1
|
Chintamaneni PK, Pindiprolu SKSS, Swain SS, Karri VVSR, Nesamony J, Chelliah S, Bhaskaran M. Conquering chemoresistance in pancreatic cancer: Exploring novel drug therapies and delivery approaches amidst desmoplasia and hypoxia. Cancer Lett 2024; 588:216782. [PMID: 38453046 DOI: 10.1016/j.canlet.2024.216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer poses a significant challenge within the field of oncology due to its aggressive behaviour, limited treatment choices, and unfavourable outlook. With a mere 10% survival rate at the 5-year mark, finding effective interventions becomes even more pressing. The intricate relationship between desmoplasia and hypoxia in the tumor microenvironment further complicates matters by promoting resistance to chemotherapy and impeding treatment efficacy. The dense extracellular matrix and cancer-associated fibroblasts characteristic of desmoplasia create a physical and biochemical barrier that impedes drug penetration and fosters an immunosuppressive milieu. Concurrently, hypoxia nurtures aggressive tumor behaviour and resistance to conventional therapies. a comprehensive exploration of emerging medications and innovative drug delivery approaches. Notably, advancements in nanoparticle-based delivery systems, local drug delivery implants, and oxygen-carrying strategies are highlighted for their potential to enhance drug accessibility and therapeutic outcomes. The integration of these strategies with traditional chemotherapies and targeted agents reveals the potential for synergistic effects that amplify treatment responses. These emerging interventions can mitigate desmoplasia and hypoxia-induced barriers, leading to improved drug delivery, treatment efficacy, and patient outcomes in pancreatic cancer. This review article delves into the dynamic landscape of emerging anticancer medications and innovative drug delivery strategies poised to overcome the challenges imposed by desmoplasia and hypoxia in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | | | - Swati Swagatika Swain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Jerry Nesamony
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Selvam Chelliah
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo HSC, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
2
|
Abou Khouzam R, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, Lehn JM, Limani P, Chouaib S. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol 2023; 97:104-123. [PMID: 38029865 DOI: 10.1016/j.semcancer.2023.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Bassam Janji
- Department of Cancer Research, Luxembourg Institute of Health, Tumor Immunotherapy and Microenvironment (TIME) Group, 6A, rue Nicolas-Ernest Barblé, L-1210 Luxembourg city, Luxembourg.
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Gastroenterology Department, Cochin University Hospital, Université de Paris, APHP, Paris, France; Ambroise Paré - Hartmann Private Hospital Group, Oncology Unit, Neuilly-sur-Seine, France.
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; Centre for Molecular Biophysics, UPR 4301 CNRS, 45071 Orleans, France; Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| | - Sophie Gad
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres University (PSL), 75014 Paris, France; UMR CNRS 9019, Genome Integrity and Cancers, Gustave Roussy, Paris-Saclay University, 94800 Villejuif, France.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
3
|
Abou Khouzam R, Lehn JM, Mayr H, Clavien PA, Wallace MB, Ducreux M, Limani P, Chouaib S. Hypoxia, a Targetable Culprit to Counter Pancreatic Cancer Resistance to Therapy. Cancers (Basel) 2023; 15:cancers15041235. [PMID: 36831579 PMCID: PMC9953896 DOI: 10.3390/cancers15041235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients. Hypoxia and its downstream effectors have been implicated in immune resistance and could be contributing to the lack of response to immunotherapy experienced by patients with PDAC. Paradoxically, increasing evidence has shown hypoxia to augment genomic instability and mutagenesis in cancer, suggesting that hypoxic tumor cells could have increased production of neoantigens that can potentially enable their clearance by cytotoxic immune cells. Strategies aimed at relieving this condition have been on the rise, and one such approach opts for normalizing the tumor vasculature to reverse hypoxia and its downstream support of tumor pathogenesis. An important consideration for the successful implementation of such strategies in the clinic is that not all PDACs are equally hypoxic, therefore hypoxia-detection approaches should be integrated to enable optimal patient selection for achieving improved patient outcomes.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Bradley Wallace
- Gastroenterology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Michel Ducreux
- Department of Cancer Medicine, Gustave Roussy Cancer Institute, F-94805 Villejuif, France
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| |
Collapse
|
4
|
Wu X, Qin F, Zhang Q, Qiao J, Qi Y, Liu B. Immunotherapy improved cancer related pain management in patients with advanced Hepato-Pancreatic Biliary Cancers: A propensity score-matched (PSM) analysis. Front Oncol 2022; 12:914591. [PMID: 36212482 PMCID: PMC9533141 DOI: 10.3389/fonc.2022.914591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHepato-pancreato-biliary (HPB) cancer is a serious form of cancer. in many HPB cancers, including cholangiocarcinoma (also known as bile duct cancer), pancreatic cancer, hepatocellular carcinoma, gallbladder cancer and ampullary cancer, although several treatment options are developed during these decades, the prognosis is still poor.MethodsA total of 356 HPB cancers patients in advanced stage received different kinds of treatments including adjuvant chemotherapy, radiotherapy, targeted therapy and immunotherapy. Among these patients with advanced HPB cancers, 135 patients have received standard opioid treatment for pain controlling.ResultsWe performed a PSM analysis to minimize differences between groups. Before PSM, 135 patients received standard opioid treatment for pain controlling were enrolled in this study and divided into 4 groups, including chemotherapy, radiotherapy, targeted therapy and immunotherapy. Relevant clinical variables that were available at the time of initial diagnosis were used for 1:1 matching between the two groups. After PSM, the cohort consisted of 18 patients in each group. Prior to PSM, patients received targeted therapy and immunotherapy exhibited shorter median OSs than their counterparts for patients received chemotherapy and radiotherapy (p<0.001). there were so survival differences among all the four different treatments for these patients with HPB cancers (p>0.05). We found the OMED (mg) q/day and NRS scores decreased significantly when patients received immunotherapy treatment. Fewer adverse events were showed between immunotherapy group and other three treatment groups, which was consistent with our previous reports.ConclusionIn conclusion, we found that given the same survival benefit, immunotherapy reduced opioid consumption in HPB cancers patients and improved the pain management. Moreover, immunotherapy results in fewer other adverse effects.
Collapse
Affiliation(s)
- Xiufang Wu
- Department of Pain, Jinan People’s Hospital, Jinan, China
| | - Fei Qin
- Department of Pain, Jinan People’s Hospital, Jinan, China
| | - Qiangze Zhang
- Department of Pain, Jinan People’s Hospital, Jinan, China
| | - Jianling Qiao
- Department of Medical Oncology, Jinan Hospital of Integrated Traditional Chinese and Western Medicine, Jinan, China
| | - Yulian Qi
- Department of Medical Oncology, Jinan People’s Hospital, Jinan, China
| | - Bing Liu
- Department of Disease Control and Prevention, Rocket Force Characteristic Medical Center, Beijing, China
- *Correspondence: Bing Liu,
| |
Collapse
|
5
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
6
|
Maksym RB, Hoffmann-Młodzianowska M, Skibińska M, Rabijewski M, Mackiewicz A, Kieda C. Immunology and Immunotherapy of Endometriosis. J Clin Med 2021; 10:5879. [PMID: 34945174 PMCID: PMC8708975 DOI: 10.3390/jcm10245879] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is one of the most common gynecological and systemic diseases, with a remarkable immune background. Patients suffer from pain and fertility reduction. Due to the distinct immune component, an immunotherapeutic approach may gain importance in the future. In endometriosis, shifts in the cell fractions of the immune system are well known. Moreover, hypoxia concomitant with inflammation causes a disturbed immune response. The removal of endometriosis has a therapeutic effect, normalizes the immune disorders, and remains the most effective causative treatment in terms of pain and infertility. A key issue is whether a similar effect can be achieved for fertility with non-invasive immunotherapy where surgery is inadvisable or cannot be performed for various reasons. Numerous immunotherapy trials, including vaccines, were conducted on animals only, although the research is encouraging. Among the promising methods of non-specific immunotherapy is the administration of an ethiodized oil contrast. Moreover, due to the significant successes of immunotherapy in oncology, the possibility of immunotherapy affecting NK cells has been postulated. NK cells are responsible for the surveillance and apoptosis of ectopic cells. Expanding the arsenal of endometriosis treatment by immunotherapy is promising due to the significant contribution of immunological factors and the limitations of current treatment methods.
Collapse
Affiliation(s)
- Radosław B. Maksym
- Department of Reproductive Health, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland;
| | - Marta Hoffmann-Młodzianowska
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland; (M.H.-M.); (C.K.)
| | - Milena Skibińska
- Doctoral Studies, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Michał Rabijewski
- Department of Reproductive Health, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland;
| | - Andrzej Mackiewicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-806 Poznan, Poland;
- Department of Diagnostics & Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland; (M.H.-M.); (C.K.)
- Centre for Molecular Biophysics, UPR CNRS 4301, CEDEX 2, 45071 Orléans, France
| |
Collapse
|
7
|
Grgic I, Tschanz F, Borgeaud N, Gupta A, Clavien PA, Guckenberger M, Graf R, Pruschy M. Tumor Oxygenation by Myo-Inositol Trispyrophosphate Enhances Radiation Response. Int J Radiat Oncol Biol Phys 2021; 110:1222-1233. [PMID: 33587991 DOI: 10.1016/j.ijrobp.2021.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/18/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Tumor hypoxia is a major limiting factor for successful radiation therapy outcomes, with hypoxic cells being up to 3-fold more radiation resistant than normoxic cells; tumor hypoxia creates a tumor microenvironment that is hostile to immune response. Thus, pharmaceutical-induced tumor oxygenation before radiation therapy represents an interesting method to enhance the efficacy of radiation therapy. Myo-inositol trispyrophosphate (ITPP) triggers a decrease in the affinity of oxygen to hemoglobin, which leads to an increased release of oxygen upon tissue demand, including in hypoxic tumors. METHODS AND MATERIALS The combined treatment modality of high-dose bolus ITPP with a single high-dose fraction of ionizing radiation (IR) was investigated for its mechanics and efficacy in multiple preclinical animal tumor models in immunocompromised and immunocompetent mice. The dynamics of tumor oxygenation were determined by serial hypoxia-oriented bioimaging. Initial and residual DNA damage and the integrity of the tumor vasculature were quantified on the immunohistochemical level in response to the different treatment combinations. RESULTS ITPP application did not affect tumor growth as a single treatment modality, but it rapidly induced tumor oxygenation, as demonstrated by in vivo imaging, and significantly reduced tumor growth when combined with IR. An immunohistochemical analysis of γH2AX foci demonstrated increased initial and residual IR-induced DNA damage as the primary mechanism for radiosensitization within initially hypoxic but ITPP-oxygenated tumor regions. Scheduling experiments revealed that ITPP increases the efficacy of ionizing radiation only when applied before radiation therapy. Irradiation alone damaged the tumor vasculature and increased tumor hypoxia, which were both prevented by combined treatment with ITPP. Interestingly, the combined treatment modality also promoted increased immune cell infiltration. CONCLUSIONS ITPP-mediated tumor oxygenation and vascular protection triggers immediate and delayed processes to enhance the efficacy of ionizing radiation for successful radiation therapy.
Collapse
Affiliation(s)
- Ivo Grgic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Fabienne Tschanz
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Nathalie Borgeaud
- Laboratory of the Swiss-Hepato-Pancreatico-Biliary (HPB) Centre, Department of Visceral Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anurag Gupta
- Laboratory of the Swiss-Hepato-Pancreatico-Biliary (HPB) Centre, Department of Visceral Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Laboratory of the Swiss-Hepato-Pancreatico-Biliary (HPB) Centre, Department of Visceral Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Rolf Graf
- Laboratory of the Swiss-Hepato-Pancreatico-Biliary (HPB) Centre, Department of Visceral Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Schneider MA, Linecker M, Fritsch R, Muehlematter UJ, Stocker D, Pestalozzi B, Samaras P, Jetter A, Kron P, Petrowsky H, Nicolau C, Lehn JM, Humar B, Graf R, Clavien PA, Limani P. Phase Ib dose-escalation study of the hypoxia-modifier Myo-inositol trispyrophosphate in patients with hepatopancreatobiliary tumors. Nat Commun 2021; 12:3807. [PMID: 34155211 PMCID: PMC8217170 DOI: 10.1038/s41467-021-24069-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Hypoxia is prominent in solid tumors and a recognized driver of malignancy. Thus far, targeting tumor hypoxia has remained unsuccessful. Myo-inositol trispyrophosphate (ITPP) is a re-oxygenating compound without apparent toxicity. In preclinical models, ITPP potentiates the efficacy of subsequent chemotherapy through vascular normalization. Here, we report the results of an unrandomized, open-labeled, 3 + 3 dose-escalation phase Ib study (NCT02528526) including 28 patients with advanced primary hepatopancreatobiliary malignancies and liver metastases of colorectal cancer receiving nine 8h-infusions of ITPP over three weeks across eight dose levels (1'866-14'500 mg/m2/dose), followed by standard chemotherapy. Primary objectives are assessment of the safety and tolerability and establishment of the maximum tolerated dose, while secondary objectives include assessment of pharmacokinetics, antitumor activity via radiological evaluation and assessment of circulatory tumor-specific and angiogenic markers. The maximum tolerated dose is 12,390 mg/m2, and ITPP treatment results in 32 treatment-related toxicities (mostly hypercalcemia) that require little or no intervention. 52% of patients have morphological disease stabilization under ITPP monotherapy. Following subsequent chemotherapy, 10% show partial responses while 60% have stable disease. Decreases in angiogenic markers are noted in ∼60% of patients after ITPP and tend to correlate with responses and survival after chemotherapy.
Collapse
Affiliation(s)
- Marcel A Schneider
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Michael Linecker
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Ralph Fritsch
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Oncology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Urs J Muehlematter
- Institute of Interventional and Diagnostic Radiology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Daniel Stocker
- Institute of Interventional and Diagnostic Radiology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Bernhard Pestalozzi
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Oncology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Panagiotis Samaras
- Oncology Center, Hirslanden Hospital Zurich, Witellikerstrasse 40, Zurich, Switzerland
| | - Alexander Jetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Philipp Kron
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Henrik Petrowsky
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Claude Nicolau
- Friedman School of Nutrition Science and Policy, Tufts University, 150 Harrison Ave, Boston, MA, USA
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France
| | - Bostjan Humar
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| |
Collapse
|
9
|
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies. The high mortality rate of PC largely results from delayed diagnosis and early metastasis. Therefore, identifying novel treatment targets for patients with PC is urgently required to improve survival rates. A major barrier to successful treatment of PC is the presence of a hypoxic tumor microenvironment, which is associated with poor prognosis, treatment resistance, increased invasion and metastasis. Recent studies have identified a number of novel molecules and pathways in PC cells that promote cancer cells progression under hypoxic conditions, which may provide new therapy strategies to inhibit the development and metastasis of PC. This review summarizes the latest research of hypoxia in PC and provides an overview of how the current therapies have the capacity to overcome hypoxia and improve PC patient treatment. These findings will eventually provide guidance for future PC management and clinical trials and hopefully improve the survival of patients with PC.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Wiśniewski K, Jozwik M, Wojtkiewicz J. Cancer Prevention by Natural Products Introduced into the Diet-Selected Cyclitols. Int J Mol Sci 2020; 21:E8988. [PMID: 33256104 PMCID: PMC7729485 DOI: 10.3390/ijms21238988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer is now the second leading cause of death worldwide. It is estimated that every year, approximately 9.6 million people die of oncologic diseases. The most common origins of malignancy are the lungs, breasts, and colorectum. Even though in recent years, many new drugs and therapeutic options have been introduced, there are still no safe, effective chemopreventive agents. Cyclitols seem poised to improve this situation. There is a body of evidence that suggests that their supplementation can decrease the incidence of colorectal cancer, lower the risk of metastasis occurrence, lower the proliferation index, induce apoptosis in malignant cells, enhance natural killer (NK) cell activity, protect cells from free radical damage, and induce positive molecular changes, as well as reduce the side effects of anticancer treatments such as chemotherapy or surgery. Cyclitol supplementation appears to be both safe and well-tolerated. This review focuses on presenting, in a comprehensive way, the currently available knowledge regarding the use of cyclitols in the treatment of different malignancies, particularly in lung, breast, colorectal, and prostate cancers.
Collapse
Affiliation(s)
- Karol Wiśniewski
- Department Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum University of Warmia and Mazury, 10-561 Olsztyn, Poland;
| | - Joanna Wojtkiewicz
- Department Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| |
Collapse
|
11
|
Shah VM, Sheppard BC, Sears RC, Alani AW. Hypoxia: Friend or Foe for drug delivery in Pancreatic Cancer. Cancer Lett 2020; 492:63-70. [PMID: 32822815 DOI: 10.1016/j.canlet.2020.07.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal solid tumors with an overall five-year survival rate of that has only just reached 10%. The tumor microenvironment of PDAC is characterized by desmoplasia, which consist of dense stroma of fibroblasts and inflammatory cells, resulting in a hypoxic environment due to limited oxygen diffusion through the tumor. Hypoxia contributes to the aggressive tumor biology by promoting tumor progression, malignancy, and promoting resistance to conventional and targeted therapeutic agents. In depth research in the area has identified that hypoxia modulates the tumor biology through hypoxia inducible factors (HIFs), which not only are the key determinant of pancreatic malignancy but also an important target for therapy. In this review, we summarize the recent advances in understanding hypoxia driven phenotypes, which are responsible for the highly aggressive and metastatic characteristics of pancreatic cancer, and how hypoxia can be exploited as a target for drug delivery.
Collapse
Affiliation(s)
- Vidhi M Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, 2730 SW Moody Ave., Portland, OR, 97201, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S. W. Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Brett C Sheppard
- Department of Surgery, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 S.W Sam Jackson Park Road, Portland, OR, 97239, USA; OHSU Knight Cancer Institute at Oregon Health & Science University, Portland, OR, 97239, USA
| | - Rosalie C Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 S.W Sam Jackson Park Road, Portland, OR, 97239, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S. W. Sam Jackson Park Rd., Portland, OR, 97239, USA; OHSU Knight Cancer Institute at Oregon Health & Science University, Portland, OR, 97239, USA
| | - Adam Wg Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, 2730 SW Moody Ave., Portland, OR, 97201, USA; OHSU Knight Cancer Institute at Oregon Health & Science University, Portland, OR, 97239, USA; Department of Biomedical Engineering, School of Medicine at Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
12
|
Cao‐Pham T, Tran‐Ly‐Binh A, Heyerick A, Fillée C, Joudiou N, Gallez B, Jordan BF. Combined endogenous MR biomarkers to assess changes in tumor oxygenation induced by an allosteric effector of hemoglobin. NMR IN BIOMEDICINE 2020; 33:e4181. [PMID: 31762121 PMCID: PMC7003919 DOI: 10.1002/nbm.4181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia is a crucial factor in cancer therapy, determining prognosis and the effectiveness of treatment. Although efforts are being made to develop methods for assessing tumor hypoxia, no markers of hypoxia are currently used in routine clinical practice. Recently, we showed that the combined endogenous MR biomarkers, R1 and R2 *, which are sensitive to [dissolved O2 ] and [dHb], respectively, were able to detect changes in tumor oxygenation induced by a hyperoxic breathing challenge. In this study, we further validated the ability of the combined MR biomarkers to assess the change in tumor oxygenation induced by an allosteric effector of hemoglobin, myo-inositol trispyrophosphate (ITPP), on rat tumor models. ITPP induced an increase in tumor pO2 , as observed using L-band electron paramagnetic resonance oximetry, as well as an increase in both R1 and R2 * MR parameters. The increase in R1 indicated an increase in [O2 ], whereas the increase in R2 * resulted from an increase in O2 release from blood, inducing an increase in [dHb]. The impact of ITPP was then evaluated on factors that can influence tumor oxygenation, including tumor perfusion, saturation rate of hemoglobin, blood pH and oxygen consumption rate (OCR). ITPP decreased blood [HbO2 ] and significantly increased blood acidity, which is also a factor that right-shifts the oxygen dissociation curve. No change in tumor perfusion was observed after ITPP treatment. Interestingly, ITPP decreased OCR in both tumor cell lines. In conclusion, ITPP increased tumor pO2 via a combined mechanism involving a decrease in OCR and an allosteric effect on hemoglobin that was further enhanced by a decrease in blood pH. MR biomarkers could assess the change in tumor oxygenation induced by ITPP. At the intra-tumoral level, a majority of tumor voxels were responsive to ITPP treatment in both of the models studied.
Collapse
Affiliation(s)
- Thanh‐Trang Cao‐Pham
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - An Tran‐Ly‐Binh
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | | | - Catherine Fillée
- Institut de Recherche Expérimentale et Clinique (IREC), UCLouvainUniversite catholique de LouvainBrusselsBelgium
| | - Nicolas Joudiou
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - Bénédicte F. Jordan
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|
13
|
Dell’Oro M, Short M, Wilson P, Bezak E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12010163. [PMID: 31936565 PMCID: PMC7017270 DOI: 10.3390/cancers12010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction: Despite improvements in radiation therapy, chemotherapy and surgical procedures over the last 30 years, pancreatic cancer 5-year survival rate remains at 9%. Reduced stroma permeability and heterogeneous blood supply to the tumour prevent chemoradiation from making a meaningful impact on overall survival. Hypoxia-activated prodrugs are the latest strategy to reintroduce oxygenation to radioresistant cells harbouring in pancreatic cancer. This paper reviews the current status of photon and particle radiation therapy for pancreatic cancer in combination with systemic therapies and hypoxia activators. Methods: The current effectiveness of management of pancreatic cancer was systematically evaluated from MEDLINE® database search in April 2019. Results: Limited published data suggest pancreatic cancer patients undergoing carbon ion therapy and proton therapy achieve a comparable median survival time (25.1 months and 25.6 months, respectively) and 1-year overall survival rate (84% and 77.8%). Inconsistencies in methodology, recording parameters and protocols have prevented the safety and technical aspects of particle therapy to be fully defined yet. Conclusion: There is an increasing requirement to tackle unmet clinical demands of pancreatic cancer, particularly the lack of synergistic therapies in the advancing space of radiation oncology.
Collapse
Affiliation(s)
- Mikaela Dell’Oro
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- Correspondence: ; Tel.: +61-435214264
| | - Michala Short
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- School of Engineering, University of South Australia, Adelaide SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
14
|
Interprofessional and interdisciplinary collaboration for early phase oncological clinical trials in academia-Myo-inositoltrispyrophophate as model. Pharmacol Res 2019; 154:104238. [PMID: 31009662 DOI: 10.1016/j.phrs.2019.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 11/23/2022]
|
15
|
Abu-Remaileh M, Khalaileh A, Pikarsky E, Aqeilan RI. WWOX controls hepatic HIF1α to suppress hepatocyte proliferation and neoplasia. Cell Death Dis 2018; 9:511. [PMID: 29724996 PMCID: PMC5938702 DOI: 10.1038/s41419-018-0510-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
Abstract
Liver cancer is one of the most lethal malignancies with very poor prognosis once diagnosed. The most common form of liver cancer is hepatocellular carcinoma (HCC). The WW domain-containing oxidoreductase (WWOX) is a large gene that is often perturbed in a wide variety of tumors, including HCC. WWOX has been shown to act as a tumor suppressor modulating cellular metabolism via regulating hypoxia-inducible factor 1α (HIF-1α) levels and function. Given that WWOX is commonly inactivated in HCC, we set to determine whether specific targeted deletion of murine Wwox affects liver biology and HCC development. WWOX liver-specific knockout mice (Wwox ΔHep ) showed more potent liver regeneration potential and enhanced proliferation as compared with their control littermates. Moreover, WWOX deficiency in hepatocytes combined with diethylnitrosamine treatment increased the tumor burden, which was associated with increased HIF1α levels and target gene transactivation. Inhibition of HIF1α by systemic treatment with digoxin significantly delayed HCC formation. Our work suggests that WWOX inactivation has a central role in promoting HCC through rewiring of cellular metabolism and modulating proliferation.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Diet, High-Fat/adverse effects
- Diethylnitrosamine/pharmacology
- Digoxin/pharmacology
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Prognosis
- Signal Transduction
- Tumor Burden/drug effects
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- WW Domain-Containing Oxidoreductase/deficiency
- WW Domain-Containing Oxidoreductase/genetics
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abed Khalaileh
- Department of Surgery, Hebrew University-Hadassah Medical, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
16
|
Chen C, Lou T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget 2018; 8:46691-46703. [PMID: 28493839 PMCID: PMC5542303 DOI: 10.18632/oncotarget.17358] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is one of the most prevalent and lethal cancers with limited therapeutic options. Pathogenesis of this disease involves tumor hypoxia and the activation of hypoxia inducible factors. In this review, we describe the current understanding of hypoxia signaling pathway and summarize the expression, function and target genes of hypoxia inducible factors in hepatocellular carcinoma. We also highlight the recent progress in hypoxia-targeted therapeutic strategies in hepatocellular carcinoma and discuss further the future efforts for the study of hypoxia and/or hypoxia inducible factors in this deadly disease.
Collapse
Affiliation(s)
- Chu Chen
- Department of Internal Medicine, Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Tao Lou
- Department of Internal Medicine, Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, 322000, Zhejiang, China
| |
Collapse
|
17
|
Abstract
OBJECTIVE To test the effects of enhanced intracellular oxygen contents on the metastatic potential of colon cancer. BACKGROUND Colorectal cancer is the commonest gastrointestinal carcinoma. Distant metastases occur in half of patients and are responsible for most cancer-related deaths. Tumor hypoxia is central to the pathogenesis of metastases. Myo-Inositoltrispyrophosphate (ITPP), a nontoxic, antihypoxic compound, has recently shown significant benefits in experimental cancer, particularly when combined with standard chemotherapy. Whether ITPP protects from distant metastases in primary colon cancer is unknown. METHODS ITPP alone or combined with FOLFOX was tested in a mouse model with cecal implantation of green fluorescent protein-labeled syngeneic colorectal cancer cells. Tumor development was monitored through longitudinal magnetic resonance imaging-based morphometric analysis and survival. Established serum markers of tumor spread were measured serially and circulating tumor cells were detected via fluorescence measurements. RESULTS ITPP significantly reduced the occurrence of metastases as well as other indicators of tumor aggressiveness. Less circulating tumor cells along with reduction in malignant serum markers (osteopontin, Cxcl12) were noted. The ITPP benefits also affected the primary cancer site. Importantly, animals treated with ITPP had a significant survival benefit compared with respective controls, while a combination of FOLFOX with ITPP conferred the maximum benefits, including dramatic improvements in survival (mean 86 vs 188 d). CONCLUSIONS Restoring oxygen in metastatic colon cancer through ITPP inhibits tumor spread and markedly improves animal survival; an effect that is enhanced through the application of subsequent chemotherapy. These promising novel findings call for a clinical trial on ITPP in patients with colorectal cancer, which is under way.
Collapse
|
18
|
Srinivasan AJ, Morkane C, Martin DS, Welsby IJ. Should modulation of p50 be a therapeutic target in the critically ill? Expert Rev Hematol 2017; 10:449-458. [PMID: 28402148 DOI: 10.1080/17474086.2017.1313699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. Areas covered: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. Expert commentary: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50.
Collapse
Affiliation(s)
| | - Clare Morkane
- b Department of Anesthesia , Royal Free Hospital , London , UK
| | - Daniel S Martin
- b Department of Anesthesia , Royal Free Hospital , London , UK.,c University College London Centre for Altitude Space and Extreme Environment Medicine , London , UK
| | - Ian J Welsby
- d Department of Anesthesiology and Critical Care , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|