1
|
Yavorska M, Tomaciello M, Sciurti A, Cinelli E, Rubino G, Perrella A, Cerase A, Pastina P, Gravina GL, Arcieri S, Mazzei MA, Migliara G, Baccolini V, Marampon F, Minniti G, Di Giacomo AM, Tini P. Predictive value of perilesional edema volume in melanoma brain metastasis response to stereotactic radiosurgery. J Neurooncol 2024; 170:611-618. [PMID: 39259411 PMCID: PMC11615094 DOI: 10.1007/s11060-024-04818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIM Stereotactic radiotherapy (SRT) is an established treatment for melanoma brain metastases (MBM). Recent evidence suggests that perilesional edema volume (PEV) might compromise the delivery and efficacy of radiotherapy to treat BM. This study investigated the association between SRT efficacy and PEV extent in MBM. MATERIALS AND METHODS This retrospective study reviewed medical records from January 2020 to September 2023. Patients with up to 5 measurable MBMs, intracranial disease per RANO/iRANO criteria, and on low-dose corticosteroids were included. MRI scans assessed baseline neuroimaging, with PEV analyzed using 3D Slicer. SRT plans were based on MRI-CT fusion, delivering 18-32.5 Gy in 1-5 fractions. Outcomes included intracranial objective response rate (iORR) and survival measures (L-iPFS and OS). Statistical analysis involved decision tree analysis and multivariable logistic regression, adjusting for clinical and treatment variables. RESULTS Seventy-two patients with 101 MBM were analyzed, with a mean age of 68.83 years. The iORR was 61.4%, with Complete Response (CR) in 21.8% and Partial Response (PR) in 39.6% of the treated lesions. PEV correlated with KPS, BRAF status, and treatment response. Decision tree analysis identified a PEV cutoff at 0.5 cc, with lower PEVs predicting better responses (AUC = 0.82 sensitivity: 86.7%, specificity:74.4%,). Patients with PEV ≥ 0.5 cc had lower response rates (iORR 44.7% vs. 63.8%, p < 0.001). Median OS was 9.4 months, with L-iPFS of 27 months. PEV significantly impacted survival outcomes. CONCLUSIONS A more extensive PEV was associated with a less favorable outcome to SRT in MBM.
Collapse
Affiliation(s)
- Mariya Yavorska
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Miriam Tomaciello
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Sciurti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Elisa Cinelli
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giovanni Rubino
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Armando Perrella
- Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Alfonso Cerase
- Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Pierpaolo Pastina
- Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Arcieri
- Policlinico Umberto I Hospital, Viale del Policlinico, Rome, 00161, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesco Marampon
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Minniti
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Paolo Tini
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
| |
Collapse
|
2
|
Bourbonne V, Ollivier L, Antoni D, Pradier O, Cailleteau A, Schick U, Noël G, Lucia F. Diagnosis and management of brain radiation necrosis. Cancer Radiother 2024; 28:547-552. [PMID: 39366819 DOI: 10.1016/j.canrad.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 10/06/2024]
Abstract
Brain radiation necrosis (BRN) is a significant and complex side effect of stereotactic radiotherapy (SRT). Differentiating BRN from local tumor recurrence is critical, requiring advanced diagnostic techniques and a multidisciplinary approach. BRN typically manifests months to years post-treatment, presenting with radiological changes on MRI and may produce neurological symptoms. Key risk factors include the volume of irradiated brain tissue, the radiation dose, and prior radiotherapy history. This manuscript reviews the diagnostic process for BRN, emphasizing the importance of assessing baseline risk, clinical evaluation, and advanced imaging modalities. Multimodal imaging enhances diagnostic accuracy and aids in distinguishing BRN from tumor relapse. Therapeutic management varies based on symptoms. Asymptomatic BRN may be monitored with regular imaging, while symptomatic BRN often requires corticosteroids to reduce inflammation. Emerging therapies like bevacizumab have shown promise in clinical trials, with significant radiographic and symptomatic improvement. Surgical intervention may be necessary for histological confirmation and severe, treatment-resistant cases. Ongoing research aims to improve diagnostic accuracy and treatment efficacy, enhancing patient outcomes and quality of life. This review underscores the need for a multidisciplinary approach and continuous advancements to address the challenges posed by BRN in brain tumor patients.
Collapse
Affiliation(s)
- Vincent Bourbonne
- Radiation Oncology Department, CHU de Brest, boulevard Tanguy-Prigent, Brest, France; Inserm, LaTIM UMR 1101, université de Bretagne occidentale, Brest, France.
| | - Luc Ollivier
- Radiation Oncology Department, institut de cancérologie de l'Ouest, site de Nantes, Saint-Herblain, France
| | - Delphine Antoni
- Radiation Oncology Department, institut de cancérologie de Strasbourg Europe (ICANS), Strasbourg, France
| | - Olivier Pradier
- Radiation Oncology Department, CHU de Brest, boulevard Tanguy-Prigent, Brest, France; Inserm, LaTIM UMR 1101, université de Bretagne occidentale, Brest, France
| | - Axel Cailleteau
- Radiation Oncology Department, institut de cancérologie de l'Ouest, site de Nantes, Saint-Herblain, France
| | - Ulrike Schick
- Radiation Oncology Department, CHU de Brest, boulevard Tanguy-Prigent, Brest, France; Inserm, LaTIM UMR 1101, université de Bretagne occidentale, Brest, France
| | - Georges Noël
- Radiation Oncology Department, institut de cancérologie de Strasbourg Europe (ICANS), Strasbourg, France
| | - François Lucia
- Radiation Oncology Department, CHU de Brest, boulevard Tanguy-Prigent, Brest, France; Inserm, LaTIM UMR 1101, université de Bretagne occidentale, Brest, France
| |
Collapse
|
3
|
Romano E, Tran S, Ben Aissa A, Carvalho Goncalves M, Durham A, Tsoutsou P. Very early symptomatic metastasis pseudoprogression after stereotactic brain radiosurgery in a melanoma patient treated with BRAF/MEK inhibitors: a case report and review of the literature. Front Oncol 2024; 14:1449228. [PMID: 39502313 PMCID: PMC11534723 DOI: 10.3389/fonc.2024.1449228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Significant therapeutic changes have recently occurred in the management of melanoma brain metastases (BMs), both in the field of local treatments, with the rise of stereotactic radiotherapy (RT), as well as in systemic ones, with the advent of immunotherapy and targeted therapies (TT). These advances have brought about new challenges, particularly regarding the potential interactions between new TT (notably BRAF/MEK inhibitors) and irradiation. Through a clinical case, we will discuss a side effect not previously described in the literature: ultra-early pseudoprogression (PP) following brain stereotactic radiosurgery (SRS), in a patient treated with dabrafenib-trametinib. Case presentation A 61-year-old patient with BRAFV600E-mutated melanoma, receiving second-line dabrafenib-trametinib therapy, was referred for SRS on three progressing meningeal implants, without evidence of systemic progression. Four days after the first RT session (1x6 Gy on a fronto-orbital lesion prescribed 5x6 Gy, and 1x20 Gy single fraction on the other lesions), the patient presented with an epileptic seizure. An MRI, compared to the planning MRI ten days earlier, revealed significant progression of the irradiated lesions. The patient's condition improved with dexamethasone and levetiracetam, and RT was halted out of caution. A follow-up MRI at one month demonstrated a size reduction of all treated lesions. Subsequent imaging at five months revealed further shrinking of the two lesions treated with an ablative dose of 20 Gy, while the under-treated fronto-orbital lesion progressed. These dynamics suggest an initial PP in the three irradiated lesions, followed by good response in the ablatively treated lesions and progression in the partially treated lesion. Conclusion To our knowledge, this represents the first documented case of ultra-early PP following brain SRS in a patient receiving concomitant dabrafenib-trametinib. It highlights the need for particular vigilance when using tyrosine kinase inhibitors (TKIs) with SRS, and warrants further research into potential treatment interactions between RT and novel systemic agents, as well as the optimal treatment sequence of melanoma BMs.
Collapse
Affiliation(s)
- Edouard Romano
- Department of Radiation Oncology, University Hospitals of Geneva, Geneva, Switzerland
- Department of Radiation Oncology, Vaud University Hospital Center, Lausanne, Switzerland
| | - Sebastien Tran
- Department of Radiation Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Assma Ben Aissa
- Department of Medical Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | | | - André Durham
- Department of Radiation Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Pelagia Tsoutsou
- Department of Radiation Oncology, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Berthet C, Lucia F, Bourbonne V, Schick U, Lecouillard I, Le Deroff C, Barateau A, de Crevoisier R, Castelli J. The dosimetric parameters impact on local recurrence in stereotactic radiotherapy for brain metastases. Br J Radiol 2024; 97:820-827. [PMID: 38377402 PMCID: PMC11025672 DOI: 10.1093/bjr/tqae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVES Stereotactic radiotherapy (SRT) for brain metastases (BM) allows very good local control (LC). However, approximately 20%-30% of these lesions will recur. The objective of this retrospective study was to evaluate the impact of dosimetric parameters on LC in cerebral SRT. METHODS Patients treated with SRT for 1-3 BM between January 2015 and December 2018 were retrospectively included. A total of 349 patients with 538 lesions were included. The median gross tumour volume (GTV) was 2 cm3 (IQR, 0-7). The median biological effective dose with α/β = 10 (BED10) was 60 Gy (IQR, 32-82). The median prescription isodose was 71% (IQR, 70-80). Correlations with LC were examined using the Cox regression model. RESULTS The median follow-up period was 55 months (min-max, 7-85). Median overall survival was 17.8 months (IQR, 15.2-21.9). There were 95 recurrences and LC at 1 and 2 years was 87.1% (95% CI, 84-90) and 78.1% (95% CI, 73.9-82.4), respectively. Univariate analysis showed that systemic treatment, dose to 2% and 50% of the planning target volume (PTV), BED10 > 50 Gy, and low PTV and GTV volume were significantly correlated with better LC. In the multivariate analysis, GTV volume, isodose, and BED10 were significantly associated with LC. CONCLUSION These results show the importance of a BED10 > 50 Gy associated with a prescription isodose <80% to optimize LC during SRT for BM. ADVANCES IN KNOWLEDGE Isodose, BED, and GTV volume were significantly associated with LC. A low isodose improves LC without increasing the risk of radionecrosis.
Collapse
Affiliation(s)
- Camille Berthet
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
| | - François Lucia
- Radiation Oncology Department, University Hospital, Brest, 29200, France
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital, Brest, 29200, France
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, Brest, 29200, France
| | | | - Coralie Le Deroff
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
| | - Anais Barateau
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI – UMR 1099, Rennes, 35000, France
| | - Renaud de Crevoisier
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI – UMR 1099, Rennes, 35000, France
| | - Joel Castelli
- Radiation Oncology Department, CLCC Eugene Marquis, Rennes, 35000, France
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI – UMR 1099, Rennes, 35000, France
| |
Collapse
|
5
|
Liu Y, Jiang X, Wu Y, Yu H. Global research landscape and trends of cancer radiotherapy plus immunotherapy: A bibliometric analysis. Heliyon 2024; 10:e27103. [PMID: 38449655 PMCID: PMC10915415 DOI: 10.1016/j.heliyon.2024.e27103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/04/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
The aim of this study was to present current research trends on the synergistic use of radiotherapy and immunotherapy (IRT) for cancer treatment. On March 1, 2023, we conducted a literature search for IRT papers using the Web of Science database. We extracted information and constructed two databases - the Core Database (CD) with 864 papers and Generalized Database (GD) with 6344 papers. A bibliometric analysis was performed to provide insights into the research landscape, to identify emerging trends and highly cited papers and journals in the field of IRT. The CD contained 864 papers that were collectively cited 31,818 times. Prominent journals in this area included the New England Journal of Medicine, Lancet Oncology, and the Journal of Clinical Oncology. Corresponding authors from the USA contributed the most publications. In recent years, lung cancer, melanoma, stereotactic radiotherapy, immune checkpoint inhibitors, and the tumor microenvironment emerged as hot research areas. This bibliometric analysis presented quantitative insights into research concerning IRT and proposed potential avenues for further exploration. Moreover, researchers can use our findings to select appropriate journals for publication or identify prospective collaborators. In summary, this bibliometric analysis provides a comprehensive overview of the historical progression and recent advancements in IRT research that may serve as inspiration for future investigations.
Collapse
Affiliation(s)
- Yanhao Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xu Jiang
- Department of Nuclear Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Yujuan Wu
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Haiming Yu
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
6
|
Mehkri Y, Windermere SA, Still MEH, Yan SC, Goutnik M, Melnick K, Doonan B, Ghiaseddin AP, Rahman M. The Safety and Efficacy of Concurrent Immune Checkpoint Blockade and Stereotactic Radiosurgery Therapy with Practitioner and Researcher Recommendations. World Neurosurg 2024; 181:e133-e153. [PMID: 37739175 DOI: 10.1016/j.wneu.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have shown growing promise in the treatment of brain metastases, especially combined with stereotactic radiosurgery (SRS). The combination of ICIs with SRS has been studied for efficacy as well as increasing radiation necrosis risks. In this review, we compare clinical outcomes of radiation necrosis, intracranial control, and overall survival between patients with brain metastases treated with either SRS alone or SRS-ICI combination therapy. METHODS A literature search of PubMed, Scopus, Embase, Web of Science, and Cochrane was performed in May 2023 for articles comparing the safety and efficacy of SRS/ICI versus SRS-alone for treating brain metastases. RESULTS The search criteria identified 1961 articles, of which 48 met inclusion criteria. Combination therapy with SRS and ICI does not lead to significant increases in incidence of radiation necrosis either radiographically or symptomatically. Overall, no difference was found in intracranial control between SRS-alone and SRS-ICI combination therapy. Combination therapy is associated with increased median overall survival. Notably, some comparative studies observed decreased neurologic deaths, challenging presumptions that improved survival is due to greater systemic control. The literature supports SRS-ICI administration within 4 weeks of another for survival but remains inconclusive, requiring further study for other outcome measures. CONCLUSIONS Combination SRS-ICI therapy is associated with significant overall survival benefit for patients with brain metastases without significantly increasing radiation necrosis risks compared to SRS alone. Although intracranial control rates appear to be similar between the 2 groups, timing of treatment delivery may improve control rates and demands further study attention.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | | | - Megan E H Still
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Sandra C Yan
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael Goutnik
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Kaitlyn Melnick
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Bently Doonan
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Ashley P Ghiaseddin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Maryam Rahman
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Wu M, Jiang J, Zhang X, Chen J, Chang Q, Chen R. RT-based combination therapy for brain metastasis from NSCLC with non-EGFR mutation/ALK gene rearrangement: A network meta-analysis. Front Oncol 2022; 12:1024833. [DOI: 10.3389/fonc.2022.1024833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
IntroductionRadiotherapy (RT) is currently the main treatment for brain metastases (BMs) from non-small cell lung cancer (NSCLC). Due to the short survival time and obvious adverse reactions of RT, we urgently need more appropriate treatment. This network meta-analysis reviewed the efficacy and adverse effects of radiotherapy-based combination therapy for patients without targeted epidermal growth factor receptor (EGFR) mutations/anaplastic lymphoma kinase (ALK) gene rearrangement NSCLC BMs, to screen out the therapy with the best efficacy.MethodsPubMed, Embase, Web of Science, and Cochrane Library were searched from the earliest publication date available to 1 April 2022. STATA15.0 was used to conduct heterogeneity analysis, sensitivity analysis, forest plot analysis, and publication bias analysis.ResultsA total of 28 studies, involving 3707 patients were included in the Bayesian network meta-analysis. In the limited paired meta-analysis for head-to-head comparative trials, compared with RT-based combination therapy, RT combined with Immune checkpoint inhibitors (ICIs) showed significant overall survival (OS) benefit (HR 0.65, 95%CI 0.47–0.9, p<0.01), RT combined with ICIs showed a non-significant difference for intracranial progression-free survival (iPFS) (HR 0.76, 95%CI 0.27–2.27, p<0.01) and progression-free survival (PFS) (HR 0.9, 95%CI 0.36–2.37, p<0.01). In addition, according to the ranking results, compared with RT combined with chemotherapy(CT) or with targeted therapy(TT), RT combined with ICIs might be the best treatment mode for OS(ICIs+RT vs CT+RT vs TT+RT; 91.9% vs. 27.8% vs. 29.3%, iPFS (ICIs+RT vs CT+RT vs TT+RT, 46.9% vs 25.2% vs 25.6%) and PFS (ICIs+RT vs CT+RT vs TT+RT, 36.2% vs 31% vs 36.5%).ConclusionsRT combined with ICIs might be the best treatment mode to prolong the OS for BMs from NSCLC with non-EGFR mutation/ALK gene rearrangement.Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022350065, identifier (CRD42022350065)
Collapse
|
8
|
徐 利, 陈 应, 王 梅. [Efficacy and Safety of Radiotherapy Combined with Immunotherapy
for Brain Metastases from Lung Cancer: A Meta-analysis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:715-722. [PMID: 36285391 PMCID: PMC9619347 DOI: 10.3779/j.issn.1009-3419.2022.101.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Immunotherapy (IT) is recommended for the treatment of advanced non-small cell lung cancer (NSCLC), while brain radiotherapy (RT) is the mainstream treatment for patients with brain metastases (BM). This study aimed to investigate the efficacy and safety of combined use of RT and IT. METHODS The date was limited to May 1, 2022, and literature searches were carried out in CNKI, Wanfang, PubMed, EMBASE and Cochrane databases. Heterogeneity was judged using the I2 test and P value. Publication bias was assessed using a funnel plot. The quality of included studies was assessed using the Newcastle-Ottawa Scale (NOS). Statistical analysis was performed using Stata 16.0 software. RESULTS A total of 17 articles involving 2,636 patients were included. In the comparison of RT+IT group and RT group, no significant difference was found in overall survival (OS) (HR=0.85, 95%CI: 0.52-1.38, I2=73.9%, Pheterogeneity=0.001) and intracranial distance control (DBC) (HR=1.04, 95%CI: 0.55-1.05, I2=80.5%, Pheterogeneity<0.001), but the intracranial control (LC) in the RT+IT group was better than the RT group (HR=0.46, 95%CI: 0.22-0.94, I2=22.2%, Pheterogeneity=0.276), and the risk of radiation necrosis/treatment-related imaging changes (RN/TRIC) was higher than RT (HR=1.72, 95%CI: 1.12-2.65, I2=40.2%, Pheterogeneity=0.153). In the comparison between the RT+IT concurrent group and the sequential group, no significant difference was found in OS (HR=0.62, 95%CI: 0.27-1.43, I2=74.7%, Pheterogeneity=0.003) and RN/TRIC (HR=1.72, 95%CI: 0.85-3.47, I2=0%, Pheterogeneity=0.388) was different between the two groups. However, DBC in the concurrent treatment group was better than that in the sequential treatment group (HR=0.77, 95%CI: 0.62-0.96, I2=80.5%, Pheterogeneity<0.001). CONCLUSIONS RT combined with IT does not improve the OS of NSCLC patients with BM, but also increases the risk of RN/TRIC. In addition, compared with sequential RT and IT, concurrent RT and IT improved the efficacy of DBC.
Collapse
Affiliation(s)
- 利娟 徐
- 215200 苏州,苏州市第九人民医院门诊部Department of Outpatients, Suzhou Ninth People's Hospital, Suzhou 215200, China
| | - 应泰 陈
- 100076 北京,北京航天总医院胸外科Department of Thoracic Surgery, Beijing Aerospace General Hospital, Beijing 100076, China
| | - 梅 王
- 100076 北京,北京航天总医院市场开发处Department of Marketing, Beijing Aerospace General Hospital, Beijing 100076, China
| |
Collapse
|
9
|
Porte J, Saint-Martin C, Frederic-Moreau T, Massiani MA, Bozec L, Cao K, Verrelle P, Otz J, Jadaud E, Minsat M, Langer A, Girard N, Créhange G, Beddok A. Efficacy and Safety of Combined Brain Stereotactic Radiotherapy and Immune Checkpoint Inhibitors in Non-Small-Cell Lung Cancer with Brain Metastases. Biomedicines 2022; 10:biomedicines10092249. [PMID: 36140349 PMCID: PMC9496146 DOI: 10.3390/biomedicines10092249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background: To analyze the outcomes of patients with brain metastases (BM) from non-small cell lung cancer (NSCLC) treated with immunotherapy (IT) and stereotactic radiotherapy (SRT) and to study the impact of the sequence between the two modalities. Methods: The authors reviewed the records of 51 patients with 84 BM from NSCLC treated at Institut Curie with IT and SRT. BM were categorized into three groups: ‘SRT before IT’, ‘concurrent SRT and IT’, and ‘SRT after IT.’ Regional progression-free interval (R-PFI) and overall survival (OS) were estimated using the Kaplan–Meier method. Results: After a median follow-up from SRT of 22.5 months (2.7–47.3), the 1-year and 2-year OS were 69.7% (95%CI [58.0–83.8]) and 44.0% [30.6–63.2], respectively. Concerning distant intracranial control, the 1-year and 2-year R-PFI were 40.1% [30.1–53.3] and 35.2% [25.1–49.4], respectively. Moreover, one-year R-PFI in ‘SRT before IT’, ‘concurrent SRT and IT’, and ‘SRT after IT’ groups were 24.1%, 49.6%, and 34.2%, respectively (p = 0.094). The type of therapeutic sequence did not appear to impact the risk of brain necrosis. Conclusions: The concurrent administration of SRT and IT appeared to offer the best locoregional control, without increasing the risk of toxicity, compared to patients treated with SRT before or after IT.
Collapse
Affiliation(s)
- Judith Porte
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | | | - Thomas Frederic-Moreau
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | | | - Laurence Bozec
- Department of Medical Oncology, Institut Curie, 92210 Saint-Cloud, France
| | - Kim Cao
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Pierre Verrelle
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Joelle Otz
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Eric Jadaud
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Mathieu Minsat
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Adriana Langer
- Department of Imaging, Institut Curie, 92210 Saint-Cloud, France
| | - Nicolas Girard
- Department of Thoracic Oncology, Institut du Thorax-Site Curie, 75005 Paris, France
| | - Gilles Créhange
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Arnaud Beddok
- Radiation Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
- Institut Curie, PSL Research University, University Paris Saclay, Inserm LITO U1288, 91401 Orsay, France
- Correspondence: or ; Tel.: +33-169298721
| |
Collapse
|
10
|
Zhu Z, Ni J, Cai X, Su S, Zhuang H, Yang Z, Chen M, Ma S, Xie C, Xu Y, Li J, Ge H, Liu A, Zhao L, Rao C, Xie C, Bi N, Hui Z, Zhu G, Yuan Z, Wang J, Zhao L, Zhou W, Rim CH, Navarro-Martin A, Vanneste BGL, Ruysscher DD, Choi JI, Jassem J, Chang JY, Kepka L, Käsmann L, Milano MT, Van Houtte P, Suwinski R, Traverso A, Doi H, Suh YG, Noël G, Tomita N, Kowalchuk RO, Sio TT, Li B, Lu B, Fu X. International consensus on radiotherapy in metastatic non-small cell lung cancer. Transl Lung Cancer Res 2022; 11:1763-1795. [PMID: 36248338 PMCID: PMC9554677 DOI: 10.21037/tlcr-22-644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) accounting for most cases. While radiotherapy has historically served as a palliative modality in metastatic NSCLC, considerable advances in its technology and the continuous development of cutting-edge therapeutic agents, such as targeted therapy and immune checkpoint inhibitors (ICIs), are increasing its role in the multi-disciplinary management of the disease. METHODS International radiotherapy experts were convened to consider and reach consensuses on the clinical utilities of radiotherapy in metastatic NSCLC, with the aim to provide patient-focused, up to date, evidence-based, recommendations to assist cancer specialists in the management of patients with metastatic NSCLC worldwide. RESULTS Timely radiotherapy can offer rapid symptom alleviation and allow subsequent aggressive treatment approaches in patients with heavy tumor burden and/or oncologic emergencies. In addition, appropriate incorporation of radiotherapy as concurrent, consolidation, or salvage therapy makes it possible to achieve long-term survival, or even cure, for patients with oligo-metastatic disease. Cranial radiotherapy plays an important role in the management of brain metastasis, potentially augmenting the response and prolonging survival associated with targeted agents and ICIs. However, key questions remain, such as the appropriate choice of radiation techniques, optimal sequence of systemic therapies and radiotherapy, and optimal patient selection for such combination strategies. Although a strong rationale for combining radiotherapy and ICIs exists, its optimal parameters in this setting remain to be established. CONCLUSIONS In the modern era, radiotherapy serves not only as a palliative tool in metastatic NSCLC, but also plays active roles in patients with oligo-focal disease, CNS metastasis and receiving ICIs.
Collapse
Affiliation(s)
- Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuwei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shengfa Su
- Department of Thoracic Oncology, The Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zhenzhou Yang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ming Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shenglin Ma
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiancheng Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Hong Ge
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Congying Xie
- Department of Radiation and Medical Oncology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangying Zhu
- Department of Radiation Oncology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, The fourth hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Xi’an, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Chai Hong Rim
- Department of Radiation Oncology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Catalan Institute of Oncology, L’Hospitalet, Barcelona, Spain
| | - Ben G. L. Vanneste
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Human Structure and Repair; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J. Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
- New York Proton Center, New York, USA
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Joe Y. Chang
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lucyna Kepka
- Department of Radiotherapy, Military Institute of Medicine, Warsaw, Poland
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Michael T. Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul Van Houtte
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre Bruxelles, Brussels, Belgium
| | - Rafal Suwinski
- Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Alberto Traverso
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Hiroshi Doi
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yang-Gun Suh
- Department of Radiation Oncology, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Georges Noël
- Radiotherapy Department, Strasbourg Europe Cancer Institute (ICANS), Strasbourg, France
| | - Natsuo Tomita
- Departments of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bing Lu
- Department of Thoracic Oncology, The Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Aristei C, Bölükbaşı Y, Kaidar-Person O, Pfeffer R, Arenas M, Boersma LJ, Ciabattoni A, Coles CE, Franco P, Krengli M, Leonardi MC, Marazzi F, Masiello V, Meattini I, Montero A, Offersen B, Trigo ML, Bourgier C, Genovesi D, Kouloulias V, Morganti AG, Meduri B, Pasinetti N, Pedretti S, Perrucci E, Rivera S, Tombolini V, Vidali C, Valentini V, Poortmans P. Ways to improve breast cancer patients' management and clinical outcome: The 2020 Assisi Think Tank Meeting. Crit Rev Oncol Hematol 2022; 177:103774. [PMID: 35917884 DOI: 10.1016/j.critrevonc.2022.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022] Open
Abstract
We report on the third Assisi Think Tank Meeting (ATTM) on breast cancer, a brainstorming project which involved European radiation and clinical oncologists who were dedicated to breast cancer research and treatment. Held on February 2020, the ATTM aimed at identifying key clinical questions in current clinical practice and "grey" areas requiring research to improve management and outcomes. Before the meeting, three key topics were selected: 1) managing patients with frailty due to either age and/or multi-morbidity; 2) stereotactic radiation therapy and systemic therapy in the management of oligometastatic disease; 3) contralateral breast tumour prevention in BCRA-mutated patients. Clinical practice in these areas was investigated by means of an online questionnaire. In the lapse period between the survey and the meeting, the working groups reviewed data, on-going studies and the clinical challenges which were then discussed in-depth and subjected to intense brainstorming during the meeting; research protocols were also proposed. Methodology, outcome of discussions, conclusions and study proposals are summarized in the present paper. In conclusion, this report presents an in-depth analysis of the state of the art, grey areas and controversies in breast cancer radiation therapy and discusses how to confront them in the absence of evidence-based data to guide clinical decision-making.
Collapse
Affiliation(s)
- Cynthia Aristei
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy.
| | - Yasemin Bölükbaşı
- Radiation Oncology Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Orit Kaidar-Person
- Breast Radiation Unit, Radiation Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Raphael Pfeffer
- Oncology Institute, Assuta Medical Center, Tel Aviv and Ben Gurion University Medical School, Israel
| | - Meritxell Arenas
- Universitat Rovira I Virgili, Radiation Oncology Department, Hospital Universitari Sant Hoan de Reus, IISPV, Spain
| | - Liesbeth J Boersma
- Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Antonella Ciabattoni
- Department of Radiation Oncology, San Filippo Neri Hospital, ASL Rome 1, Rome, Italy
| | | | - Pierfrancesco Franco
- Depatment of Translational Medicine, University of Eastern Piedmont and Department of Radiation Oncology, 'Maggiore della Carità' University Hospital, Novara, Italy
| | - Marco Krengli
- Depatment of Translational Medicine, University of Eastern Piedmont and Department of Radiation Oncology, 'Maggiore della Carità' University Hospital, Novara, Italy
| | | | - Fabio Marazzi
- Unità Operativa di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagine, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - Valeria Masiello
- Unità Operativa di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagine, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence & Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Angel Montero
- Department of Radiation Oncology, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Birgitte Offersen
- Department of Experimental Clinical Oncology, Department of Oncology, Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Lurdes Trigo
- Service of Brachytherapy, Department of Image and Radioncology, Instituto Português Oncologia Porto Francisco Gentil E.P.E., Portugal
| | - Céline Bourgier
- Radiation Oncology, ICM-Val d'Aurelle, Univ Montpellier, Montpellier, France
| | - Domenico Genovesi
- Radiation Oncology, Ospedale Clinicizzato Chieti and University "G. d'Annunzio", Chieti, Italy
| | - Vassilis Kouloulias
- 2(nd) Department of Radiology, Radiotherapy Unit, Medical School, National and Kapodistrian University of Athens, Greece
| | - Alessio G Morganti
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna; DIMES, Alma Mater Studiorum Bologna University; Bologna, Italy
| | - Bruno Meduri
- Radiation Oncology Unit, University Hospital of Modena, Modena, Italy
| | - Nadia Pasinetti
- Radiation Oncology Service, ASST Valcamonica Esine and Brescia University, Brescia, Italy
| | - Sara Pedretti
- Istituto del Radio "O.Alberti" - Spedali Civili Hospital and Brescia University, Brescia
| | | | - Sofia Rivera
- Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Vincenzo Tombolini
- Radiation Oncology, Department of Radiological, Oncological and Pathological Science, University "La Sapienza", Roma, Italy
| | - Cristiana Vidali
- former Senior Assistant Department of Radiation Oncology, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Vincenzo Valentini
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Kankernetwerk, Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
12
|
Gill S, Nowak AK, Bowyer S, Endersby R, Ebert MA, Cook A. Clinical evidence for synergy between immunotherapy and radiotherapy (SITAR). J Med Imaging Radiat Oncol 2022; 66:881-895. [PMID: 35699321 PMCID: PMC9543060 DOI: 10.1111/1754-9485.13441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Previous preclinical and clinical trials have shown promising antitumour activity and toxicity profile when employing the 'Synergy between Immunotherapy and Radiotherapy' (SITAR) strategy. Approximately, one in seven radiation therapy studies currently recruiting is investigating SITAR. This article reviews the range of cancers known to respond to immunotherapy and publications analysing SITAR. It sets the background for work that needs to be done in future clinical trials. It also reviews the potential toxicities of immunotherapy and discusses areas where caution is required when combining treatments.
Collapse
Affiliation(s)
- Suki Gill
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Anna K Nowak
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia.,Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Samantha Bowyer
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Raelene Endersby
- University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Martin A Ebert
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Alistair Cook
- University of Western Australia, Crawley, Western Australia, Australia.,Institute for Respiratory Health, Nedlands, Western Australia, Australia
| |
Collapse
|
13
|
Rabe L, Wenz F, Ehmann M, Lohr F, Dieter Hofheinz R, Buergy D. Radiotherapy and newly approved cancer drugs – A quantitative analysis of registered protocols for drugs approved for the treatment of solid tumors. Radiother Oncol 2022; 168:69-74. [DOI: 10.1016/j.radonc.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
14
|
Dalmasso C, Pagès C, Chaltiel L, Sibaud V, Moyal E, Chira C, Sol JC, Latorzeff I, Meyer N, Modesto A. Intracranial Treatment in Melanoma Patients with Brain Metastasis Is Associated with Improved Survival in the Era of Immunotherapy and Anti-BRAF Therapy. Cancers (Basel) 2021; 13:cancers13174493. [PMID: 34503304 PMCID: PMC8430519 DOI: 10.3390/cancers13174493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Metastatic melanoma patients are at high risk of brain metastases (BM). Although intracranial control is a prognostic factor for survival, impact of local (intracranial) treatment (LT), surgery and/or radiotherapy (stereotactic or whole brain) in the era of novel therapies remains unknown. We evaluated BM incidence in melanoma patients receiving immune checkpoint inhibitors (ICI) or anti-BRAF therapy and identified prognostic factors for overall survival (OS). Clinical data and treatment patterns were retrospectively collected from all patients treated for newly diagnosed locally advanced or metastatic melanoma between May 2014 and December 2017 with available BRAF mutation status and receiving systemic therapy. Prognostic factors for OS were analyzed with univariable and multivariable survival analyses. BMs occurred in 106 of 250 eligible patients (42.4%), 64 of whom received LT. Median OS in patients with BM was 7.8 months (95% CI [5.4-10.4]). In multivariable analyses, LT was significantly correlated with improved OS (HR 0.21, p < 0.01). Median OS was 17.3 months (95% CI [8.3-22.3]) versus 3.6 months (95% CI [1.4-4.8]) in patients with or without LT. LT correlates with improved OS in melanoma patients with BM in the era of ICI and anti-BRAF therapy. The use of LT should be addressed at diagnosis of BM while introducing systemic treatment.
Collapse
Affiliation(s)
- Céline Dalmasso
- Radiation Oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France; (C.D.); (E.M.); (C.C.)
| | - Cécile Pagès
- Dermato-Oncology Department, Institut Universitaire du Cancer, CEDEX 9, 31059 Toulouse, France; (C.P.); (V.S.); (N.M.)
| | - Léonor Chaltiel
- Biostatistics Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France;
| | - Vincent Sibaud
- Dermato-Oncology Department, Institut Universitaire du Cancer, CEDEX 9, 31059 Toulouse, France; (C.P.); (V.S.); (N.M.)
| | - Elisabeth Moyal
- Radiation Oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France; (C.D.); (E.M.); (C.C.)
- Gamma Knife Unit, CHU–Toulouse-Purpan, 31000 Toulouse, France; (J.C.S.); (I.L.)
| | - Ciprian Chira
- Radiation Oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France; (C.D.); (E.M.); (C.C.)
| | - Jean Christophe Sol
- Gamma Knife Unit, CHU–Toulouse-Purpan, 31000 Toulouse, France; (J.C.S.); (I.L.)
- Neuro-Surgery Department, CHU de Toulouse–Purpan, 31000 Toulouse, France
| | - Igor Latorzeff
- Gamma Knife Unit, CHU–Toulouse-Purpan, 31000 Toulouse, France; (J.C.S.); (I.L.)
- Radiation Oncology Department, Oncorad, Clinique Pasteur, 31000 Toulouse, France
| | - Nicolas Meyer
- Dermato-Oncology Department, Institut Universitaire du Cancer, CEDEX 9, 31059 Toulouse, France; (C.P.); (V.S.); (N.M.)
- Dermatology Department, CHU de Toulouse, Hôpital Larrey, CEDEX 9, 31059 Toulouse, France
| | - Anouchka Modesto
- Radiation Oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France; (C.D.); (E.M.); (C.C.)
- Correspondence:
| |
Collapse
|
15
|
Yang Y, Deng L, Yang Y, Zhang T, Wu Y, Wang L, Bi N. Efficacy and Safety of Combined Brain Radiotherapy and Immunotherapy in Non-Small-Cell Lung Cancer With Brain Metastases: A Systematic Review and Meta-Analysis. Clin Lung Cancer 2021; 23:95-107. [PMID: 34284948 DOI: 10.1016/j.cllc.2021.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are recommended to treat advanced non-small-cell lung cancer (NSCLC), whereas brain radiotherapy (RT) is the mainstream therapy for patients with brain metastases (BMs). This systematic review and meta-analysis investigated whether the combination of brain RT and ICIs would generate a synergistic effect without unacceptable toxicity to treat NSCLC with BMs. METHODS Literature searching was performed in PubMed, Embase, Web Of Science, and The Cochrane Library up to December 20, 2020. Heterogeneity, sensitivity analysis, forest plots, and publication bias were analyzed using Stata 15.0. RESULTS Nineteen studies were included. In the comparison of the brain RT+ICIs arm and brain RT alone arm, the pooled effect size (ES) for overall survival (OS) (hazard ratio [HR] = 0.77; 95% confidence interval [CI] 0.71-0.83; I² = 0; P < .001; n = 4) and grade 3-4 neurological adverse events (AEs) (risk ratio [RR] = 0.91; 95% CI 0.41-2.02; I² = 26.5; P = .809; n = 4) indicated that the brain RT+ICIs model had significantly better systemic efficacy and similar neurological AEs compared with brain RT alone for NSCLC. Concurrent RT+ICIs were identified as the optimal model, which achieved the best efficacy without significantly increased AEs compared with sequential RT+ICIs. CONCLUSIONS Combined ICIs and brain RT exhibited favorable efficacy and acceptable toxicity for NSCLC patients with BMs, among which, the concurrent model might be the optimal option. Our results could guide the design of future randomized controlled trials and clinical practice.
Collapse
Affiliation(s)
- Yin Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Yufan Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Yuqi Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/ Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong Province, China.
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China.
| |
Collapse
|
16
|
Evaluation of practical experiences of German speaking radiation oncologists in combining radiation therapy with checkpoint blockade. Sci Rep 2021; 11:7624. [PMID: 33828117 PMCID: PMC8027172 DOI: 10.1038/s41598-021-86863-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
The results of this survey reveal current clinical practice in the handling of combined radioimmunotherapy with Immune Checkpoint Inhibitors (RT + ICI). We aim to provide a basis to open a discussion for clinical application of RT + ICI by analyzation of experts’ assessment. We conducted a survey with 24 items with a focus on side effects of RT + ICI, common practice of scheduling and handling of adverse events. After pilot testing by radiation oncology experts the link to the online survey was sent to all members of the German Society of Radiation Oncology (DEGRO). In total, 51 radiation oncologists completed the questionnaire. Pulmonary toxicity under RT + ICI with ICIs was reported most frequently. Consensus was observed for bone and soft tissue RT of the limbs in favor for no interruption of ICIs. For cranial RT half of the participants do not suspend ICIs during normofractionated radiotherapy (nfRT) or stereotactic hypofractionated RT (SRT). More participants pause ICIs for central than for peripheral thoracic region. Maintenance therapy with ICIs is mostly not interrupted prior to RT. For management of RT associated pneumonitis under durvalumab the majority of 86.3% suggest corticosteroid therapy and 76.5% would postpone the next cycle of ICI therapy. The here obtained assessment and experiences by radiation oncologists reveal a large variability in practical handling of combined RT + ICI. Until scientific evidence is available a discussion for current clinical application of RT + ICI should be triggered. Interdisciplinary consensus guidelines with practical recommendations are required.
Collapse
|