1
|
TAHIYA EC, ISLAM AA, HATTA M, LUSIKOOY RE, PRIHANTONO P, RUDIMAN R, WIDIANA IK, PATELONGI I, BUKHARI AS. 5-Fluorouracil for colorectal cancer: mechanism of action and metabolism. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2024; 183. [DOI: 10.23736/s0393-3660.23.05249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Etienne-Grimaldi MC, Pallet N, Boige V, Ciccolini J, Chouchana L, Barin-Le Guellec C, Zaanan A, Narjoz C, Taieb J, Thomas F, Loriot MA. Current diagnostic and clinical issues of screening for dihydropyrimidine dehydrogenase deficiency. Eur J Cancer 2023; 181:3-17. [PMID: 36621118 DOI: 10.1016/j.ejca.2022.11.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fluoropyrimidine drugs (FP) are the backbone of many chemotherapy protocols for treating solid tumours. The rate-limiting step of fluoropyrimidine catabolism is dihydropyrimidine dehydrogenase (DPD), and deficiency in DPD activity can result in severe and even fatal toxicity. In this review, we survey the evidence-based pharmacogenetics and therapeutic recommendations regarding DPYD (the gene encoding DPD) genotyping and DPD phenotyping to prevent toxicity and optimize dosing adaptation before FP administration. The French experience of mandatory DPD-deficiency screening prior to initiating FP is discussed.
Collapse
Affiliation(s)
| | - Nicolas Pallet
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Valérie Boige
- Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Joseph Ciccolini
- SMARTc, CRCM INSERM U1068, Université Aix-Marseille, Marseille, France; Laboratory of Pharmacokinetics and Toxicology, Hôpital Universitaire La Timone, F-13385 Marseille, France; COMPO, CRCM INSERM U1068-Inria, Université Aix-Marseille, Marseille, France
| | - Laurent Chouchana
- Regional Center of Pharmacovigilance, Department of Pharmacology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France; French Pharmacovigilance Network, France
| | - Chantal Barin-Le Guellec
- Laboratory of Biochemistry and Molecular Biology, Centre Hospitalo-uinversitaire de Tours, Tours, France; INSERM U1248, IPPRITT, University of Limoges, Limoges, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céline Narjoz
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Julien Taieb
- SIRIC CARPEM, Université de Paris; Fédération Francophone de Cancérologie Digestive (FFCD), Assistance Publique-Hôpitaux de Paris, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Fabienne Thomas
- Laboratory of Pharmacology, Institut Claudius Regaud, IUCT-Oncopole and CRCT, INSERM UMR1037, Université Paul Sabatier, Toulouse, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | | |
Collapse
|
3
|
Verma H, Narendra G, Raju B, Singh PK, Silakari O. Dihydropyrimidine Dehydrogenase-Mediated Resistance to 5-Fluorouracil: Mechanistic Investigation and Solution. ACS Pharmacol Transl Sci 2022; 5:1017-1033. [PMID: 36407958 PMCID: PMC9667542 DOI: 10.1021/acsptsci.2c00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most widely used chemotherapeutics for the treatment of cancers associated with the aerodigestive tract, breast, and colorectal system. The efficacy of 5-FU is majorly affected by dihydropyrimidine dehydrogenase (DPD) as it degrades more than 80% of administered 5-FU into an inactive metabolite, dihydrofluorouracil. Herein we discuss the molecular mechanism of this inactivation by analyzing the interaction pattern and electrostatic complementarity of the DPD-5-FU complex. The basis of DPD overexpression in cancer cell lines due to significantly distinct levels of the miRNAs (miR-134, miR-27b, and miR-27a) compared to normal cells has also been outlined. Additionally, some kinases including sphingosine kinase 2 (SphK2) have been reported to correlate with DPD expression. Currently, to address this problem various strategies are reported in the literature, including 5-FU analogues (bypass the DPD-mediated inactivation), DPD downregulators (regulate the DPD expression levels in tumors), inhibitors (as promising adjuvants), and formulation development loaded with 5-FU (liposomes, nanoparticles, nanogels, etc.), which are briefly discussed in this Review.
Collapse
Affiliation(s)
- Himanshu Verma
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Gera Narendra
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Baddipadige Raju
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Pankaj Kumar Singh
- Integrative
Physiology and Pharmacology, Institute of Biomedicine, Faculty of
Medicine, University of Turku, FI-20520Turku, Finland
| | - Om Silakari
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| |
Collapse
|
4
|
Mireștean CC, Iancu RI, Iancu DPT. Capecitabine-A "Permanent Mission" in Head and Neck Cancers "War Council"? J Clin Med 2022; 11:5582. [PMID: 36233450 PMCID: PMC9573684 DOI: 10.3390/jcm11195582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Capecitabine, an oral pro-drug that is metabolized to 5-FU, has been used in clinical practice for more than 20 years, being part of the therapeutic standard for digestive and breast cancers. The use of capecitabine has been evaluated in many trials including cases diagnosed in recurrent or metastatic settings. Induction regimens or a combination with radiation therapy were evaluated in head and neck cancers, but 5-FU still remained the fluoropyrimidine used as a part of the current therapeutic standard. Quantifications of levels or ratios for enzymes are involved in the capecitabine metabolism to 5-FU but are also involved in its conversion and elimination that may lead to discontinuation, dose reduction or escalation of treatment in order to obtain the best therapeutic ratio. These strategies based on biomarkers may be relevant in the context of the implementation of precision oncology. In particular for head and neck cancers, the identification of biomarkers to select possible cases of severe toxicity requiring discontinuation of treatment, including "multi-omics" approaches, evaluate not only serological biomarkers, but also miRNAs, imaging and radiomics which will ensure capecitabine a role in both induction and concomitant or even adjuvant and palliative settings. An approach including routine testing of dihydropyrimidine dehydrogenase (DPD) or even the thymidine phosphorylase (TP)/DPD ratio and the inclusion of miRNAs, imaging and radiomics parameters in multi-omics models will help implement "precision chemotherapy" in HNC, a concept supported by the importance of avoiding interruptions or treatment delays in this type of cancer. The chemosensitivity and prognostic features of HPV-OPC cancers open new horizons for the use of capecitabine in heavily pretreated metastatic cases. Vorinostat and lapatinib are agents that can be associated with capecitabine in future clinical trials to increase the therapeutic ratio.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Medical Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Department of Surgery, Railways Clinical Hospital, 700506 Iasi, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Clinical Laboratory, St. Spiridon Emergency Hospital, 700111 Iasi, Romania
| | - Dragoș Petru Teodor Iancu
- Department of Medical Oncology and Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
5
|
Campanella B, Lomonaco T, Benedetti E, Onor M, Nieri R, Marmorino F, Cremolini C, Bramanti E. Fast, Direct Dihydrouracil Quantitation in Human Saliva: Method Development, Validation, and Application. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6033. [PMID: 35627569 PMCID: PMC9140617 DOI: 10.3390/ijerph19106033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/04/2022]
Abstract
Background. Salivary metabolomics is garnering increasing attention in the health field because of easy, minimally invasive saliva sampling. Dihydrouracil (DHU) is a metabolite of pyrimidine metabolism present in urine, plasma, and saliva and of fluoropyrimidines-based chemotherapeutics. Its fast quantification would help in the identification of patients with higher risk of fluoropyrimidine-induced toxicity and inborn errors of pyrimidine metabolism. Few studies consider DHU as the main salivary metabolite, but reports of its concentration levels in saliva are scarce. We propose the direct determination of DHU in saliva by reversed-phase high-performance liquid chromatography (RP-HPLC-UV detector) as a simple, rapid procedure for non-invasive screening. Methods. The method used was validated and applied to 176 saliva samples collected from 21 nominally healthy volunteers and 4 saliva samples from metastatic colorectal cancer patients before and after receiving 5-fluorouracil chemotherapy. Results. DHU levels in all samples analyzed were in the μmol L-1 range or below proving that DHU is not the main metabolite in saliva and confirming the results found in the literature with LC-MS/MS instrumentation. Any increase of DHU due to metabolism dysfunctions can be suggestive of disease and easily monitored in saliva using common, low-cost instrumentation available also for population screening.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 15, 56124 Pisa, Italy;
| | - Edoardo Benedetti
- Hematology Unit, Department of Oncology, Azienda Ospedaliero Universitaria Pisana, Via Roma 67, 56127 Pisa, Italy;
| | - Massimo Onor
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Riccardo Nieri
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| | - Federica Marmorino
- Unity of Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Via Roma 67, 56127 Pisa, Italy; (F.M.); (C.C.)
| | - Chiara Cremolini
- Unity of Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Via Roma 67, 56127 Pisa, Italy; (F.M.); (C.C.)
| | - Emilia Bramanti
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organometallic Compounds—ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.O.); (R.N.)
| |
Collapse
|
6
|
Kerbel RS, Andre N. Adjuvant metronomic chemotherapy for locoregionally advanced nasopharyngeal carcinoma. Lancet 2021; 398:278-279. [PMID: 34111417 DOI: 10.1016/s0140-6736(21)01240-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Nicolas Andre
- Metronomic Global Health Initiative, Children Hospital of La Timone, AP-HM, Aix Marseille Université, Marseille, France
| |
Collapse
|
7
|
Hodroj K, Barthelemy D, Lega JC, Grenet G, Gagnieu MC, Walter T, Guitton J, Payen-Gay L. Issues and limitations of available biomarkers for fluoropyrimidine-based chemotherapy toxicity, a narrative review of the literature. ESMO Open 2021; 6:100125. [PMID: 33895696 PMCID: PMC8095125 DOI: 10.1016/j.esmoop.2021.100125] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/03/2022] Open
Abstract
Fluoropyrimidine-based chemotherapies are widely used to treat gastrointestinal tract, head and neck, and breast carcinomas. Severe toxicities mostly impact rapidly dividing cell lines and can occur due to the partial or complete deficiency in dihydropyrimidine dehydrogenase (DPD) catabolism. Since April 2020, the European Medicines Agency (EMA) recommends DPD testing before any fluoropyrimidine-based treatment. Currently, different assays are used to predict DPD deficiency; the two main approaches consist of either phenotyping the enzyme activity (directly or indirectly) or genotyping the four main deficiency-related polymorphisms associated with 5-fluorouracil (5-FU) toxicity. In this review, we focused on the advantages and limitations of these diagnostic methods: direct phenotyping by evaluation of peripheral mononuclear cell DPD activity (PBMC-DPD activity), indirect phenotyping assessed by uracil levels or UH2/U ratio, and genotyping DPD of four variants directly associated with 5-FU toxicity. The risk of 5-FU toxicity increases with uracil concentration. Having a pyrimidine-related structure, 5-FU is catabolised by the same physiological pathway. By assessing uracil concentration in plasma, indirect phenotyping of DPD is then measured. With this approach, in France, a decreased 5-FU dose is systematically recommended at a uracil concentration of 16 ng/ml, which may lead to chemotherapy under-exposure as uracil concentration is a continuous variable and the association between uracil levels and DPD activity is not clear. We aim herein to describe the different available strategies developed to improve fluoropyrimidine-based chemotherapy safety, how they are implemented in routine clinical practice, and the possible relationship with inefficacy mechanisms.
Collapse
Affiliation(s)
- K Hodroj
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - D Barthelemy
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Hospices Civils de Lyon Cancer institute, CIRculating CANcer (CIRCAN) Programme, Pierre-Bénite, France
| | - J-C Lega
- Hospices Civils de Lyon, Service de Médecine Interne et Vasculaire, Hôpital Lyon Sud, Pierre-Bénite, France
| | - G Grenet
- Hospices Civils de Lyon, Pole Santé Publique, Service Hospitalo-Universitaire de Pharmacotoxicologie, Lyon, France
| | - M-C Gagnieu
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - T Walter
- Hospices Civils de Lyon Cancer institute, CIRculating CANcer (CIRCAN) Programme, Pierre-Bénite, France; Hospices Civils de Lyon, Service d'Oncologie Médicale, Hôpital Edouard Herriot, Lyon, France
| | - J Guitton
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Centre de Recherche en Cancerologie de Lyon-Ribosome, Traduction et Cancer, UMR INSERM 1052 CNRS 5286, Lyon, France
| | - L Payen-Gay
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Hospices Civils de Lyon Cancer institute, CIRculating CANcer (CIRCAN) Programme, Pierre-Bénite, France; EMR 3738 Ciblage Therapeutique en Oncologie, Faculté de Médecine Lyon Sud, Université Lyon 1, Université de Lyon, Oullins, France.
| |
Collapse
|
8
|
Tron C, Lemaitre F, Boisteau E, Sourd SL, Lièvre A. When helping the minority of patients may hurt the majority: The case for DPD phenotyping and 5-fluorouracil therapeutic drug monitoring. Dig Liver Dis 2021; 53:258-260. [PMID: 33229275 DOI: 10.1016/j.dld.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- C Tron
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes F-35000, France.
| | - F Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes F-35000, France
| | - Emeric Boisteau
- Department of Gastro-Enterology, Rennes University Hospital, Rennes 1 University, INSERM U1242 "Chemistry Oncogenesis Stress Signaling", Rennes, France
| | - S Le Sourd
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | - A Lièvre
- Department of Gastro-Enterology, Rennes University Hospital, Rennes 1 University, INSERM U1242 "Chemistry Oncogenesis Stress Signaling", Rennes, France
| |
Collapse
|
9
|
Schneider JJ, Galettis P, Martin JH. Overcoming barriers to implementing precision dosing with 5-fluorouracil and capecitabine. Br J Clin Pharmacol 2021; 87:317-325. [PMID: 33386659 DOI: 10.1111/bcp.14723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Despite advances in targeted cancer therapy, the fluoropyrimidines 5-fluorouracil (5FU) and capecitabine continue to play an important role in oncology. Historically, dosing of these drugs has been based on body surface area. This approach has been demonstrated to be an imprecise way to determine the optimal dose for a patient. Evidence in the literature has demonstrated that precision dosing approaches, such as DPD enzyme activity testing and, in the case of intravenous 5FU, pharmacokinetic-guided dosing, can reduce toxicity and yield better patient outcomes. However, despite the evidence, there has not been uniform adoption of these approaches in the clinical setting. When a drug such as 5FU has been used clinically for many decades, it may be difficult to change clinical practice. With the aim of facilitating change of practice, issues and barriers to implementing precision dosing approaches for 5FU and capecitabine are identified and discussed with possible solutions proposed.
Collapse
Affiliation(s)
- Jennifer J Schneider
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Level 3 Hunter Medical Research Institute, Kookaburra Circuit, Newcastle, New South Wales, Australia
| | - Peter Galettis
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Level 3 Hunter Medical Research Institute, Kookaburra Circuit, Newcastle, New South Wales, Australia
| | - Jennifer H Martin
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Level 3 Hunter Medical Research Institute, Kookaburra Circuit, Newcastle, New South Wales, Australia
| |
Collapse
|