most common neoplasm in children. Detection, accurate staging, and restaging are important for all radiologists involved in the diagnosis of children. STANDARD RADIOLOGICAL METHODS Magnetic resonance imaging (MRI), positron emission tomography/computed tomography (PET/CT), CT, ultrasound, X‑ray. METHODOLOGICAL INNOVATIONS Whole-body imaging (MRI and PET-MRI or PET-CT) play a key role in diagnostics and for therapy selection in Hodgkin lymphoma. PERFORMANCE In particular, hybrid imaging using 18F‑FDG PET is proving to be a powerful method for staging and restaging. ACHIEVEMENTS Standardization of imaging and inclusion in therapy studies (e.g. within the framework of the EuroNet-PHL-C2 study) improves diagnostics and simultaneously reduces therapy-related side effects. PRACTICAL RECOMMENDATIONS In Hodgkin lymphoma, deviations from the prescribed diagnostic procedure should be avoided. In clinically very heterogeneous non-Hodgkin lymphoma (NHL), on the other hand, the diagnostic procedure should be adapted to the actual clinical condition of the child. The role of interim PET in NHL is currently still the subject of clinical discussion.
Collapse
|
10
|
Ward RD, Amorim B, Li W, King J, Umutlu L, Groshar D, Harisinghani M, Catalano O. Abdominal and pelvic 18F-FDG PET/MR: a review of current and emerging oncologic applications. Abdom Radiol (NY) 2021; 46:1236-1248. [PMID: 32949272 DOI: 10.1007/s00261-020-02766-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Positron emission tomography (PET) using fluorodeoxyglucose (18F-FDG) combined with magnetic resonance imaging (MR) is an emerging hybrid modality that has shown utility in evaluating abdominal and pelvic disease entities. Together, the high soft tissue contrast and metabolic/functional imaging capabilities make this modality ideal for oncologic imaging in many organ systems. Its clinical utility continues to evolve and future research will help solidify its role in oncologic imaging. In this manuscript, we aim to (1) provide an overview of the various PET/MR systems, describing the strengths and weaknesses of each system, and (2) review the oncologic applications for 18F-FDG PET/MR in the abdomen and pelvis.
Collapse
Affiliation(s)
- Ryan D Ward
- Cleveland Clinic, Department of Abdominal Imaging, 9500 Euclid Ave, L10, Cleveland, OH, 44195, USA
| | - Barbara Amorim
- Division of Nuclear Medicine, University of Campinas, Rua Vital Brasil 251, Campinas, Brazil
| | - Weier Li
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Joseph King
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - David Groshar
- Assuta Medical Center, Habrzel 20, 6971028, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv, Israel
| | - Mukesh Harisinghani
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Onofrio Catalano
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Abstract
Hybrid imaging using the tracer [18F]FDG (2‑deoxy-2-fluoro-D-glucose) is regarded as the backbone of the diagnostic workup of lymphomas. All international guidelines, and especially the Lugano and RECIL (Response Evaluation Criteria in Lymphoma) guidelines, currently recommend [18F]FDG-PET/CT (positron emission tomography/computed tomography) for staging and treatment response assessment. With the exception of pediatric lymphomas, neither PET/MRI (magnetic resonance imaging) nor whole-body MRI are currently endorsed by international guidelines, despite the fact that both techniques have clear advantages over [18F]FDG-PET/CT in the assessment of lymphomas with variable FDG avidity. Of the new, more specific PET tracers that are being evaluated for the use in lymphomas, the CXCR4 (CXC motif chemokine receptor 4) tracer [68Ga]Pentixafor is of particular interest, as initial studies have shown that it may be used to visualize frequently non-FDG-avid lymphomas such as small-cell lymphocytic lymphoma, mucosa-associated lymphoid tissue (MALT) lymphoma and lymphomplasmacytic lymphoma.
Collapse
Affiliation(s)
- Marius E Mayerhöfer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York, USA.
- Univ.-Klinik für Radiologie und Nuklearmedizin, Abteilung für Allgemeine und Kinderradiologie, Medizinische Universität Wien, Währinger Gürtel 18-20, Wien, 1090, Österreich.
| | - Alexander Haug
- Univ.-Klinik für Radiologie und Nuklearmedizin, Abteilung für Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, Wien, 1090, Österreich
| |
Collapse
|
12
|
Winzer R, Hoberück S, Zöphel K, Kotzerke J, Brauer T, Hoffmann RT, Platzek I. Diffusion-weighted MRI for initial staging in Hodgkin`s lymphoma: comparison with FDG PET. Eur J Radiol 2019; 123:108775. [PMID: 31864143 DOI: 10.1016/j.ejrad.2019.108775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/27/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To evaluate the use of diffusion-weighted MRI (DWI) for initial staging of Hodgkin`s lymphoma and compare it to FDG PET. METHODS Forty-one patients with Hodgkin`s lymphoma (14 f, 27 m, median age 39 y) were included in this retrospective study. All patients underwent FDG PET/MR for initial staging, including DWI. The Lugano classification was used to describe disease extent. A combination of follow-up imaging and histopathology served as the reference standard. Method agreement was assessed using weighted kappa (κ). The accuracy of the imaging methods was evaluated using ROC curve analysis. RESULTS Regarding the Lugano stage, DWI and FDG PET had identical results in 34/41 cases (κ = 0.77). Sensitivity and specificity for nodal involvement was 89.9% and 93.8% for DWI, and 93.8% and 86.9% for FDG PET, respectively. In regard to extranodal involvement, sensitivity and specificity were 88.5% and 99.3% for DWI and 92.3% and 92.7% for FDG PET. The accuracy of both methods for nodal (p = 0.06) and extranodal involvement (p = 0.66) did not differ significantly. CONCLUSION Despite high sensitivity and specificity, DWI in free breathing cannot be currently recommended as an alternative to FDG PET in initial staging of Hodgkin`s lymphoma due to substantial differences in regard to therapy-determining Lugano Stage.
Collapse
Affiliation(s)
- Robert Winzer
- Dresden University Hospital, Department of Radiology, Fetscherstr. 74, 01307 Dresden, Germany.
| | - Sebastian Hoberück
- Dresden University Hospital, Department of Nuclear Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Klaus Zöphel
- Dresden University Hospital, Department of Nuclear Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Jörg Kotzerke
- Dresden University Hospital, Department of Nuclear Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Thomas Brauer
- Dresden University Hospital, Department of Radiology, Fetscherstr. 74, 01307 Dresden, Germany
| | - Ralf-Thorsten Hoffmann
- Dresden University Hospital, Department of Radiology, Fetscherstr. 74, 01307 Dresden, Germany
| | - Ivan Platzek
- Dresden University Hospital, Department of Radiology, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
13
|
Martin O, Schaarschmidt BM, Kirchner J, Suntharalingam S, Grueneisen J, Demircioglu A, Heusch P, Quick HH, Forsting M, Antoch G, Herrmann K, Umutlu L. PET/MRI Versus PET/CT for Whole-Body Staging: Results from a Single-Center Observational Study on 1,003 Sequential Examinations. J Nucl Med 2019; 61:1131-1136. [DOI: 10.2967/jnumed.119.233940] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
|
14
|
Albano D, Bruno A, Patti C, Micci G, Midiri M, Tarella C, Galia M. Whole‐body magnetic resonance imaging (WB‐MRI) in lymphoma: State of the art. Hematol Oncol 2019; 38:12-21. [DOI: 10.1002/hon.2676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Domenico Albano
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of Palermo Palermo Italy
- IRCCS Istituto Ortopedico Galeazzi, Unit of Diagnostic and Interventional Radiology Milan Italy
| | - Alberto Bruno
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of Palermo Palermo Italy
| | - Caterina Patti
- Department of Hematology IAzienda Ospedaliera Ospedali Riuniti Villa Sofia‐Cervello Palermo Italy
| | - Giuseppe Micci
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of Palermo Palermo Italy
| | - Massimo Midiri
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of Palermo Palermo Italy
| | - Corrado Tarella
- Hemato‐Oncology DivisionIEO, European Institute of Oncology IRCCS Milan Italy
- Dip. Sc. SaluteUniversity of Milan Milan Italy
| | - Massimo Galia
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of Palermo Palermo Italy
| |
Collapse
|
15
|
Schawkat K, Sah BR, Ter Voert EE, Delso G, Wurnig M, Becker AS, Leibl S, Schneider PM, Reiner CS, Huellner MW, Veit-Haibach P. Role of intravoxel incoherent motion parameters in gastroesophageal cancer: relationship with 18F-FDG-positron emission tomography, computed tomography perfusion and magnetic resonance perfusion imaging parameters. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 65:178-186. [PMID: 31496202 DOI: 10.23736/s1824-4785.19.03153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Identification of pretherapeutic predictive markers in gastro-esophageal cancer is essential for individual-oriented treatment. This study evaluated the relationship of multimodality parameters derived from intravoxel incoherent motion method (IVIM), 18F-FDG-positron emission tomography (PET), computed tomography (CT) perfusion and dynamic contrast enhanced magnetic resonance imaging (MRI) in patients with gastro-esophageal cancer and investigated their histopathological correlation. METHODS Thirty-one consecutive patients (28 males; median age 63.9 years; range 37-84 years) with gastro-esophageal adenocarcinoma (N.=22) and esophageal squamous cell carcinoma (N.=9) were analyzed. IVIM parameters: pseudodiffusion (D*), perfusion fraction (fp), true diffusion (D) and the threshold b-value (bval); PET-parameters: SUV<inf>max</inf>, metabolic tumor volume (MTV) and total lesion glycolysis (TLG); CT perfusion parameters: blood flow (BF), blood volume (BV) and mean transit time (MTT); and MR perfusion parameters: time to enhance, positive enhancement integral, time-to-peak (TTP), maximum-slope-of-increase, and maximum-slope-of-decrease were determined, and correlated to each other and to histopathology. RESULTS IVIM and PET parameters showed significant negative correlations: MTV and bval (r<inf>s</inf> =-0.643, P=0.002), TLG and bval (r<inf>s</inf>=-0.699, P<0.01) and TLG and fp (r<inf>s</inf>=-0.577, P=0.006). Positive correlation was found for TLG and D (r<inf>s</inf>=0.705, P=0.000). Negative correlation was found for bval and staging (r<inf>s</inf>=0.590, P=0.005). Positive correlation was found for positive enhancement interval and BV (r<inf>s</inf>=0.547, P=0.007), BF and regression index (r<inf>s</inf>=0.753, P=0.005) and for time-to-peak and staging (r<inf>s</inf>=0.557, P=0.005). CONCLUSIONS IVIM parameters (bval, fp, D) provide quantitative information and correlate with PET parameters (MTV, TLG) and staging. IVIM might be a useful tool for additional characterization of gastro-esophageal cancer.
Collapse
Affiliation(s)
- Khoschy Schawkat
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland - .,University of Zurich, Zurich, Switzerland -
| | - Bert-Ram Sah
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Edwin E Ter Voert
- University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Gaspar Delso
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Moritz Wurnig
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Anton S Becker
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Sebastian Leibl
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Paul M Schneider
- Center for Visceral, Thoracic and Specialized Tumor Surgery, Hirslanden Medical Center, Zurich, Switzerland
| | - Cäcilia S Reiner
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Patrick Veit-Haibach
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Toronto, Toronto, ON, Canada.,Toronto Joint Department of Medical Imaging, University Hospital of Zurich, Toronto General Hospital, Zurich, Switzerland
| |
Collapse
|
16
|
Abstract
BACKGROUND Extranodal manifestations occur in up to 40% of non-Hodgkin lymphomas. The prevalence of extranodal involvement has increased. OBJECTIVES A comprehensive overview on lymphoma involvement in the parenchymatous abdominal organs, the gastrointestinal tract, and the peritoneal cavity under due consideration of clinical implications is given. MATERIALS AND METHODS A selective literature search with analysis of dedicated original research articles and reviews was carried out. Clinical guidelines are discussed. RESULTS Extranodal abdominal lymphoma involvement usually occurs secondarily in advanced disease. Sites involved most frequently are the liver and the gastrointestinal tract. Extranodal abdominal lymphoma involvement is more common in the immunocompromised patient. CONCLUSION Imaging findings of extranodal abdominal lymphoma are variable. Lymphoma is an important differential diagnosis to be considered in unclear tumor diseases.
Collapse
Affiliation(s)
- T F Weber
- Radiologische Klinik, Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland.
| | - S Dietrich
- Medizinische Klinik, Abteilung Innere Medizin V, Hämatologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland
| | - J Nattenmüller
- Radiologische Klinik, Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Deutschland
| |
Collapse
|
17
|
Mayerhoefer ME, Archibald SJ, Messiou C, Staudenherz A, Berzaczy D, Schöder H. MRI and PET/MRI in hematologic malignancies. J Magn Reson Imaging 2019; 51:1325-1335. [PMID: 31260155 PMCID: PMC7217155 DOI: 10.1002/jmri.26848] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
The role of MRI differs considerably between the three main groups of hematological malignancies: lymphoma, leukemia, and myeloma. In myeloma, whole‐body MRI (WB‐MRI) is recognized as a highly sensitive test for the assessment of myeloma, and is also endorsed by clinical guidelines, especially for detection and staging. In lymphoma, WB‐MRI is presently not recommended, and merely serves as an alternative technique to the current standard imaging test, [18F]FDG‐PET/CT, especially in pediatric patients. Even for lymphomas with variable FDG avidity, such as extranodal mucosa‐associated lymphoid tissue lymphoma (MALT), contrast‐enhanced computed tomography (CT), but not WB‐MRI, is presently recommended, despite the high sensitivity of diffusion‐weighted MRI and its ability to capture treatment response that has been reported in the literature. In leukemia, neither MRI nor any other cross‐sectional imaging test (including positron emission tomography [PET]) is currently recommended outside of clinical trials. This review article discusses current clinical applications as well as the main research topics for MRI, as well as PET/MRI, in the field of hematological malignancies, with a focus on functional MRI techniques such as diffusion‐weighted imaging and dynamic contrast‐enhanced MRI, on the one hand, and novel, non‐FDG PET imaging probes such as the CXCR4 radiotracer [68Ga]Ga‐Pentixafor and the amino acid radiotracer [11C]methionine, on the other hand. Level of Evidence: 5 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1325–1335.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria.,Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, USA
| | | | - Christina Messiou
- Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
| | - Anton Staudenherz
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dominik Berzaczy
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, USA
| |
Collapse
|
18
|
Non-Hodgkin Lymphoma Secondary to Hodgkin Lymphoma in an Adult Patient With Nijmegen Breakage Syndrome. Hemasphere 2019; 2:e140. [PMID: 30887004 PMCID: PMC6407799 DOI: 10.1097/hs9.0000000000000140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Can diffusion-weighted whole-body MRI replace contrast-enhanced CT for initial staging of Hodgkin lymphoma in children and adolescents? Pediatr Radiol 2018; 48:638-647. [PMID: 29362839 DOI: 10.1007/s00247-018-4071-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/30/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although positron emission tomography with 18F-fluoro-2-deoxyglucose (FDG-PET/CT) has been recommended as the method of choice for lymphoma staging, it has limited availability in several countries, therefore, studies comparing whole-body magnetic resonance imaging (MRI) to conventional staging methods or to FDG-PET/CT are an important tool to establish whole-body MRI as an alternative to these methods. OBJECTIVE To compare whole-body MRI versus conventional imaging methods for staging of Hodgkin lymphoma in children and adolescents. MATERIALS AND METHODS The study included 22 patients ages 5 to 21 years. Staging was performed using conventional imaging methods and whole-body MRI. Conventional imaging methods were defined as computed tomography (CT) of the neck, chest, abdomen and pelvis and ultrasonography of the neck and/or abdomen. We calculated the sensitivity of these methods for Hodgkin lymphoma staging and their sensitivity and specificity for detecting sites of nodal and extranodal involvement. RESULTS The sensitivity of whole-body MRI for Hodgkin lymphoma staging was superior to that of conventional imaging methods (95.5% vs. 86.4%, respectively), but both methods had similar sensitivity and specificity for detecting involvement of nodal sites (99.1% and 100% vs. 97.3% and 100%, respectively) and extranodal sites (90.5% and 98.7% vs. 90.5% and 99.4%, respectively). CONCLUSION Whole-body MRI has excellent sensitivity for staging of Hodgkin lymphoma in children and adolescents. It can thus be considered an alternative for this purpose, particularly because it does not expose patients to ionizing radiation.
Collapse
|
20
|
Queiroz MA, Barbosa FDG, Buchpiguel CA, Cerri GG. Positron emission tomography/magnetic resonance imaging (PET/MRI): An update and initial experience at HC-FMUSP. ACTA ACUST UNITED AC 2018; 64:71-84. [PMID: 29561945 DOI: 10.1590/1806-9282.64.01.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/16/2023]
Abstract
The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT), including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.
Collapse
Affiliation(s)
- Marcelo A Queiroz
- Institute of Radiology (InRad), Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP), São Paulo, SP, Brazil.,Service of Medical Imaging, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Carlos Alberto Buchpiguel
- Institute of Radiology (InRad), Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP), São Paulo, SP, Brazil.,Service of Medical Imaging, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Giovanni Guido Cerri
- Institute of Radiology (InRad), Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP), São Paulo, SP, Brazil.,Service of Medical Imaging, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| |
Collapse
|
21
|
Bernstine H, Domachevsky L, Nidam M, Goldberg N, Abadi-Korek I, Shpilberg O, Groshar D. 18F-FDG PET/MR imaging of lymphoma nodal target lesions: Comparison of PET standardized uptake value (SUV) with MR apparent diffusion coefficient (ADC). Medicine (Baltimore) 2018; 97:e0490. [PMID: 29668631 PMCID: PMC5916693 DOI: 10.1097/md.0000000000010490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To compare positron emission tomography (PET) standardized uptake value (SUV) with magnetic resonance (MR) apparent diffusion coefficient (ADC) of nodal target lesions in patients with F-fluoro-2-deoxyglucose (FDG)-avid lymphomas by simultaneous PET/MR.Patients with histologically proven Hodgkin and non-Hodgkin lymphoma underwent PET/MR limited field of view of FDG-avid target nodal lesions. For PET images, a region of interest (ROI) was drawn around the target nodal lesion and the SUVmax and SUVmean was measured. For MR ADC measurements a ROI was placed over the target nodal lesion on diffusion-weighted imaging (DWI) and ADCmin and ADCmean (mean ADC) values within the ROI were recorded.Thirty-nine patients (19 women, 20 men; 13 patients with Hodgkin lymphoma and 26 with non-Hodgkin lymphoma) were included in the analysis. Sixty-six nodal lesions detected by PET/CT (19 PET-negative and 47 PET-positive) were analyzed by PET/MR. PET/MR quantitative assessments showed that ADCmin and ADCmean were accurate for discriminating positive from negative nodal lymphoma, with an AUC of 0.927 and 0.947, respectively. The ROC curve analysis of ADCmean versus SUVmax and SUVmean was not statistically significant (difference=0.044, P = .08 and difference = 0.045, P = .07; respectively). A substantial inverse association was observed between ADCmean with SUVmean and SUVmax (rho = -0.611; -0.607; P < .0001, respectively). A moderate inverse association was found between ADCmin with SUVmean and SUVmax (rho = -0.529, -0.520; P < .0001, respectively). Interobserver variability of quantitative assessment showed very good agreement for all variables (ICC>0.87).A significant correlation between ADCs and SUVs is found in FDG avid lymphomas. ADCmean is not inferior to PET SUV in discriminating positive and negative nodal lymphomas. Further larger studies are warranted to validate quantitative PET/MR for lymphoma patient management.
Collapse
Affiliation(s)
- Hanna Bernstine
- Department of Nuclear Medicine
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | - David Groshar
- Department of Nuclear Medicine
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Fitzpatrick JJ, Ryan MA, Bruzzi JF. Diagnostic accuracy of diffusion-weighted imaging- magnetic resonance imaging compared to positron emission tomography/computed tomography in evaluating and assessing pathological response to treatment in adult patients with lymphoma: A systematic review. J Med Imaging Radiat Oncol 2018; 62:530-539. [PMID: 29577630 DOI: 10.1111/1754-9485.12723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/20/2018] [Indexed: 12/19/2022]
Abstract
The use of Positron emission tomography/computerised tomography (PET/CT) is well established in the staging and assessment of treatment response of lymphoma. Recent studies have suggested that whole body diffusion-weighted imaging -magnetic resonance imaging (WB-DW-MRI) may be an alternative to PET/CT in both staging and assessment of treatment response. A systematic review was performed to assess the ability of DW-MRI in the assessment of treatment response in lymphoma. Pubmed, Medline, Web of Science and Embase databases were queried for studies examining whole body DW-MRI compared to PET/CT in adult patients using a protocol of search terms. We carried out an extensive assessment of titles, abstracts and full texts of relevant paper as well as quality assessment with the Quality Assessment of Diagnostic Accuracy (QUADAS-2) tool. Eight studies were found to meet the criteria and were included in our review and analysis. Overall, the quality of studies was found to be moderate, with good inter-rater agreement (K = 0.74). Data analysis showed that lesion-based assessment in 5 studies with pooled results had a sensitivity and specificity of 94.7% and 99.3%. Assessment with Cohen's Kappa coefficient showed agreement to be excellent (K = 0.88). Three studies were included for qualitative analysis, two of which showed good equivalence between PET/CT and DW-MRI. WB-DWI-MRI can be considered a sensitive and specific method for assessing treatment response in Lymphoma without the use of ionising radiation or administration of F-18 Flurodeoxyglucose. Further studies are needed to evaluate the optimum b-values in assessing treatment response.
Collapse
|
23
|
Bailey DL, Pichler BJ, Gückel B, Antoch G, Barthel H, Bhujwalla ZM, Biskup S, Biswal S, Bitzer M, Boellaard R, Braren RF, Brendle C, Brindle K, Chiti A, la Fougère C, Gillies R, Goh V, Goyen M, Hacker M, Heukamp L, Knudsen GM, Krackhardt AM, Law I, Morris JC, Nikolaou K, Nuyts J, Ordonez AA, Pantel K, Quick HH, Riklund K, Sabri O, Sattler B, Troost EGC, Zaiss M, Zender L, Beyer T. Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tübingen, Germany. Mol Imaging Biol 2018; 20:4-20. [PMID: 28971346 PMCID: PMC5775351 DOI: 10.1007/s11307-017-1123-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how best to characterise the tumour microenvironment, optimise the complementary information available from PET and MRI, and how advanced data mining and bioinformatics, as well as information from liquid biomarkers (circulating tumour cells and nucleic acids) and pathology, can be integrated to give a more complete characterisation of disease phenotype. Some issues that have dominated previous meetings, such as the accuracy of MR-based attenuation correction (AC) of the PET scan, were finally put to rest as having been adequately addressed for the majority of clinical situations. Likewise, the ability to standardise PET systems for use in multicentre trials was confirmed, thus removing a perceived barrier to larger clinical imaging trials. The meeting openly questioned whether PET/MRI should, in all cases, be used as a whole-body imaging modality or whether in many circumstances it would best be employed to give an in-depth study of previously identified disease in a single organ or region. The meeting concluded that there is still much work to be done in the integration of data from different fields and in developing a common language for all stakeholders involved. In addition, the participants advocated joint training and education for individuals who engage in routine PET/MRI. It was agreed that PET/MRI can enhance our understanding of normal and disrupted biology, and we are in a position to describe the in vivo nature of disease processes, metabolism, evolution of cancer and the monitoring of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.
Collapse
Affiliation(s)
- D L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls-Universität, Tübingen, Germany
| | - B Gückel
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - G Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - H Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Z M Bhujwalla
- Division of Cancer Imaging Research, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - S Biskup
- Praxis für Humangenetik Tübingen, Paul-Ehrlich-Str. 23, 72076, Tübingen, Germany
| | - S Biswal
- Molecular Imaging Program at Stanford (MIPS) and Bio-X, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - M Bitzer
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - R Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R F Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - K Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - A Chiti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Nuclear Medicine, Humanitas Research Hospital, Milan, Italy
| | - C la Fougère
- Department of Radiology, Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-Universität, Tübingen, Germany
| | - R Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33621, USA
| | - V Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's & St Thomas' Hospitals London, London, UK
| | - M Goyen
- GE Healthcare GmbH, Beethovenstrasse 239, Solingen, Germany
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - G M Knudsen
- Neurobiology Research Unit, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A M Krackhardt
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - I Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - J C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - K Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - J Nuyts
- Nuclear Medicine & Molecular Imaging, KU Leuven, Leuven, Belgium
| | - A A Ordonez
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H H Quick
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - K Riklund
- Department of Radiation Sciences, Umea University, Umea, Sweden
| | - O Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - B Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - E G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - M Zaiss
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - L Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Beyer
- QIMP Group, Center for Medical Physics and Biomedical Engineering General Hospital Vienna, Medical University Vienna, 4L, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
24
|
Ponisio MR, Iranpour P, Khanna G, McConathy J. PET/MRI for Clinical Pediatric Oncologic Imaging. PET/MRI IN ONCOLOGY 2018:401-432. [DOI: 10.1007/978-3-319-68517-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Imaging children suffering from lymphoma: an evaluation of different 18F-FDG PET/MRI protocols compared to whole-body DW-MRI. Eur J Nucl Med Mol Imaging 2017; 44:1742-1750. [PMID: 28534182 DOI: 10.1007/s00259-017-3726-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted 18F-FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients. METHODS A total of 28 18F-FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards. RESULTS PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI1; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI2; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI3 and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI. CONCLUSION 18F-FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future.
Collapse
|
26
|
18F-FDG PET/MRI in patients suffering from lymphoma: how much MRI information is really needed? Eur J Nucl Med Mol Imaging 2017; 44:1005-1013. [DOI: 10.1007/s00259-017-3635-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/16/2017] [Indexed: 12/31/2022]
|
27
|
Ferdová E, Ferda J, Baxa J. 18F-FDG-PET/MRI in lymphoma patients. Eur J Radiol 2017; 94:A52-A63. [PMID: 28132716 DOI: 10.1016/j.ejrad.2017.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/21/2017] [Indexed: 12/23/2022]
Abstract
The introduction of hybrid PET/MRI imaging using integrated systems into clinical practice has opened up the possibility of reducing the radiation dose from hybrid imaging by eliminating the contribution from computed tomography. Studies comparing the possibilities of PET/CT and PET/MRI imaging demonstrated it is possible to use the advantages of the high contrast resolution of magnetic resonance for soft tissue and bone marrow along with PET records in a quality comparable to PET/CT imaging. The significant feature for PET imaging in Hodgkińs lymphoma is that it is a tissue with high levels of radiopharmaceutical accumulation, which decreases proportionally after successful therapeutic effect, the effect of therapy is assessed using Deauville score system on interim examinations. While the efficacy of prognosis determined using the Deauville scale in HL is widely accepted, it turns out that in DLBCL, the prognostic value of PET imaging is bound to the evaluation of subtypes. PET/MRI scanning can be used to evaluate a relapse if follicular lymphoma has already been treated, or to confirm transformation into more aggressive forms. In children and adults with Burkitt's lymphoma, negative findings after induction therapy have a high negative predictive value for relapse prognosis.
Collapse
Affiliation(s)
- Eva Ferdová
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czechia.
| | - Jiří Ferda
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czechia.
| | - Jan Baxa
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czechia.
| |
Collapse
|
28
|
Shah HJ, Keraliya AR, Jagannathan JP, Tirumani SH, Lele VR, DiPiro PJ. Diffuse Large B-Cell Lymphoma in the Era of Precision Oncology: How Imaging Is Helpful. Korean J Radiol 2017; 18:54-70. [PMID: 28096718 PMCID: PMC5240489 DOI: 10.3348/kjr.2017.18.1.54] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common histological subtype of Non-Hodgkin's lymphoma. As treatments continues to evolve, so do imaging strategies, and positron emission tomography (PET) has emerged as the most important imaging tool to guide oncologists in the diagnosis, staging, response assessment, relapse/recurrence detection,and therapeutic decision making of DLBCL. Other imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and conventional radiography are also used in the evaluation of lymphoma. MRI is useful for nervous system and musculoskeletal system involvement and is emerging as a radiation free alternative to PET/CT. This article provides a comprehensive review of both the functional and morphological imaging modalities, available in the management of DLBCL.
Collapse
Affiliation(s)
- Hina J Shah
- Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abhishek R Keraliya
- Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jyothi P Jagannathan
- Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sree Harsha Tirumani
- Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikram R Lele
- Department of Nuclear Medicine and PET/CT, Jaslok Hospital and Research Centre, Mumbai 400026, India
| | - Pamela J DiPiro
- Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Hybrid PET/MR: Updated Clinical Use and Potential Applications. CURRENT RADIOLOGY REPORTS 2016. [DOI: 10.1007/s40134-016-0191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Tatci E, Biner IU, Tanyildiz HG, Ozmen O, Gokcek A, Sahin G, Tazeler Z. 18F-FDG PET/CT Imaging of Hodgkin Lymphoma in a Child with Common Variable Immunodeficiency. J Nucl Med Technol 2016; 44:259-260. [PMID: 27363447 DOI: 10.2967/jnmt.116.175745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022] Open
Abstract
Common variable immunodeficiency is characterized by low levels of serum immunoglobulins and antibodies, recurrent infections, and a predisposition to malignancy. Here, we present the 18F-FDG PET/CT findings of a 7-y-old boy with common variable immunodeficiency and Hodgkin lymphoma.
Collapse
Affiliation(s)
- Ebru Tatci
- Department of Nuclear Medicine, Ataturk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Inci Uslu Biner
- Department of Nuclear Medicine, Ataturk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Hikmet Gulsah Tanyildiz
- Department of Pediatric Oncology and Haematology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey; and
| | - Ozlem Ozmen
- Department of Nuclear Medicine, Ataturk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Atila Gokcek
- Department of Radiology, Ataturk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Gurses Sahin
- Department of Pediatric Oncology and Haematology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey; and
| | - Zuhal Tazeler
- Department of Nuclear Medicine, Ataturk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
31
|
Milks KS, McLean TW, Anthony EY. Imaging of primary pediatric lymphoma of bone. Pediatr Radiol 2016; 46:1150-7. [PMID: 27043729 DOI: 10.1007/s00247-016-3597-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Primary pediatric bone lymphoma is a rare form of non-Hodgkin lymphoma. Unlike nodal forms of lymphoma, imaging abnormalities in lymphoma of bone do not resolve rapidly in conjunction with treatment and radiologic findings can remain abnormal for years, making it difficult to evaluate treatment response. OBJECTIVE To evaluate the utility of imaging in assessment of patients with primary pediatric bone lymphoma. MATERIALS AND METHODS At our institution between 2004 and 2013, six cases of pathology-proven primary pediatric bone lymphoma were diagnosed. Retrospective chart review was performed to assess imaging utilization. Our data were qualitatively compared with existing literature to construct an algorithm for imaging patients with primary lymphoma of bone. RESULTS Imaging evaluation of patients with primary pediatric bone lymphoma was highly variable at our institution. Conventional imaging was routinely used to evaluate response to treatment, despite lack of appreciable osseous change. Imaging in the absence of symptoms did not alter clinical management. Only positron emission tomography CT (PET/CT) proved capable of demonstrating imaging changes from the pretreatment to the post-treatment scans that were consistent with the clinical response to treatment. CONCLUSION Surveillance imaging is likely unnecessary in patients with a known diagnosis of pediatric lymphoma of bone. Pretreatment and post-treatment PET/CT is likely sufficient to assess response. There is little data to support the use of interim and surveillance PET/CT.
Collapse
Affiliation(s)
- Kathryn S Milks
- Department of Pediatric Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - Thomas W McLean
- Department of Pediatric Hematology Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Evelyn Y Anthony
- Department of Radiology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|