1
|
Li C, Wang Y, Zhang W, Yang X, Wang Y, Hou G, Wang D, Han B, Zhang Y. The antitumor mechanisms of glabridin and drug delivery strategies for enhancing its bioavailability. Front Oncol 2024; 14:1506588. [PMID: 39723390 PMCID: PMC11668808 DOI: 10.3389/fonc.2024.1506588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Glabridin, a flavonoid derived from the plant Glycyrrhiza glabra, has garnered significant attention due to its diverse pharmacological effects, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic activities. Studies have shown that glabridin exhibits substantial antitumor activity by modulating the proliferation, apoptosis, metastasis, and invasion of cancer cells through the targeting of various signaling pathways, thus indicating its potential as a therapeutic agent for malignant tumors. To enhance its solubility, stability, and bioavailability, several drug delivery systems have been developed, including liposomes, cyclodextrin inclusion complexes, nanoparticles, and polymeric micelles. These de.livery systems have shown promise in preclinical studies but face challenges in clinical translation, such as issues with biocompatibility, delivery efficiency, and long-term stability. A comprehensive analysis of the antitumor mechanism of glabridin and its novel drug delivery system is still lacking. Therefore, the authors performed a comprehensive review of recent literature on the antitumor effects of glabridin and its novel drug delivery systems, covering the antitumor mechanism, action targets, and novel drug delivery systems, offering new theoretical insights and development directions for its further advancement and clinical application.
Collapse
Affiliation(s)
- Chong Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yufang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guanqun Hou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongli Wang
- Department of Spleen and Stomach, Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Shao W, Wang Y, Liu L, Ren Y, Wang J, Cui Y, Liu J, Zhang X, Zhang S, Liu S, Jiang E, Feng S, Pei X. Combining serum microRNAs and machine learning algorithms for diagnosing infectious fever after HSCT. Ann Hematol 2024; 103:2089-2102. [PMID: 38691145 DOI: 10.1007/s00277-024-05755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Infection post-hematopoietic stem cell transplantation (HSCT) is one of the main causes of patient mortality. Fever is the most crucial clinical symptom indicating infection. However, current microbial detection methods are limited. Therefore, timely diagnosis of infectious fever and administration of antimicrobial drugs can effectively reduce patient mortality. In this study, serum samples were collected from 181 patients with HSCT with or without infection, as well as the clinical information. And more than 80 infectious-related microRNAs in the serum were selected according to the bulk RNA-seq result and detected in the 345 time-pointed serum samples by Q-PCR. Unsupervised clustering result indicates a close association between these microRNAs expression and infection occurrence. Compared to the uninfected cohort, more than 10 serum microRNAs were identified as the combined diagnostic markers in one formula constructed by the Random Forest (RF) algorithms, with a diagnostic accuracy more than 0.90. Furthermore, correlations of serum microRNAs to immune cells, inflammatory factors, pathgens, infection tissue, and prognosis were analyzed in the infection cohort. Overall, this study demonstrates that the combination of serum microRNAs detection and machine learning algorithms holds promising potential in diagnosing infectious fever after HSCT.
Collapse
Affiliation(s)
- Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yixuan Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Li Liu
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yiran Ren
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jieru Wang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuqing Cui
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Sudong Zhang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuangjie Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
3
|
Khan A, Khan A, Khan MA, Malik Z, Massey S, Parveen R, Mustafa S, Shamsi A, Husain SA. Phytocompounds targeting epigenetic modulations: an assessment in cancer. Front Pharmacol 2024; 14:1273993. [PMID: 38596245 PMCID: PMC11002180 DOI: 10.3389/fphar.2023.1273993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
For centuries, plants have been serving as sources of potential therapeutic agents. In recent years, there has been a growing interest in investigating the effects of plant-derived compounds on epigenetic processes, a novel and captivating Frontier in the field of epigenetics research. Epigenetic changes encompass modifications to DNA, histones, and microRNAs that can influence gene expression. Aberrant epigenetic changes can perturb key cellular processes, including cell cycle control, intercellular communication, DNA repair, inflammation, stress response, and apoptosis. Such disruptions can contribute to cancer development by altering the expression of genes involved in tumorigenesis. However, these modifications are reversible, offering a unique avenue for therapeutic intervention. Plant secondary compounds, including terpenes, phenolics, terpenoids, and sulfur-containing compounds are widely found in grains, vegetables, spices, fruits, and medicinal plants. Numerous plant-derived compounds have demonstrated the potential to target these abnormal epigenetic modifications, including apigenin (histone acetylation), berberine (DNA methylation), curcumin (histone acetylation and epi-miRs), genistein (histone acetylation and DNA methylation), lycopene (epi-miRs), quercetin (DNA methylation and epi-miRs), etc. This comprehensive review highlights these abnormal epigenetic alterations and discusses the promising efficacy of plant-derived compounds in mitigating these deleterious epigenetic signatures in human cancer. Furthermore, it addresses ongoing clinical investigations to evaluate the therapeutic potential of these phytocompounds in cancer treatment, along with their limitations and challenges.
Collapse
Affiliation(s)
- Aqsa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Asifa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammad Aasif Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
- Department of Radiation Oncology, The University of Texas Health Science Centre at San Antonio, San Antonio, TX, United States
| | - Zoya Malik
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sheersh Massey
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rabea Parveen
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Saad Mustafa
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Syed A. Husain
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
4
|
Peri SS, Narayanaa Y K, Hubert TD, Rajaraman R, Arfuso F, Sundaram S, Archana B, Warrier S, Dharmarajan A, Perumalsamy LR. Navigating Tumour Microenvironment and Wnt Signalling Crosstalk: Implications for Advanced Cancer Therapeutics. Cancers (Basel) 2023; 15:5847. [PMID: 38136392 PMCID: PMC10741643 DOI: 10.3390/cancers15245847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.
Collapse
Affiliation(s)
- Shraddha Shravani Peri
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Therese Deebiga Hubert
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Roshini Rajaraman
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - B. Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - Sudha Warrier
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India;
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lakshmi R. Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| |
Collapse
|
5
|
Jamwal A, Chand J, Dash A, Bhatt S, Dhiman S, Wazir P, Singh B, Goswami A, Nandi U. Glabridin plays dual action to intensify anti-metastatic potential of paclitaxel via impeding CYP2C8 in liver and CYP2J2/EETs in tumor of an orthotopic mouse model of breast cancer. Chem Biol Interact 2023; 382:110605. [PMID: 37419298 DOI: 10.1016/j.cbi.2023.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In spite of unprecedented advances in modern cancer therapy, there is still a dearth of targeted therapy to circumvent triple-negative breast cancer (TNBC). Paclitaxel is the front-line therapy against TNBC, but the main constraints of its treatment are dose-related adverse effects and emerging chemoresistance. In this context, glabridin (phytoconstituent from Glycyrrhiza glabra) is reported to hit multiple signalling pathways at the in-vitro level, but hardly any information is known at the in-vivo level. We aimed here to elucidate glabridin potential with an underlying mechanism in combination with a low dose of paclitaxel using a highly aggressive mouse mammary carcinoma model. Glabridin potentiated the anti-metastatic efficacy of paclitaxel by substantially curtailing tumor burden and diminishing lung nodule formation. Moreover, glabridin remarkably attenuated epithelial-mesenchymal transition (EMT) traits of hostile cancer cells via up-regulating (E-cadherin & occludin) and down-regulating (Vimentin & Zeb1) vital EMT markers. Besides, glabridin amplified apoptotic induction effect of paclitaxel in tumor tissue by declining or elevating pro-apoptotic (Procaspase-9 or Cleaved Caspase-9 & Bax) and reducing anti-apoptotic (Bcl-2) markers. Additionally, concomitant treatment of glabridin and paclitaxel predominantly lessened CYP2J2 expression with marked lowering of epoxyeicosatrienoic acid (EET)'s levels in tumor tissue to reinforce the anti-tumor impact. Simultaneous administration of glabridin with paclitaxel notably enhanced plasma exposure and delayed clearance of paclitaxel, which was mainly arbitrated by CYP2C8-mediated slowdown of paclitaxel metabolism in the liver. The fact of intense CYP2C8 inhibitory action of glabridin was also ascertained using human liver microsomes. Concisely, glabridin plays a dual role in boosting anti-metastatic activity by augmenting paclitaxel exposure via CYP2C8 inhibition-mediated delaying paclitaxel metabolism and limiting tumorigenesis via CYP2J2 inhibition-mediated restricting EETs level. Considering the safety, reported protective efficacy, and the current study results of boosted anti-metastatic effects, further investigations are warranted as a promising neoadjuvant therapy for crux paclitaxel chemoresistance and cancer recurrence.
Collapse
Affiliation(s)
- Ashiya Jamwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jagdish Chand
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Anshurekha Dash
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shipra Bhatt
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sumit Dhiman
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Priya Wazir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Buddh Singh
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
6
|
Yang Z, Bi Y, Xu W, Guo R, Hao M, Liang Y, Shen Z, Yin L, Yu C, Wang S, Wang J, Li J, Zhang J, Cheng R, Zhai Q, Wang H. Glabridin inhibits urothelial bladder carcinoma cell growth in vitro and in vivo by inducing cell apoptosis and cell cycle arrest. Chem Biol Drug Des 2023; 101:581-592. [PMID: 36098706 DOI: 10.1111/cbdd.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
Abstract
Glabridin (GLA) has a variety of biological activities and therapeutic effects in cancers. Whereas the effect of GLA on urothelial bladder carcinoma (UBC) cells and its underlying mechanisms remain unknown. The study revealed the effect of GLA on UBC and the potential mechanism of inducing cell apoptosis in vivo and in vitro. After treated with different concentrations of GLA, the cell activity decreased in a time- and dose-dependent manner. The IC50 values of BIU-87 and EJ cells at 48 h were 6.02 μg/ml (18.6 μm) and 4.36 μg/ml (13.4 μm), respectively. Additionally, GLA-induced apoptosis and cycle arrest of BIU-87 and EJ cells in G2 phase. Furthermore, wound healing experiments showed that GLA significantly reduced the migration activities of BIU-87 and EJ cells. Mechanically, GLA obviously increased the expression of BIM, BAK1, and CYCS in both mRNA and protein levels, which led to the activation of the endogenous apoptotic pathway. Finally, GLA remarkably inhibited the growth of UBC tumors in vivo. In summary, GLA inhibited UBC cells growth in vitro and in vivo by inducing cell apoptosis and cell cycle arrest, highlighting that GLA could be utilized as a component to design a novel anti-UBC drug.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.,College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, China
| | - Ying Bi
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Wenkai Xu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.,Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Guo
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Mingxuan Hao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Zongyi Shen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Liqi Yin
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Shihui Wang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jiansong Wang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jinmei Li
- Department of Pathology, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding City, Baoding, Hebei, China
| | - Jinku Zhang
- Department of Pathology, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding City, Baoding, Hebei, China
| | - Runfen Cheng
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiongli Zhai
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Zhang J, Wu X, Zhong B, Liao Q, Wang X, Xie Y, He X. Review on the Diverse Biological Effects of Glabridin. Drug Des Devel Ther 2023; 17:15-37. [PMID: 36647530 PMCID: PMC9840373 DOI: 10.2147/dddt.s385981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Glabridin is a prenylated isoflavan from the roots of Glycyrrhiza glabra Linne and has posed great impact on the areas of drug development and medicine, due to various biological properties such as anti-inflammation, anti-oxidation, anti-tumor, anti-microorganism, bone protection, cardiovascular protection, neuroprotection, hepatoprotection, anti-obesity, and anti-diabetes. Many signaling pathways, including NF-κB, MAPK, Wnt/β-catenin, ERα/SRC-1, PI3K/AKT, and AMPK, have been implicated in the regulatory activities of glabridin. Interestingly, glabridin has been considered as an inhibitor of tyrosinase, P-glycoprotein (P-gp), and CYP2E1 and an activator of peroxisome proliferator-activated receptor γ (PPARγ), although their molecular regulating mechanisms still need further investigation. However, poor water solubility and low bioavailability have greatly limited the clinical applications of glabridin. Hopefully, several effective strategies, such as nanoemulsions, microneedles, and smartPearls formulation, have been developed for improvement.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xinhui Wu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Correspondence: Xiao He, Email
| |
Collapse
|
8
|
Investigation of the Effects of Glabridin on the Proliferation, Apoptosis, and Migration of the Human Colon Cancer Cell Lines SW480 and SW620 and Its Mechanism Based on Reverse Virtual Screening and Proteomics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1117431. [PMID: 36644579 PMCID: PMC9836797 DOI: 10.1155/2023/1117431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/08/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023]
Abstract
Colon cancer is a relatively common malignant tumor of the digestive tract. Currently, most colon cancers originate from adenoma carcinogenesis. By screening various licorice flavonoids with anticancer effects, we found that glabridin (GBN) has a prominent anticolon cancer effect. First, we initially explored whether GBN can inhibit proliferation, migration, and invasion and induce apoptosis in SW480 and SW620 cells. Next, we exploited reverse virtual and proteomics technologies to screen out closely related target pathways on the basis of a drug and target database. At the same time, we constructed the structure of the GBN target pathway in colon cancer. We predicted that GBN can regulate the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of the rapamycin pathway (mTOR) pathway to fight colon cancer. Finally, through Western blot analysis and qRT-PCR, we verified that the expression levels of the PI3K, AKT, and mTOR proteins and genes in this pathway were significantly reduced after GBN administration. In short, the promising discovery of the anticolon cancer mechanism of GBN provides a reliable experimental basis for subsequent new drug development.
Collapse
|
9
|
Wnt Signaling in the Development of Bone Metastasis. Cells 2022; 11:cells11233934. [PMID: 36497192 PMCID: PMC9739050 DOI: 10.3390/cells11233934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling occurs through evolutionarily conserved pathways that affect cellular proliferation and fate decisions during development and tissue maintenance. Alterations in these highly regulated pathways, however, play pivotal roles in various malignancies, promoting cancer initiation, growth and metastasis and the development of drug resistance. The ability of cancer cells to metastasize is the primary cause of cancer mortality. Bone is one of the most frequent sites of metastases that generally arise from breast, prostate, lung, melanoma or kidney cancer. Upon their arrival to the bone, cancer cells can enter a long-term dormancy period, from which they can be reactivated, but can rarely be cured. The activation of Wnt signaling during the bone metastasis process was found to enhance proliferation, induce the epithelial-to-mesenchymal transition, promote the modulation of the extracellular matrix, enhance angiogenesis and immune tolerance and metastasize and thrive in the bone. Due to the complexity of Wnt pathways and of the landscape of this mineralized tissue, Wnt function during metastatic progression within bone is not yet fully understood. Therefore, we believe that a better understanding of these pathways and their roles in the development of bone metastasis could improve our understanding of the disease and may constitute fertile ground for potential therapeutics.
Collapse
|
10
|
Zhang F, Wang F, Li W, Liang L, Sang X. The toxicity mechanism of glabridin in prostate cancer cells is involved in reactive oxygen species-dependent PI3K/Akt pathway: Integrated utilization of bioinformatic analysis and in vitro test validation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2937-2946. [PMID: 36029289 DOI: 10.1002/tox.23649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Glabridin is a prenylated isoflavonoid with considerable anticancer property. Reactive oxygen species (ROS) have evolved as regulators of many cellular signaling pathways in prostate cancer (PC). However, the role of ROS signaling in the anticancer activity of glabridin has not been investigated. Here, we attempted to evaluate the effect of glabridin on PC and the involvement of ROS signaling. Intracellular ROS and mitochondrial ROS (mitoROS) production in PC cell lines, DU-145 and LNCaP, were measured by H2DCFDA and MitoSOX Red staining, respectively. MTT assay was used to analyze the cellular viability. EdU staining assay was conducted to analyze the cell proliferation. To analyze apoptotic rate, TUNEL assay was performed. Caspase-3 activity was detected to reflect cell apoptosis. Western blot was carried out to detect the expression levels of Akt and p-Akt. We found that intracellular ROS and mitoROS levels were dose-dependently upregulated after glabridin treatment in both DU-145 and LNCaP cells, which was reversed by the treatment of ROS inhibitor, N-acetyl-L-cysteine (NAC). Glabridin inhibited the cell viability and reduced the number of EdU-positive DU-145 and LNCaP cells, which were respectively proved by MTT assay and EdU staining assay. Glabridin promoted cell death with increased apoptotic rate and caspase-3 activity in DU-145 and LNCaP cells. The effects of glabridin on cell proliferation and apoptosis were reversed by NAC. Moreover, glabridin suppressed the ratio of p-Akt/Akt, while NAC mitigated the decreased p-Akt/Akt ratio. In addition, the effects of glabridin on cell proliferation and apoptosis were also attenuated by Akt activator, SC79. Collectively, our results demonstrated that glabridin suppressed proliferation and induced apoptosis in PC cells via regulating ROS-mediated PI3K/Akt pathway. These findings suggested that glabridin might hold a promising prospective as a therapeutic agent against PC.
Collapse
Affiliation(s)
- Fengyan Zhang
- Food Department, Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Fufang Wang
- Research and Development Department, Henan Hongzhu Taizhijia Medical Service Co. Ltd, Zhengzhou, China
| | - Wenjie Li
- Department of Pharmacy, Qingdao Chengyang People's Hospital, Qingdao, China
| | | | - Xicheng Sang
- Research and Development Department, Qingdao Hongzhu Biotechnology Co., Ltd, Qingdao, China
| |
Collapse
|
11
|
Yu S, Pen X, Zheng H, Gao Q, Wang H. Downregulated Wnt2B Expression Suppresses Proliferation, Invasion, and Angiogenesis of Ovarian Cancer Cells Through Inhibiting the Wnt/β-Catenin Signaling Pathway. Cancer Biother Radiopharm 2022. [PMID: 35128936 DOI: 10.1089/cbr.2021.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is known to be the most malignant gynecologic cancers. Wnt2B, a member of the Wnt family, plays a critical role in tumor development. However, the effect of Wnt2B on the occurrence and development of OC remains largely uncharacterized. In this study, immunohistochemistry assay indicated that Wnt2B was increased in our study cohort (OC). In addition, the expression of Wnt2B was positively correlated with TNM stages and metastasis of OC patients. Wnt2B markedly mediated the regulation of OC proliferation, invasion, and angiogenesis. Moreover, Wnt2B knockdown inactivated the Wnt/β-catenin signaling pathway. More importantly, the Wnt/β-catenin signaling pathway activator LiCl reversed the effect of Wnt2B knockdown on OC cell proliferation, angiogenesis, and invasion. Our data indicated that Wnt2B silencing could inhibit the proliferation, invasion, and angiogenesis of OC cells through downregulating the activity of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shengsheng Yu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xing Pen
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Haoyu Zheng
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Qiong Gao
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Haidong Wang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
12
|
Zhang Z, Lin J, Hu J, Liu L. Liquiritigenin Blocks Breast Cancer Progression by Inhibiting Connective Tissue Growth Factor Expression via Up-Regulating miR-383-5p. Int J Toxicol 2022; 41:5-15. [PMID: 35045746 DOI: 10.1177/10915818211059470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to investigate the effect of liquiritigenin (LQ) on breast cancer (BC) and its mechanism. After BC cell lines and normal mammary epithelial cells were cultured with LQ, CCK-8, and Scratch, Transwell assays and flow cytometry were applied to test the effect of LQ on cell proliferation, migration, invasion, and apoptosis. The effect of LQ on the expression of microRNA-383-5p (miR-383-5p) and connective tissue growth factor (CTGF) was measured by qRT-PCR and Western blotting. Bioinformatics prediction was used to evaluate the binding relationship between miR-383-5p and CTGF, which was verified by dual-luciferase reporter assay. After miR-383-5p and/or CTGF expression was upregulated through cell transfection, the relationship between miR-383-5p and CTGF, as well as their effects on BC, was further assessed. The results showed that LQ can significantly inhibit CTGF expression and the proliferative, migratory, and invasive abilities of BC cells, while facilitating apoptosis of BC cells and miR-383-5p expression. The inhibiting effect of LQ was dose-dependently enhanced in BC cells. Dual-luciferase reporter assay verified that miR-383-5p targeted CTGF. CTGF expression was inversely regulated by miR-383-5p. CTGF upregulation repressed the suppressive effect of miR-385-5p on BC cell development. In conclusion, LQ can inhibit CTGF expression by upregulating miR-383-5p, thereby inhibiting proliferative, migratory, and invasive abilities and promoting apoptosis of BC cells.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Department of Chinese Traditional Surgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Lin
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jinhui Hu
- Department of Breast Surgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Lifang Liu
- Department of Breast Surgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
13
|
Meerson A, Khatib S, Mahajna J. Natural Products Targeting Cancer Stem Cells for Augmenting Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222313044. [PMID: 34884848 PMCID: PMC8657727 DOI: 10.3390/ijms222313044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor's resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.
Collapse
Affiliation(s)
- Ari Meerson
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Soliman Khatib
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Jamal Mahajna
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
- Correspondence:
| |
Collapse
|
14
|
Yang Q, Dong YJ. LncRNA SNHG20 promotes migration and invasion of ovarian cancer via modulating the microRNA-148a/ROCK1 axis. J Ovarian Res 2021; 14:168. [PMID: 34836544 PMCID: PMC8626962 DOI: 10.1186/s13048-021-00889-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is characterized by early metastasis and poor prognosis, which threatens the health of women worldwide. Small nucleolar RNA host gene 20 (SNHG20), a long noncoding RNA (lncRNA), has been verified to be significantly up-regulated in several tumors, including OC. MicroRNA-148a (miR-148a)/rho-kinase1 (ROCK1) axis plays an important role in the modulation of tumor development. However, whether SNHG20 can regulate OC progression through miR-148a/ROCK1 axis remains unclear. Normal human ovarian epithelial cell line and four OC cell lines were adopted for in vitro experiments. Real-time PCR was performed to assess the levels of SNHG20 and miR-148a. OC cell proliferation, apoptosis, invasion and migration were detected using clone formation, flow cytometry, transwell, and wound healing assays, respectively. Tumor xenograft assay was applied to evaluate the effect of SNHG20 on tumor growth in vivo. RESULTS Significant higher expression of SNHG20 was observed in OC cell lines. SNHG20 markedly promoted the invasion, migration, proliferation and inhibited the apoptosis of OC cells. SNHG20 enhanced ROCK1 expression by sponging miR-148a, and the direct binding between SNHG20/ROCK1 and miR-148a was identified. CONCLUSION SNHG20 promoted invasion and migration of OC via targeting miR-148a/ROCK1 axis. The present research may provide a novel insight for the therapeutic strategies of OC.
Collapse
Affiliation(s)
- Qi Yang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, Jilin Province, P. R. China.
| | - Yu-Jie Dong
- Department of Emergency, China-Japan Union Hospital of Jilin University, Changchun, 130000, P. R. China
| |
Collapse
|
15
|
Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health. Antioxidants (Basel) 2021; 10:antiox10121893. [PMID: 34942997 PMCID: PMC8750933 DOI: 10.3390/antiox10121893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of dietary phytoestrogens on human health has been a topic of continuous debate since their discovery. Nowadays, based on their presumptive beneficial effects, the amount of phytoestrogens consumed in the daily diet has increased considerably worldwide. Thus, there is a growing need for scientific data regarding their mode of action in the human body. Recently, new insights of phytoestrogens’ bioavailability and metabolism have demonstrated an inter-and intra-population heterogeneity of final metabolites’ production. In addition, the phytoestrogens may have the ability to modulate epigenetic mechanisms that control gene expression. This review highlights the complexity and particularity of the metabolism of each class of phytoestrogens, pointing out the diversity of their bioactive gut metabolites. Futhermore, it presents emerging scientific data which suggest that, among well-known genistein and resveratrol, other phytoestrogens and their gut metabolites can act as epigenetic modulators with a possible impact on human health. The interconnection of dietary phytoestrogens’ consumption with gut microbiota composition, epigenome and related preventive mechanisms is discussed. The current challenges and future perspectives in designing relevant research directions to explore the potential health benefits of dietary phytoestrogens are also explored.
Collapse
|
16
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
Pharmacological properties of glabridin (a flavonoid extracted from licorice): A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
18
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
19
|
Wang H, Dong L, Qu F, He H, Sun W, Man Y, Jiang H. Effects of glycyrrhizin on the pharmacokinetics of nobiletin in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2020; 58:352-356. [PMID: 32298152 PMCID: PMC7178892 DOI: 10.1080/13880209.2020.1751661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Context: Both nobiletin (NBL) and glycyrrhizin (GL) have anti-inflammatory and antitumor properties. These agents may be co-administered in the clinic. However, the drug-drug interaction between them is not clear.Objective: The drug-drug interaction between GL and NBL was investigated, to clarify the effect of GL on the pharmacokinetics of NBL, and its main mechanism.Materials and methods: The pharmacokinetic profiles of oral administration of NBL (50 mg/kg) in Sprague-Dawley rats of two groups with six each, with or without pre-treatment of GL (100 mg/kg/day for 7 days), were investigated. The effects of GL on the metabolic stability and transport of NBL were also investigated through the rat liver microsome and Caco-2 cell transwell models.Results: The results showed that GL significantly decreased the peak plasma concentration (from 1.74 ± 0.15 to 1.12 ± 0.10 μg/mL) and the t1/2 (7.44 ± 0.65 vs. 5.92 ± 0.68) of NBL, and the intrinsic clearance rate of NBL was increased by the pre-treatment with GL (39.49 ± 2.5 vs. 48.29 ± 3.4 μL/min/mg protein). The Caco-2 cell transwell experiments indicated that GL could increase the efflux ratio of NBL from 1.61 to 2.41.Discussion and conclusion: These results indicated that GL could change the pharmacokinetic profile of NBL, via increasing the metabolism and efflux of NBL in rats. It also suggested that the dose of NBL should be adjusted when co-administrated with GL in the clinic.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Lin Dong
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Fangfei Qu
- Department of Special Inspection, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Huimin He
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Wei Sun
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Yuqing Man
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hongjie Jiang
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- CONTACT Hongjie Jiang Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Yantai, Shandong, 264100, China
| |
Collapse
|
20
|
Jiang J, Cheng X. Circular RNA circABCC4 acts as a ceRNA of miR-154-5p to improve cell viability, migration and invasion of breast cancer cells in vitro. Cell Cycle 2020; 19:2653-2661. [PMID: 33023375 DOI: 10.1080/15384101.2020.1815147] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the dominant cancers of women-related death universal. This inquiry aims to disclose the probable role of circABCC4 in breast cancer. The level of circABCC4 was discovered through qRT-PCR. The reactions of circABCC4 and miR-154-5p on the cell viability, apoptosis, migration as well as invasion were, respectively, inspected by CCK-8, flow cytometry, and transwell assays. The association betwixt circABCC4 and miR-154-5p was investigated. The accumulation of NF-κB and Wnt/β-catenin pathway proteins was discovered through Western blot. The expression of circABCC4 was far great in tumor tissues than in normal tissues. Knockdown of circABCC4 could subdue cell viability, migration, invasion, and enhance apoptosis in breast cancer cell lines. CircABCC4 negatively regulated the manifestation of miR-154-5p and shared binding sites with the latter. Suppression of miR-154-5p expression partially conversed the repressive effect of circABCC4 knockdown on breast cancer cell viability, migration, invasion, and NF-κB and Wnt/β-catenin pathways. CircABCC4 knockdown repressed breast cancer cells viability, migration, and invasion by up-regulating miR-154-5p via inhibiting NF-κB and Wnt/β-catenin signal pathways.
Collapse
Affiliation(s)
- Jianchun Jiang
- Department of Galactophore, Linyi Central Hospital , Linyi, Shandong, China
| | - Xunquan Cheng
- Department of Oncology, Anhui Chest Hospital , Hefei, Anhui, China
| |
Collapse
|
21
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol 2020; 133-134:106778. [PMID: 32784009 DOI: 10.1016/j.vph.2020.106778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis has critical roles in numerous physiologic processes during embryonic and adult life such as wound healing and tissue regeneration. However, aberrant angiogenic processes have also been involved in the pathogenesis of several disorders such as cancer and diabetes mellitus. Vascular endothelial growth factor (VEGF) is implicated in the regulation of this process in several physiologic and pathologic conditions. Notably, several non-coding RNAs (ncRNAs) have been shown to influence angiogenesis through modulation of expression of VEGF or other angiogenic factors. In the current review, we summarize the function and characteristics of microRNAs and long non-coding RNAs which regulate angiogenic processes. Understanding the role of these transcripts in the angiogenesis can facilitate design of therapeutic strategies to defeat the pathogenic events during this process especially in the human malignancies. Besides, angiogenesis-related mechanisms can improve tissue regeneration after conditions such as arteriosclerosis, myocardial infarction and limb ischemia. Thus, ncRNA-regulated angiogenesis can be involved in the pathogenesis of several disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Lacerda JZ, Ferreira LC, Lopes BC, Aristizábal-Pachón AF, Bajgelman MC, Borin TF, Zuccari DAPDC. Therapeutic Potential of Melatonin in the Regulation of MiR-148a-3p and Angiogenic Factors in Breast Cancer. Microrna 2020; 8:237-247. [PMID: 30806335 DOI: 10.2174/2211536608666190219095426] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 02/06/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The high mortality rate of breast cancer is related to the occurrence of metastasis, a process that is promoted by tumor angiogenesis. MicroRNAs are small molecules of noncoding mRNA that play a key role in gene regulation and are directly involved in the progression and angiogenesis of various tumor types, including breast cancer. Several miRNAs have been described as promoters or suppressors angiogenesis and may be associated with tumor growth and metastasis. Melatonin is an oncostatic agent with a capacity of modifying the expression of innumerable genes and miRNAs related to cancer. OBJECTIVE The aim of this study was to evaluate the role of melatonin and the tumor suppressor miR- 148a-3p on angiogenesis of breast cancer. METHOD MDA-MB-231 cells were treated with melatonin and modified with the overexpression of miR-148a-3p. The relative quantification in real-time of miR-148a-3p, IGF-IR and VEGF was performed by real-time PCR. The protein expression of these targets was performed by immunocytochemistry and immunohistochemistry. Survival, migration and invasion rates of tumor cells were evaluated. Finally, the xenograft model of breast cancer was performed to confirm the role of melatonin in the tumor. RESULTS The melatonin was able to increase the gene level of miR-148a-3p and decreased the gene and protein expression of IGF-1R and VEGF, both in vitro and in vivo. In addition, it also had an inhibitory effect on the survival, migration and invasion of breast tumor cells. CONCLUSION Our results confirm the role of melatonin in the regulation of miR-148a-3p and decrease of angiogenic factors.
Collapse
Affiliation(s)
- Jéssica Zani Lacerda
- Sao Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Sao Jose do Rio Preto (SP), Brazil.,Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| | - Lívia Carvalho Ferreira
- Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| | - Beatriz Camargo Lopes
- Sao Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Sao Jose do Rio Preto (SP), Brazil.,Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| | - Andrés Felipe Aristizábal-Pachón
- Laboratory of Molecular Genetics and Bioinformatics (LGMB), Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (FMRP/USP), Ribeirao Preto (SP), Brazil
| | - Marcio Chaim Bajgelman
- Laboratory of Biosciences of the National Center of Research in Energy and Materials (LNBio/CNPEM), Campinas (SP), Brazil
| | - Thaiz Ferraz Borin
- Georgia Cancer Center, Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Debora Aparecida Pires de Campos Zuccari
- Sao Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Sao Jose do Rio Preto (SP), Brazil.,Laboratory of Molecular Research in Cancer (LIMC), Medical School of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto (SP), Brazil
| |
Collapse
|
23
|
Zhou L, Lu M, Zhong W, Yang J, Yin Y, Li M, Li D, Zhang S, Xu M. Low-dose docetaxel enhances the anti-tumour efficacy of a human umbilical vein endothelial cell vaccine. Eur J Pharm Sci 2019; 142:105163. [PMID: 31756447 DOI: 10.1016/j.ejps.2019.105163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022]
Abstract
Our previous studies have indicated that human umbilical vein endothelial cell (HUVEC) vaccination appears to be a potentially promising anti-angiogenesis therapy, but the modest therapeutic anti-tumour efficiency limits its clinical use. This highlights the importance of identifying more potent therapeutic HUVEC vaccine strategies for clinical testing. In the present study, the immune-modulating doses of docetaxel (DOC) was combined with 1 × 106 viable HUVECs as a means to enhance the therapeutic anti-tumour efficiency of the HUVEC vaccine. Our results demonstrated that 5 mg/kg DOC administrated prior to HUVEC vaccine could most effectively assist HUVEC vaccine to display a remarkable suppression of tumour growth and metastasis as wells as a prolongation of survival time in a therapeutic procedure. CD31 immunohistochemical analysis of the excised tumours confirmed a significant reduction in vessel density after treatment with the HUVEC vaccine with 5 mg/kg DOC. Additionally, an increased HUVEC-specific antibody level, activated CTLs and an elevated IFN-γ level in cultured splenocytes were revealed after treatment with HUVEC vaccine with 5 mg/kg DOC. Finally, 5 mg/kg DOC coupled with the HUVEC vaccine led to induction of significant increases in CD8+T cells and decrease in Tregs in the tumour microenvironment. Taken together, all the results verified that 5 mg/kg DOC could assist HUVEC vaccine to elicit strong HUVEC specific humoral and cellular responses, which could facilitate the HUVEC vaccine-mediated inhibition of cancer growth and metastasis. These findings provide the immunological rationale for the combined use of immune-modulating doses of DOC and HUVEC vaccines in patients with cancer.
Collapse
Affiliation(s)
- Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Meiyu Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Weilan Zhong
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Junhou Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yancun Yin
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Minjing Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Defang Li
- Collega of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, China
| | - Shumin Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
24
|
Xie Y, Zhong L, Duan D, Li T. Casticin inhibits invasion and proliferation via downregulation of β-catenin and reversion of EMT in oral squamous cell carcinoma. J Oral Pathol Med 2019; 48:897-905. [PMID: 31318467 DOI: 10.1111/jop.12930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Casticin expresses multiple anti-cancer activities, whereas the effect of casticin on oral squamous cell carcinoma (OSCC) is still unclear. β-catenin signaling plays a crucial role in the epithelial-mesenchymal transition which is closely related to tumorigenesis. Herein, we aimed to study the functions of casticin on invasion and migration of OSCC, and clarify whether the effect of casticin on OSCC has a relationship with β-catenin signaling. METHODS Human OSCC cell lines UM1 and HSC-3 were treated with different concentrations of casticin. The cell viability was evaluated by MTT and soft agar colony formation. Transwell assay and wound-healing assay were performed to measure the ability of cell invasion and migration. The protein expression was assessed by Western blotting. RESULTS Casticin displayed inhibitory activities of cell viability, invasion, and migration on OSCC cell lines. Meanwhile, casticin could reverse EMT process and inhibit the expression of β-catenin in OSCC. Knock-down or overexpression of β-catenin could alter the effect of casticin on OSCC. CONCLUSIONS Casticin impaired invasion and migration of OSCC by inhibition of β-catenin and reversal of EMT and could be a potential anti-cancer bioactive agent.
Collapse
Affiliation(s)
- Yaxin Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingyu Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Modarresi M, Hajialyani M, Moasefi N, Ahmadi F, Hosseinzadeh L. Evaluation of the Cytotoxic and Apoptogenic Effects of Glabridin and Its Effect on Cytotoxicity and Apoptosis Induced by Doxorubicin Toward Cancerous Cells. Adv Pharm Bull 2019; 9:481-489. [PMID: 31592119 PMCID: PMC6773930 DOI: 10.15171/apb.2019.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/18/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022] Open
Abstract
Purposes: In the present study, we tried for the first time to examine the anti-proliferative and
anti-apoptogenic effect of Glabridin (Glab) toward three groups of cancer cells (SKNMC,
H1299, and A2780). Furthermore, the possibility of co-administration of Glab with doxorubicin
(DOX) to these cells was also examined to find out whether Glab can potentiate the cytotoxic
effect of this chemotherapy agent.
Methods: Different cellular assays (MTT, caspase-3 activity, MMP, RT-PCR analysis) were carried
out on the cancer cells treated with Glab.
Results: Cellular toxicity assay revealed that Glab can potentially reduce the viability of these
cells with IC50 concentrations up to 10, 12, and 38 μM toward A2780, SKNMC, and H1299 cell
lines, respectively. The results of MMP and caspase-3 activity assays, in association with the
results corresponding to the BAX and Bcl-2 gene expressions, altogether revealed that Glab can
exert apoptogenic effect on these cells. The intrinsic mitochondrial pathway was found to be
the main mechanism, in which Glab induced apoptosis toward H1299 cells and SKNMC cells,
while the apoptosis mechanism for A2780 cells could be probably through extrinsic pathway.
Glab also potentiated the cytotoxic effect of DOX and its accumulation in H1299 cell line.
Conclusion: The results of this study revealed the promising cytotoxic role of Glab on different
carcinoma cells. These data also suggested that co-chemotherapy method using Glab could be
effective for treatment of cancer, but further in-vivo and clinical studies are still needed to assure
these results.
Collapse
Affiliation(s)
- Masoud Modarresi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Narges Moasefi
- Medical Biology Research Center , Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Ahmadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| |
Collapse
|
26
|
Wang X, Yang Y, An Y, Fang G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother 2019; 117:109086. [PMID: 31200254 DOI: 10.1016/j.biopha.2019.109086] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
In the last century, natural compounds have achieved remarkable achievements in the treatment of tumors through chemotherapy. This inspired scientists to continuously explore anticancer agents from natural compounds. Kaempferol is an ordinary natural compound, the most common flavonoid, which is widely existed in vegetables and fruits. It has been reported to have various anticancer activities, including breast cancer, prostate cancer, bladder cancer, cervical cancer, colon cancer, liver cancer, lung cancer, ovarian cancer, leukemia, etc. Meanwhile, we found that there were more reports on breast cancer among these cancers although there are limited clinical studies that have addressed the benefits of kaempferol as an anti-cancer agent for breast cancer treatment. Then we realize that although kaempferol has been reported to have anti-breast cancer effect many times, it is still far from becoming a real anti-breast cancer agent. Therefore, in this review, we talk about the options for improving the anti-breast cancer effect of kaempferol, including various techniques and methods to improve the bioavailability of kaempferol, the idea of combining other compounds to produce synergistic effects, and the possibility of developing kaempferol into a targeted drug delivery system.
Collapse
Affiliation(s)
- Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yuting Yang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Faculty of pharmacy, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yating An
- Department of pharmacy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, 354 North road, Hongqiao District, Tianjin, 300120, China.
| | - Gang Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Laboratory of Zhuang Medicine Prescriptions Basis and application Research, Guangxi University of Chinese medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning, 530001, China.
| |
Collapse
|
27
|
Guo L, Cui Y, Hao K. Effects of glycyrrhizin on the pharmacokinetics of asiatic acid in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2018; 56:119-123. [PMID: 29357733 PMCID: PMC6130451 DOI: 10.1080/13880209.2018.1428634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT Asiatic acid has been reported to possess a wide range of pharmacological activities. OBJECTIVE This study investigates the effects of glycyrrhizin on the pharmacokinetics of asiatic acid in rats and its potential mechanism. MATERIALS AND METHODS The pharmacokinetics of orally administered asiatic acid (20 mg/kg) with or without glycyrrhizin pretreatment (100 mg/kg/day for seven days) were investigated using a LC-MS method. Additionally, the Caco-2 cell transwell model and rat liver microsome incubation systems were used to investigate the potential mechanism of glycyrrhizin's effects on the pharmacokinetics of asiatic acid. RESULTS The results showed that the Cmax (221.33 ± 21.06 vs. 324.67 ± 28.64 ng/mL), AUC0-inf (496.12 ± 109.31 vs. 749.15 ± 163.95 μg·h/L) and the t1/2 (1.21 ± 0.27 vs. 2.04 ± 0.32 h) of asiatic acid decreased significantly (p < 0.05) with the pretreatment of glycyrrhizin. The oral clearance of asiatic acid increased significantly from 27.59 ± 5.34 to 41.57 ± 9.19 L/h/kg (p < 0.05). The Caco-2 cell transwell experiments indicated that glycyrrhizin could increase the efflux ratio of asiatic acid from 1.63 to 2.74, and the rat liver microsome incubation experiments showed that glycyrrhizin could increase the intrinsic clearance rate of asiatic acid from 138.32 ± 11.20 to 221.76 ± 16.85 μL/min/mg protein. DISCUSSION AND CONCLUSIONS In conclusion, these results indicated that glycyrrhizin could decrease the system exposure of asiatic acid, possibly by inducing the activity of P-gp or CYP450 enzyme.
Collapse
Affiliation(s)
- Ling Guo
- Department of Nursing, Yidu Central Hospital of Weifang, Shandong, China
- CONTACT Ling Guo Department of Nursing, Yidu Central Hospital of Weifang, No. 4138, South Linglongshan Road, Weifang262500, Shandong, China
| | - Ying Cui
- Department of Nursing, Yidu Central Hospital of Weifang, Shandong, China
| | - Kaijun Hao
- Qingzhou Hospital for Disabled Soldiers, Shandong, China
| |
Collapse
|
28
|
Grieco GE, Cataldo D, Ceccarelli E, Nigi L, Catalano G, Brusco N, Mancarella F, Ventriglia G, Fondelli C, Guarino E, Crisci I, Sebastiani G, Dotta F. Serum Levels of miR-148a and miR-21-5p Are Increased in Type 1 Diabetic Patients and Correlated with Markers of Bone Strength and Metabolism. Noncoding RNA 2018; 4:ncrna4040037. [PMID: 30486455 PMCID: PMC6315714 DOI: 10.3390/ncrna4040037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by bone loss and altered bone remodeling, resulting into reduction of bone mineral density (BMD) and increased risk of fractures. Identification of specific biomarkers and/or causative factors of diabetic bone fragility is of fundamental importance for an early detection of such alterations and to envisage appropriate therapeutic interventions. MicroRNAs (miRNAs) are small non-coding RNAs which negatively regulate genes expression. Of note, miRNAs can be secreted in biological fluids through their association with different cellular components and, in such context, they may represent both candidate biomarkers and/or mediators of bone metabolism alterations. Here, we aimed at identifying miRNAs differentially expressed in serum of T1D patients and potentially involved in bone loss in type 1 diabetes. We selected six miRNAs previously associated with T1D and bone metabolism: miR-21; miR-24; miR-27a; miR-148a; miR-214; and miR-375. Selected miRNAs were analyzed in sera of 15 T1D patients (age: 33.57 ± 8.17; BMI: 21.4 ± 1.65) and 14 non-diabetic subjects (age: 31.7 ± 8.2; BMI: 24.6 ± 4.34). Calcium, osteocalcin, parathormone (PTH), bone ALkaline Phoshatase (bALP), and Vitamin D (VitD) as well as main parameters of bone health were measured in each patient. We observed an increased expression of miR-148a (p = 0.012) and miR-21-5p (p = 0.034) in sera of T1D patients vs. non-diabetic subjects. The correlation analysis between miRNAs expression and the main parameters of bone metabolism, showed a correlation between miR-148a and Bone Mineral Density (BMD) total body (TB) values (p = 0.042) and PTH circulating levels (p = 0.033) and the association of miR-21-5p to Bone Mineral Content-Femur (BMC-FEM). Finally, miR-148a and miR-21-5p target genes prediction analysis revealed several factors involved in bone development and remodeling, such as MAFB, WNT1, TGFB2, STAT3, or PDCD4, and the co-modulation of common pathways involved in bone homeostasis thus potentially assigning a role to both miR-148a and miR-21-5p in bone metabolism alterations. In conclusion, these results lead us to hypothesize a potential role for miR-148a and miR-21-5p in bone remodeling, thus representing potential biomarkers of bone fragility in T1D.
Collapse
Affiliation(s)
- Giuseppina E Grieco
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Dorica Cataldo
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Elena Ceccarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
| | - Laura Nigi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Giovanna Catalano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
| | - Noemi Brusco
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Francesca Mancarella
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Giuliana Ventriglia
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Cecilia Fondelli
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Elisa Guarino
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Isabella Crisci
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Guido Sebastiani
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Francesco Dotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| |
Collapse
|
29
|
Hermawan A, Putri H. Current report of natural product development against breast cancer stem cells. Int J Biochem Cell Biol 2018; 104:114-132. [DOI: 10.1016/j.biocel.2018.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
|
30
|
Jin S, He J, Li J, Guo R, Shu Y, Liu P. MiR-873 inhibition enhances gefitinib resistance in non-small cell lung cancer cells by targeting glioma-associated oncogene homolog 1. Thorac Cancer 2018; 9:1262-1270. [PMID: 30126075 PMCID: PMC6166090 DOI: 10.1111/1759-7714.12830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The five-year survival rate of non-small cell lung cancer (NSCLC) patients is very low. MiR-873 is involved in the growth, metastasis, and differentiation of tumors. Herein, we determined the target gene and influence of miR-873 in NSCLC. METHODS MiRanda and Targetscan websites were used to predict the target gene of miR-873 in NSCLC. Luciferase activity was examined using a dual luciferase reporter gene assay kit. The viability, tube formation, and proliferation of cells were analyzed by cell counting kit-8, angiogenic analysis, and flow cytometry, respectively. The levels of miR-873 and GLI1 were evaluated using quantitative real-time PCR and Western blot assays. RESULTS Low levels of GLI1 and high levels of miR-873 were observed in an NSCLC cell line (PC9) highly sensitive to EGFR-tyrosine kinase inhibitors. There was a negative correlation between miR-873 and GLI1 expression in PC9 and PC9/GR cells. The inhibition of miR-873 enhanced GLI1 levels. MiR-873 expression was inhibited by gefitinib. Gefitinib markedly reduced the viability, tube formation, and cell number in PC9 cells. However, suppression of miR-873 enhanced the resistance and knockdown of GLI1 enhanced the sensitivity of PC9 cells to gefitinib. CONCLUSIONS GLI1 is a target gene of miR-873 in NSCLC. The inhibition of miR-873 increased gefitinib resistance of NSCLC cells via the upregulation of GLI1. These results indicate that miR-873-GLI1 signaling is involved in gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Shidai Jin
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing He
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Renhua Guo
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Chen CT, Chen YT, Hsieh YH, Weng CJ, Yeh JC, Yang SF, Lin CW, Yang JS. Glabridin induces apoptosis and cell cycle arrest in oral cancer cells through the JNK1/2 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:679-685. [PMID: 29663662 DOI: 10.1002/tox.22555] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/07/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Glabridin, a flavonoid extracted from licorice (Glycyrrhiza glabra), possesses various biological properties, including anticancer activities. However, the effect of glabridin on oral cancer cell apoptosis and the underlying molecular mechanisms has not been elucidated. In this study, we demonstrated that glabridin treatment significantly inhibits cell proliferation in human oral cancer SCC-9 and SAS cell lines. Flow cytometric assays demonstrated that glabridin induced several features of apoptosis, such as sub-G1 phase cell increase and phosphatidylserine externalization. Furthermore, glabridin induced apoptosis dose-dependently in SCC-9 cells through caspase-3, -8, and -9 activation and poly (ADP-ribose) polymerase cleavage. Moreover, glabridin increased the phosphorylation of the extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK) pathways in a dose-dependent manner. Moreover, the inhibition of the JNK1/2 inhibitor significantly reversed the glabridin-induced activation of the caspase pathway. In conclusion, our findings suggest that glabridin induces oral cancer cell apoptosis through the JNK1/2 pathway and is a potential therapeutic agent for oral cancer.
Collapse
Affiliation(s)
- Chang-Tai Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Tzu Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Jui Weng
- Departmrnt of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan
| | - Jung-Chun Yeh
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
32
|
MicroRNA 148a-3p promotes Thrombospondin-4 expression and enhances angiogenesis during tendinopathy development by inhibiting Krüppel-like factor 6. Biochem Biophys Res Commun 2018; 502:276-282. [PMID: 29807011 DOI: 10.1016/j.bbrc.2018.05.167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Tendinopathy is a common musculoskeletal disorder with characteristic hypervascularity. The mechanism of angiogenesis in tendinopathy remains unclear. The present study aimed to investigate the roles of miR-148a-3p in angiogenesis development of tendinopathy. In this study, we demonstrated that miR-148a-3p expression was increased in tendinopathy tissues and positively correlated with CD34 levels which is a specific marker for angiogenesis. We identified Krüppel-like factor 6 (KLF6) as a direct target gene of miR-148a-3p in tenocytes. Furthermore, reduced levels of KLF6 in tendinopathy tissues was showed using qRT-PCR and immunohistochemical analysis, compared with controls. A negative correlation between the levels of KLF6 mRNA and miR-148a-3p was observed. Then, we verified that miR-148a-3p could regulate Tsp-4 expression by targeting KLF6 in tenocyte and was positively correlated with Tsp-4 levels in tendinopathy tissues. In a coculture system of tenocytes with endothelial cells (ECs), we observed that transfection of Lv-miR-148a-3p markedly upregulated EC angiogenesis. In summary, our data establish a novel molecular mechanism by which miR-148a-3p upregulates Tsp-4 expression in tenocytes to promote EC angiogenesis by targeting KLF6, which could be helpful for the treatment of tendinopathy in the future.
Collapse
|
33
|
Zhang W, Sun Z, Su L, Wang F, Jiang Y, Yu D, Zhang F, Sun Z, Liang W. miRNA-185 serves as a prognostic factor and suppresses migration and invasion through Wnt1 in colon cancer. Eur J Pharmacol 2018; 825:75-84. [PMID: 29454608 DOI: 10.1016/j.ejphar.2018.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 02/06/2023]
Abstract
Colon cancer is one of the deadliest cancers worldwide; abnormal microRNA expression is common during colon cancer development. The aim of the present study was to elucidate the role played by miR-185 in this context. We used quantitative real-time PCR (qRT-PCR) to measure miR-185 expression levels in colon cancer cell lines. The effects of miR-185 on colon cancer cell proliferation and invasion were assessed using the MTT, colony-forming, wound-healing, and transwell assays. A luciferase activity assay was used to confirm the target of miR-185. Our data showed that miR-185 was significantly down-regulated in colon cancer cells and colonic cancer tissues compared with NCM460 normal colonic epithelial cells and adjacent normal tissues. A functional analysis revealed that ectopic expression of miR-185 significantly inhibited colon cancer cell proliferation, colony formation, migration, and invasion. In addition, western blot, qRT-PCR, and luciferase assays confirmed in colon cancer cells that Wnt1 was a downstream target of miR-185, in turn suppressing β-catenin-mediated signaling. In conclusion, we found that miR-185 inhibits colon cancer cell proliferation and invasion by targeting Wnt1, and that it serves as a tumor suppressor, indicating that the modulation of miR-185 levels may potentially be therapeutic in colon cancer patients.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Zheng Sun
- Department of Endocrinology, The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Liang Su
- Department of Oncology, Medical College of Dalian University, Dalian 116622, China
| | - Feng Wang
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Yiming Jiang
- Department of Oncology, Medical College of Dalian University, Dalian 116622, China
| | - Dengfeng Yu
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Fujie Zhang
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Zhe Sun
- Department of Colorectal Surgery, Xinhua Affiliated Hospital of Dalian University, Dalian 116021, China
| | - Wenbo Liang
- Department of Oncology, Medical College of Dalian University, Dalian 116622, China.
| |
Collapse
|
34
|
Zhao Y, Lv B, Feng X, Li C. Perspective on Biotransformation and De Novo Biosynthesis of Licorice Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11147-11156. [PMID: 29179542 DOI: 10.1021/acs.jafc.7b04470] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Licorice, an important herbal medicine, is derived from the dried roots and rhizomes of Glycyrrhiza genus plants. It has been widely used in food, pharmaceutical, tobacco, and cosmetics industries with high economic value. However, overexploitation of licorice resources has severely destroyed the local ecology. Therefore, producing bioactive compounds of licorice through the biotransformation and bioengineering methods is a hot spot in recent years. In this perspective, we comprehensively summarize the biotransformation of licorice constituents into high-value-added derivatives by biocatalysts. Furthermore, successful cases and the strategies for de novo biosynthesizing compounds of licorice in microbes have been summarized. This paper will provide new insights for the further research of licorice.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Bo Lv
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Xudong Feng
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Chun Li
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| |
Collapse
|
35
|
Zhao Q, Wang Y, Wang H, Feng L. Effects of glycyrrhizin on the pharmacokinetics of puerarin in rats. Xenobiotica 2017; 48:1157-1163. [PMID: 29099639 DOI: 10.1080/00498254.2017.1401155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qun Zhao
- Department of Otorhinolaryngology, Cangzhou Central Hospital, Cangzhou, China and
| | - Yingli Wang
- Department of Otorhinolaryngology, Cangzhou People’s Hospital, Cangzhou, China
| | - Hongqin Wang
- Department of Otorhinolaryngology, Cangzhou Central Hospital, Cangzhou, China and
| | - Lichun Feng
- Department of Otorhinolaryngology, Cangzhou Central Hospital, Cangzhou, China and
| |
Collapse
|
36
|
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50:33. [PMID: 28969709 PMCID: PMC5625777 DOI: 10.1186/s40659-017-0140-9] [Citation(s) in RCA: 693] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/22/2017] [Indexed: 02/01/2023] Open
Abstract
Breast cancer remains a worldwide public health dilemma and is currently the most common tumour in the globe. Awareness of breast cancer, public attentiveness, and advancement in breast imaging has made a positive impact on recognition and screening of breast cancer. Breast cancer is life-threatening disease in females and the leading cause of mortality among women population. For the previous two decades, studies related to the breast cancer has guided to astonishing advancement in our understanding of the breast cancer, resulting in further proficient treatments. Amongst all the malignant diseases, breast cancer is considered as one of the leading cause of death in post menopausal women accounting for 23% of all cancer deaths. It is a global issue now, but still it is diagnosed in their advanced stages due to the negligence of women regarding the self inspection and clinical examination of the breast. This review addresses anatomy of the breast, risk factors, epidemiology of breast cancer, pathogenesis of breast cancer, stages of breast cancer, diagnostic investigations and treatment including chemotherapy, surgery, targeted therapies, hormone replacement therapy, radiation therapy, complementary therapies, gene therapy and stem-cell therapy etc for breast cancer.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Old Campus, Allam Iqbal Road, Faisalabad, 38000 Pakistan
| | - Mehwish Iqbal
- Faculty of Eastern Medicine, Hamdard University Karachi, Main Campus, Sharea Madinat al-Hikmah, Mohammad Bin Qasim Avenue, Karachi, 74600 Sindh Pakistan
| | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University Karachi, Main Campus, Sharea Madinat al-Hikmah, Mohammad Bin Qasim Avenue, Karachi, 74600 Sindh Pakistan
| | - Asmat Ullah Khan
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, RibeirãoPreto Medical School of the University of São Paulo, AV. Bandeirantes, 3900, RibeirãoPreto, 14049-900 São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, University of Poonch Rawalakot, Hajira Road, Shamsabad, Rawalakot, 12350 Azad Jammu and Kashmir Pakistan
| |
Collapse
|