1
|
Wang M, Huang X, Zhang D, Liu Y, Liu P. The role of fructose-1,6-bisphosphatase 1 on regulating the cancer progression and drug resistance. Discov Oncol 2025; 16:346. [PMID: 40100307 PMCID: PMC11920503 DOI: 10.1007/s12672-025-02112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Fructose-1,6-bisphosphatase 1 (FBP1) is the enzyme that limits the process of gluconeogenesis as it facilitates the hydrolysis of fructose-1,6-bisphosphate(F-1,6-BP) to produce fructose-6-phosphate(F6P) and inorganic phosphate. Gluconeogenesis is the production of glucose from small carbohydrate substrates. The gluconeogenic process is typically suppressed in cancer because it inhibits glycolysis. Apart from its involvement in cellular glucose metabolism, FBP1 also plays a role in gene transcription, mRNA translation and stability regulation, and the immune microenvironment of tumors. Because of its multifaceted functions, the mechanisms by which FBP1 is involved in tumor development are complex. Moreover, FBP1 deficiency is associated with radiation and chemotherapy resistance and poor prognosis in cancer patients. Restoration of FBP1 expression in cancer cells is expected to hold promise for cancer therapy. However, up to now few reviews have systematically summarized the important functional mechanisms of FBP1 in tumorigenesis and the small molecule compounds that restore FBP1 expression. Therefore, this article addresses the question "How does FBP1 contribute to cancer progression, and can targeting FBP1 be a potential therapeutic approach?" by summarizing the effects of FBP1 on cancer development and progression as well as its mediated drug resistance and the future clinical applications of potential small molecule modulators targeting FBP1.
Collapse
Affiliation(s)
- Mengmeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Xiaoju Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yisan Liu
- Department of Urology, People's Hospital of Cili, Cili, 427200, Hunan, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| |
Collapse
|
2
|
Gong Y, Wang H, Wang X, Kuang D, Yuan C, Ju J. LncRNA OIP5-AS1 mediated miR-28-5p provides promising support for the diagnosis and prognosis of cholangiocarcinoma. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2025. [PMID: 39784718 DOI: 10.17235/reed.2024.10632/2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are major research factors in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This paper discusses how OIP5-AS1 could potentially be used for diagnosing and prognosticating cholangiocarcinoma (CHOL). METHODS The ENROCI project evaluated the OIP5-AS1 expression in CHOL samples and confirmed it using RT-qPCR. A bioinformatics database predicted the target gene of OIP5-AS1 in CHOL, which was then confirmed by luciferase activity assays. The CCK-8 and Transwell methods were employed to detect the changes in CHOL cell growth and migration levels after OIP5-AS1 knockdown. ROC and Kaplan-Meier curves were plotted to examine the diagnostic and prognostic functions of OIP5-AS1. RESULTS In CHOL tissues and cells, OIP5-AS1 was enhanced compared to the controls. Reducing OIP5-AS1 hampered the regulatory capacity of CHOL cells, and miR-28-5p inhibitor repaired this inhibition. Notably, OIP5-AS1 was observed to sponge and downregulate miR-28-5p, exhibiting high sensitivity and specificity (84.4% and 81.3%) in CHOL. G3BP1 was a direct target of miR-28-5p. Decreased OIP5-AS1 level was beneficial for survival (HR = 2.391, P = 0.024). CONCLUSION OIP5-AS1 targets and negatively mediates miR-28-5p/G3BP1 axis to promote the activity of CHOL cells, which may be a potential marker for diagnosis and prognosis of CHOL patients.
Collapse
Affiliation(s)
- Yanqing Gong
- Oncology, Guangzhou University of Chinese Medicine Shenzhen Hospital
| | - Huimin Wang
- Gastroenterology, The First Clinical Medical College Lanzhou University
| | - Xiaoming Wang
- Health Management Center, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao
| | - Deli Kuang
- Neurosurgery, Peking University Third Hospital Qinhuangdao Hospital
| | - Chunmiao Yuan
- Health Management Center, Peking University Third Hospital Qinhuangdao Hospital
| | - Jianhua Ju
- Hepatobiliary Pancreatic Surgery, Jiaozhou Branch of Shanghai East Hospital
| |
Collapse
|
3
|
Shu B, Wen Y, Lin R, He C, Luo C, Li F. HSPB8-BAG3 chaperone complex modulates cell invasion in intrahepatic cholangiocarcinoma by regulating CASA-mediated Filamin A degradation. Cancer Biol Ther 2024; 25:2396694. [PMID: 39215616 PMCID: PMC11370900 DOI: 10.1080/15384047.2024.2396694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The incidence of intrahepatic cholangiocarcinoma (ICC) is steadily rising, and it is associated with a high mortality rate. Clinical samples were collected to detect the expression of HSPB8 and BAG3 in ICC tissues. ICC cells were cultured and transfected with plasmids that overexpressed or silenced specific genes to investigate the impact of gene expression alterations on cell function. qPCR and Western blot techniques were utilized to measure gene and protein expression levels. A wound healing assay was conducted to assess cell migration ability. The Transwell assay was used to assess cell invasion ability. Co-IP was used to verify the binding relationship between HSPB8 and BAG3. The effects of HSPB8 and BAG3 on lung metastasis of tumors in vivo were verified by constructing a metastatic tumor model. Through the above experiments, we discovered that the expressions of HSPB8 and BAG3 were up-regulated in ICC tissues and cells, and their expressions were positively correlated. The metastatic ability of ICC cells could be promoted or inhibited by upregulating or downregulating the expression of BAG3. Furthermore, the HSPB8-BAG3 chaperone complex resulted in the abnormal degradation of Filamin A by activating autophagy. Increased expression of Filamin A inhibits the migration and invasion of ICC cells. Overexpression of HSPB8 and BAG3 in vivo promoted the lung metastasis ability of ICC cells. The HSPB8-BAG3 chaperone complex promotes ICC cell migration and invasion by regulating CASA-mediated degradation of Filamin A, offering insights for enhancing ICC therapeutic strategies.
Collapse
Affiliation(s)
- Bo Shu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ronghua Lin
- Department of General Surgery, Huichang County People’s Hospital, Huichang, Jiangxi Province, China
| | - Chao He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Cailan Luo
- Department of Hospital Nursing, Huichang County People’s Hospital, Huichang, Jiangxi Province, China
| | - Fazhao Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Wei X, Cun D, Yang D, Yi Q, Tian D. Long Non-Coding RNA SNHG3 Promotes the Progression of Cholangiocarcinoma by Regulating the miR-151a-3p/STAT5a Axis. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:933-944. [PMID: 39641310 PMCID: PMC11639604 DOI: 10.5152/tjg.2024.24140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/08/2024] [Indexed: 12/07/2024]
Abstract
Background/Aims Studies have shown the significance of long non-coding RNAs (lncRNAs) in the development of malignant tumors, including cholangiocarcinoma (CCA). However, the molecular mechanisms through which the lncRNA SNHG3 contributes to CCA development remain unknown. Therefore, the purpose of this work was to investigate SNHG3's role and possible processes in CCA. Materials and Methods CCK-8, TUNEL, wound healing, and transwell assays were performed to evaluate the viability, apoptosis, migration, and invasion of CCA cells, respectively. Dual-luciferase reporter and RNA pull-down assays were conducted to verify the relationship between SNHG3 and miR-151a-3p and that between STAT5a and miR-151a-3p. Results SNHG3 and STAT5a were considerably upregulated and miR-151a-3p was downregulated in CCA tissues and cells. SNHG3 knockdown suppressed the proliferation, apoptosis, migration, and invasive ability of HUCC-T1 cells. Mechanistically, SNHG3 directly targeted miR-151a-3p to promote the development of CCA. Treatment with a miR-151a-3p inhibitor reversed the effects of SNHG3 knockdown on the aggressive behavior of HUCC-T1 cells. Furthermore, STAT5a knockdown counteracted the effects of inhibition of SNHG3 and miR-151a-3p on the aggressive behavior of CAA. Conclusion SNHG3 promotes CCA progression via the miR-151a-3p/STAT5a axis, providing novel insights into the clinical treatment of CCA.
Collapse
Affiliation(s)
- Xiaoping Wei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongyun Cun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Danping Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qianyao Yi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Daguang Tian
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Orzan RI, Țigu AB, Nechita VI, Nistor M, Agoston R, Gonciar D, Pojoga C, Seicean A. Circulating miR-18a and miR-532 Levels in Extrahepatic Cholangiocarcinoma. J Clin Med 2024; 13:6177. [PMID: 39458127 PMCID: PMC11509052 DOI: 10.3390/jcm13206177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Cholangiocarcinoma (CCA) is a highly aggressive cancer of the bile ducts with a poor prognosis and limited diagnostic markers. This study aims to investigate the potential of miR-18a and miR-532 as biomarkers for CCA by exploring their correlations with clinical parameters and traditional tumor markers such as CA19.9, CEA, and AFP. Methods: This study involved a cohort of patients diagnosed with CCA. Serum levels of miR-18a and miR-532 were measured and analyzed in relation to various clinical parameters, including age, tumor markers, and histological features. Results: Serum levels of miR-18a and miR-532 were upregulated in patients with extrahepatic cholangiocarcinoma (eCCA) compared to healthy controls (p < 0.05). MiR-18a and miR-532 levels were correlated with each other (p = 0.011, Spearman's rho = 0.482) but showed no significant correlation with age or traditional tumor markers (CA19.9, CEA, AFP). No significant differences in miR-18a and miR-532 levels were observed concerning tumor localization or histological grading. For predicting tumor resectability, miR-532 at a cut-off point of 2.12 showed a sensitivity of 72.73%, specificity of 81.25%, and an AUC of 71.3%, while miR-18a, at a cut-off of 1.83, had a sensitivity of 63.64%, specificity of 75%, and an AUC of 59.7%. ROC curve analysis suggested moderate diagnostic potential for miR-18a and miR-532, with AUC values of 0.64 and 0.689, respectively. Conclusions: Although miR-18a and miR-532 showed significant upregulation in eCCA patients compared to healthy controls, they did not demonstrate significant associations with key clinical parameters, limiting their effectiveness as standalone diagnostic biomarkers. Further research involving larger, multi-center cohorts and additional molecular markers is necessary to validate these findings and explore the broader diagnostic potential of miRNAs in CCA.
Collapse
Affiliation(s)
- Rares Ilie Orzan
- 3rd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes Street, No. 8, 400347 Cluj-Napoca, Romania
- Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400394 Cluj-Napoca, Romania
| | - Adrian Bogdan Țigu
- Department of Translational Medicine, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vlad-Ionuț Nechita
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Translational Medicine, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Renata Agoston
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes Street, No. 8, 400347 Cluj-Napoca, Romania
| | - Diana Gonciar
- Pathological Anatomy Discipline, Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Clinicilor Street, No. 3–5, 400006 Cluj-Napoca, Romania
| | - Cristina Pojoga
- Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400394 Cluj-Napoca, Romania
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Sindicatelor Street, No. 7, 400029 Cluj-Napoca, Romania
| | - Andrada Seicean
- 3rd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes Street, No. 8, 400347 Cluj-Napoca, Romania
- Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400394 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Li C, Dong Y, Zhang Y, Wu C. Clinical significance of lncRNA XIST expression in cholangiocarcinoma and its effect on cell migration and invasion. Clin Res Hepatol Gastroenterol 2024; 48:102398. [PMID: 38871250 DOI: 10.1016/j.clinre.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Cholangiocarcinoma is a malignant tumor that occurs in the bile duct system, and the prognosis of patients is poor. Currently, research suggests that long non-coding RNAs (lncRNAs) in the treatment and prevention of cholangiocarcinoma. This study primarily focuses on the regulation and potential mechanism of the lncRNA XIST (XIST) in cholangiocarcinoma. METHODS The levels of XIST and miR-126-3p in cholangiocarcinoma tissues and cells were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell transfection status, including migration and invasion, was examined via the Transwell method. The relationship between XIST and miR-126-3p was observed by dual-luciferase gene reporter assay and verified by rescue assays. Additionally, the prognostic significance of XIST in cholangiocarcinoma was determined using Kaplan-Meier and multivariate Cox regression analyses. RESULTS XIST expression was increased in cholangiocarcinoma, while miR-126-3p was decreased, in both tissues and cells. The successful construction of silencing XIST was found to inhibit the count of cell migration and invasion. XIST directly targeted miR-126-3p to regulate the progression of cholangiocarcinoma. CONCLUSION XIST sponging miR-126-3p inhibited the progression of cholangiocarcinoma and improved the prognosis for patients. This finding provides new insights and opportunities for future studies on cholangiocarcinoma prognostic biomarkers.
Collapse
Affiliation(s)
- Chenxi Li
- Department of General Surgery, Wenling Hospital of Traditional Chinese Medicine, Wenling 317500, China
| | - Yifei Dong
- Department of Laboratory, The Eighth Hospital of Wuhan, Wuhan 430010, China
| | - Yichuan Zhang
- Minimally Invasive Endoscopy Center, Digestive Disease Center, The Affiliated Hospital of Panzhihua University, Panzhihua 617000, China.
| | - Caihong Wu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha 421001, China; Anesthesia Medical Research Center of Central South University, Changsha 421001, China; Department of Clinical Nursing, The Second Xiangya Hospital of Central South University, Changsha 421001, China.
| |
Collapse
|
7
|
Zhou X, Kong X, Lu J, Wang H, Liu M, Zhao S, Xia Z, Liu Q, Sun H, Gao X, Ma C, Niu Z, Yang F, Song X, Gao H, Zhang S, Zhu H. Circulating tumor cell-derived exosome-transmitted long non-coding RNA TTN-AS1 can promote the proliferation and migration of cholangiocarcinoma cells. J Nanobiotechnology 2024; 22:191. [PMID: 38637832 PMCID: PMC11025154 DOI: 10.1186/s12951-024-02459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Exosomes assume a pivotal role as essential mediators of intercellular communication within tumor microenvironments. Within this context, long noncoding RNAs (LncRNAs) have been observed to be preferentially sorted into exosomes, thus exerting regulatory control over the initiation and progression of cancer through diverse mechanisms. RESULTS Exosomes were successfully isolated from cholangiocarcinoma (CCA) CTCs organoid and healthy human serum. Notably, the LncRNA titin-antisense RNA1 (TTN-AS1) exhibited a conspicuous up-regulation within CCA CTCs organoid derived exosomes. Furthermore, a significant elevation of TTN-AS1 expression was observed in tumor tissues, as well as in blood and serum exosomes from patients afflicted with CCA. Importantly, this hightened TTN-AS1 expression in serum exosomes of CCA patients manifested a strong correlation with both lymph node metastasis and TNM staging. Remarkably, both CCA CTCs organoid-derived exosomes and CCA cells-derived exosomes featuring pronounced TTN-AS1 expression demonstrated the capability to the proliferation and migratory potential of CCA cells. Validation of these outcomes was conducted in vivo experiments. CONCLUSIONS In conclusion, our study elucidating that CCA CTCs-derived exosomes possess the capacity to bolster the metastasis tendencies of CCA cells by transporting TTN-AS1. These observations underscore the potential of TTN-AS1 within CTCs-derived exosomes to serve as a promising biomarker for the diagnosis and therapeutic management of CCA.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaohan Kong
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Heng Wang
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Meng Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Shuchao Zhao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Zhaozhi Xia
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Qinggong Liu
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Hongrui Sun
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Xin Gao
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Chaoqun Ma
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xie Song
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Shizhe Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hepatobiliary Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
8
|
Zhao W, Zhao J, Li K, Hu Y, Yang D, Tan B, Shi J. Oncogenic Role of the NFATC2/NEDD4/FBP1 Axis in Cholangiocarcinoma. J Transl Med 2023; 103:100193. [PMID: 37285922 DOI: 10.1016/j.labinv.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Nuclear factor of activated T cells 2 (NFATC2) is reported to contribute to the initiation and progression of various cancers; however, its expression and function in cholangiocarcinoma (CCA) tissues remain elusive. Herein, we investigated the expression pattern, clinicopathologic characteristics, cell biological functions, and potential mechanisms of NFATC2 in CCA tissues. Real-time reverse-transcription PCR (RT-qPCR) and immunohistochemistry were performed to analyze the expression of NFATC2 in human CCA tissues. Cell counting kit 8, colony formation, flow cytometry, Western blotting, and Transwell assays, and in vivo xenograft and pulmonary metastasis models, were used to explore the effect of NFATC2 on the proliferation and metastasis of CCA. A dual-luciferase reporter system, oligonucleotide pull-down, chromatin immunoprecipitation, immunofluorescence, and coimmunoprecipitation were performed to reveal the potential mechanisms. We found that NFATC2 was upregulated in CCA tissues and cells, and its aberrantly high levels were associated with a poorer differentiation pattern. Functionally, NFATC2 overexpression promoted CCA cell proliferation and metastasis, whereas knockdown of NFATC2 led to opposite result. Mechanistically, NFATC2 could be enriched in the promoter region of neural precursor cell-expressed developmentally downregulated protein 4 (NEDD4) to facilitate its expression. Furthermore, NEDD4 targeted fructose-1, 6-bisphosphatase 1 (FBP1) and inhibited FBP1 expression via ubiquitination. In addition, silencing NEDD4 rescued the effects of NFATC2 overexpression on CCA cells. NEDD4 was upregulated in human CCA tissues, and its expression levels were positively correlated with those of NFATC2. We thus conclude that NFATC2 promotes the progression of CCA via the NEDD4/FBP1 axis, emphasizing the oncogenic role of NFATC2 in CCA progression.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jing Zhao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanjiao Hu
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongxia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Tan
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Shi
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Moldogazieva NT, Zavadskiy SP, Astakhov DV, Sologova SS, Margaryan AG, Safrygina AA, Smolyarchuk EA. Differentially expressed non-coding RNAs and their regulatory networks in liver cancer. Heliyon 2023; 9:e19223. [PMID: 37662778 PMCID: PMC10474437 DOI: 10.1016/j.heliyon.2023.e19223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
The vast majority of human transcriptome is represented by various types of small RNAs with little or no protein-coding capability referred to as non-coding RNAs (ncRNAs). Functional ncRNAs include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which are expressed at very low, but stable and reproducible levels in a variety of cell types. ncRNAs regulate gene expression due to miRNA capability of complementary base pairing with mRNAs, whereas lncRNAs and circRNAs can sponge miRNAs off their target mRNAs to act as competitive endogenous RNAs (ceRNAs). Each miRNA can target multiple mRNAs and a single mRNA can interact with several miRNAs, thereby creating miRNA-mRNA, lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks. Over the past few years, a variety of differentially expressed miRNAs, lncRNAs, and circRNAs (DEMs, DELs, and DECs, respectively) have been linked to cancer pathogenesis. They can exert both oncogenic and tumor suppressor roles. In this review, we discuss the recent advancements in uncovering the roles of DEMs, DELs, and DECs and their networks in aberrant cell signaling, cell cycle, transcription, angiogenesis, and apoptosis, as well as tumor microenvironment remodeling and metabolic reprogramming during hepatocarcinogenesis. We highlight the potential and challenges in the use of differentially expressed ncRNAs as biomarkers for liver cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Sergey P. Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Dmitry V. Astakhov
- Department of Biochemistry, Institute of Biodesign and Complex Systems Modelling, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Susanna S. Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Arus G. Margaryan
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Anastasiya A. Safrygina
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Elena A. Smolyarchuk
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| |
Collapse
|
10
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Xia L, Chen J, Huang M, Mei J, Lin M. The functions of long noncoding RNAs on regulation of F-box proteins in tumorigenesis and progression. Front Oncol 2022; 12:963617. [PMID: 35928868 PMCID: PMC9343830 DOI: 10.3389/fonc.2022.963617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Accumulated evidence has revealed that F-box protein, a subunit of SCF E3 ubiquitin ligase complexes, participates in carcinogenesis and tumor progression via targeting its substrates for ubiquitination and degradation. F-box proteins could be regulated by cellular signaling pathways and noncoding RNAs in tumorigenesis. Long noncoding RNA (lncRNA), one type of noncoding RNAs, has been identified to modulate the expression of F-box proteins and contribute to oncogenesis. In this review, we summarize the role and mechanisms of multiple lncRNAs in regulating F-box proteins in tumorigenesis, including lncRNAs SLC7A11-AS1, MT1JP, TUG1, FER1L4, TTN-AS1, CASC2, MALAT1, TINCR, PCGEM1, linc01436, linc00494, GATA6-AS1, and ODIR1. Moreover, we discuss that targeting these lncRNAs could be helpful for treating cancer via modulating F-box protein expression. We hope our review can stimulate the research on exploration of molecular insight into how F-box proteins are governed in carcinogenesis. Therefore, modulation of lncRNAs is a potential therapeutic strategy for cancer therapy via regulation of F-box proteins.
Collapse
|
12
|
Cholangiopathies and the noncoding revolution. Curr Opin Gastroenterol 2022; 38:128-135. [PMID: 35098934 DOI: 10.1097/mog.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) among others, have attracted a great deal of attention for their potential role as master regulators of gene expression and as therapeutic targets. This review focuses on recent advances on the role of ncRNAs in the pathogenesis, diagnosis and treatment of diseases of the cholangiocytes (i.e. cholangiopathies). RECENT FINDINGS In the recent years, there has been an exponential growth in the knowledge on ncRNAs and their role in cholangiopathies, particularly cholangiocarcinoma. SUMMARY Although several studies focused on miRNAs as noninvasive biomarkers for diagnosis and staging, several studies also highlighted their functions and provided new insights into disease mechanisms.
Collapse
|
13
|
Jia L, Zhang Y, Pu F, Yang C, Yang S, Yu J, Xu Z, Yang H, Zhou Y, Zhu S. Pseudogene AK4P1 promotes pancreatic ductal adenocarcinoma progression through relieving miR-375-mediated YAP1 degradation. Aging (Albany NY) 2022; 14:1983-2003. [PMID: 35220277 PMCID: PMC8908928 DOI: 10.18632/aging.203921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Abstract
Pseudogenes have been reported to play oncogenic or tumor-suppressive roles in cancer progression. However, the molecular mechanism of most pseudogenes in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Herein, we characterized a novel pseudogene-miRNA-mRNA network associated with PDAC progression using bioinformatics analysis. After screening by dreamBase and GEPIA, 12 up-regulated and 7 down-regulated differentially expressed pseudogenes (DEPs) were identified. According to survival analysis, only elevated AK4P1 indicated a poor prognosis for PDAC patients. Moreover, we found that AK4 acts as a cognate gene of AK4P1 and also predicts worse survival for PDAC patients. Furthermore, 32 miRNAs were predicted to bind to AK4P1 by starBase, among which miR-375 was identified as the most potential binding miRNA of AK4P1. A total of 477 potential target genes of miR-375 were obtained by miRNet, in which 49 hub genes with node degree ≥ 20 were identified by STRING. Subsequent analysis for hub genes demonstrated that YAP1 may be a functional downstream target of AK4P1. To confirmed the above findings, microarray, and qRT-PCR assay revealed that YAP1 was dramatically upregulated in both PDAC cells and tissues. Functional experiments showed that knockdown of YAP1 significantly suppressed PDAC cells growth, increased apoptosis, and decreased the ability of invasion. In conclusion, amplification of AK4P1 may fuel the onset and development of PDAC by targeting YAP1 through competitively binding to miR-375, and serve as a promising biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Lang Jia
- Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yun Zhang
- Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Feng Pu
- Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Chong Yang
- Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Shula Yang
- Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jinze Yu
- Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Zihan Xu
- Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Yu Zhou
- Human Disease Gene Study Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Shikai Zhu
- Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| |
Collapse
|
14
|
Xiao L, Yuan W, Huang C, Luo Q, Xiao R, Chen ZH. LncRNA PCAT19 induced by SP1 and acted as oncogene in gastric cancer competitively binding to miR429 and upregulating DHX9. J Cancer 2022; 13:102-111. [PMID: 34976174 PMCID: PMC8692695 DOI: 10.7150/jca.61961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) are crucial in cancer biological processes. To investigate if lncRNA contributes to gastric cancer (GC), we conducted a bioinformatics analysis in human microarray datasets, and the results showed that lncRNA prostate cancer-associated transcript 19 (PCAT19) was upregulated in GC. Quantitative reverse-transcriptase PCR and in situ hybridization assays also revealed that PCAT19 was upregulated in GC tissues. The PCAT19 expression in GC was significantly related to tumor size, lymph node metastasis, and pathological stage. Moreover, patients with higher PCAT19 expression levels were more likely to have a poor prognosis for overall survival. The knockdown of PCAT19 by siRNA significantly suppressed the proliferation and invasion of GC cells. The cell distribution of PCAT19 in GC cells was examined by fluorescence in situ hybridization assay, and the results showed that it was mainly located in the cytoplasm. Mechanistically, PCAT19 sponges miR-429 and promotes DHX9 expression. In addition, the transcription factor SP1 is involved in PCAT19 activation. Our results demonstrate that lncRNA PCAT19 is induced by SP1 and acts as an oncogene in GC that competitively binds to miR429 and upregulates DHX9.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weijie Yuan
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Changhao Huang
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qingqing Luo
- Department of Oncology, Hunan Provincial People's Hospital, Changsha 410002, China
| | - Runsha Xiao
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zi-Hua Chen
- Department of Gastrointestinal, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
15
|
NOV/CCN3 Promotes Cell Migration and Invasion in Intrahepatic Cholangiocarcinoma via miR-92a-3p. Genes (Basel) 2021; 12:genes12111659. [PMID: 34828265 PMCID: PMC8621878 DOI: 10.3390/genes12111659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a common type of human cancer with a poor prognosis, and investigating the potential molecular mechanisms that can contribute to gene diagnosis and therapy. Herein, based on the recently concerned vertebrate-specific Cyr61/CTGF/NOV (CCN) gene family because of its important roles in diverse diseases, we obtained NOV/CCN3 to query for its potential roles in tumorigenesis via bioinformatics analysis. Experimental validations confirmed that both NOV mRNA and protein are up-regulated in two ICC cell lines, suggesting that it may promote cell migration and invasion by promoting EMT. To elucidate the detailed regulatory mechanism, miR-92a-3p is screened and identified as a negative regulatory small RNA targeting NOV, and further experimental validation demonstrates that miR-92a-3p contributes to NOV-mediated migration and invasion of ICC via the Notch signaling pathway. Our study reveals that NOV may be a potential target for diagnosing and treating ICC, which will provide experimental data and molecular theoretical foundation for cancer treatment, particularly for future precision medicine.
Collapse
|
16
|
Zhang L, Wang D, Wang Z, Li X, Xia W, Han Y, Su L, Fan X. MiR-18a-5p acts as a novel serum biomarker for venous malformation and promotes angiogenesis by regulating the thrombospondin-1/P53 signaling axis. Am J Transl Res 2021; 13:11271-11286. [PMID: 34786057 PMCID: PMC8581884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Venous malformation (VM) is a kind of congenital vascular anomaly with high recurrence, and screening for VM lacks an efficient, inexpensive and noninvasive approach now. Serum miRNAs with stable structures are expected to become new postoperative and postablative monitoring biomarkers. Thus, we identified a prognostic serum miR-18a-5p and validated its function in VM. Notably, higher expression level of miR-18a-5p was detected in VM patients than in healthy individuals. We found that miR-18a-5p plays a promotive role in human umbilical vein endothelial cells in vitro. In addition, immunohistochemistry (IHC) results showed a distinct increase of vessels in miR-18a-5p mimics group and a decrease of vessels in inhibitors group compared to the control group in a murine VM model. Furthermore, thrombospondin-1 (TSP1), a potential miR-18a-5p-binding protein, was identified via RNA-seq, luciferase reporter and RNA immunoprecipitation (RIP) assays. Moreover, miR-18a-5p regulated the activation of P53 signaling pathway constituents and consequently led to the regulation of proliferation, migration, invasion and angiogenesis. These results provide a strong theoretical basis for further investigations into pathological mechanism of VM and may provide novel and noninvasive biomarker for VM diagnosis and monitoring.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Deming Wang
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Zhenfeng Wang
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Xiao Li
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterTexas 77030, USA
| | - Yifeng Han
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Lixin Su
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Xindong Fan
- Department of Interventional Therapy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| |
Collapse
|
17
|
Barik GK, Sahay O, Behera A, Naik D, Kalita B. Keep your eyes peeled for long noncoding RNAs: Explaining their boundless role in cancer metastasis, drug resistance, and clinical application. Biochim Biophys Acta Rev Cancer 2021; 1876:188612. [PMID: 34391844 DOI: 10.1016/j.bbcan.2021.188612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer metastasis and drug resistance are two major obstacles in the treatment of cancer and therefore, the leading cause of cancer-associated mortalities worldwide. Hence, an in-depth understanding of these processes and identification of the underlying key players could help design a better therapeutic regimen to treat cancer. Earlier thought to be merely transcriptional junk and having passive or secondary function, recent advances in the genomic research have unravelled that long noncoding RNAs (lncRNAs) play pivotal roles in diverse physiological as well as pathological processes including cancer metastasis and drug resistance. LncRNAs can regulate various steps of the complex metastatic cascade such as epithelial-mesenchymal transition (EMT), invasion, migration and metastatic colonization, and also affect the sensitivity of cancer cells to various chemotherapeutic drugs. A substantial body of literature for more than a decade of research evince that lncRNAs can regulate gene expression at different levels such as epigenetic, transcriptional, posttranscriptional, translational and posttranslational levels, depending on their subcellular localization and through their ability to interact with DNA, RNA and proteins. In this review, we mainly focus on how lncRNAs affect cancer metastasis by modulating expression of key metastasis-associated genes at various levels of gene regulation. We also discuss how lncRNAs confer cancer cells either sensitivity or resistance to various chemo-therapeutic drugs via different mechanisms. Finally, we highlight the immense potential of lncRNAs as prognostic and diagnostic biomarkers as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Debasmita Naik
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bhargab Kalita
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
18
|
Tumor-promoting function of PIMREG in glioma by activating the β-catenin pathway. 3 Biotech 2021; 11:380. [PMID: 34458056 DOI: 10.1007/s13205-021-02922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022] Open
Abstract
Glioma is the most common primary brain tumor in adults with an adverse prognosis and obscure pathogenesis. PICALM interacting mitotic regulator protein (PIMREG) functions as an oncogene in multiple types of cancer, but its function in glioma remains unknown. The Gene Expression Profiling Interactive Analysis 2 (GEPIA2, http://gepia2.cancer-pku.cn/#index) showed that PIMREG expression in the glioma tissues was higher than that in normal brain tissues. Herein, cell counting kit-8 assay and flow cytometry analysis exhibited that overexpression of PIMREG significantly promoted the proliferation of glioma cells and the transition from G1 phase of the cell cycle to S phase. Wound-healing and transwell assays showed that overexpression of PIMREG markedly enhanced the migration and invasion of glioma cells. Western blot analysis revealed that overexpression of PIMREG increased the expression of cyclin D1, cyclin E, Vimentin, matrix metalloproteinase (MMP)-2, and MMP-9, but reduced the expression of E-cadherin. In addition, overexpression of PIMREG activated the β-catenin signaling pathway, as evidenced by the increased total and nuclear expression of β-catenin and the up-regulated expression of its downstream target c-myc. Furthermore, immunofluorescence staining further indicated the increased nuclear translocation of β-catenin in PIMREG-overexpressing cells. However, knockdown of PIMREG exerted opposite effects on glioma cells. Blockade of the β-catenin signaling by ICG-001 markedly impeded the promoting effects of PIMREG on glioma cell proliferation and invasion. In conclusion, PIMREG acts as a tumor promoter in glioma at least partly via activating the β-catenin signaling pathway. This study provides new insights into the molecular mechanism for glioma pathogenesis and treatment.
Collapse
|
19
|
The Role of microRNAs in Cholangiocarcinoma. Int J Mol Sci 2021; 22:ijms22147627. [PMID: 34299246 PMCID: PMC8306241 DOI: 10.3390/ijms22147627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), an aggressive malignancy, is typically diagnosed at an advanced stage. It is associated with dismal 5-year postoperative survival rates, generating an urgent need for prognostic and diagnostic biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are associated with cancer regulation, including modulation of cell cycle progression, apoptosis, metastasis, angiogenesis, autophagy, therapy resistance, and epithelial–mesenchymal transition. Several miRNAs have been found to be dysregulated in CCA and are associated with CCA-related risk factors. Accumulating studies have indicated that the expression of altered miRNAs could act as oncogenic or suppressor miRNAs in the development and progression of CCA and contribute to clinical diagnosis and prognosis prediction as potential biomarkers. Furthermore, miRNAs and their target genes also contribute to targeted therapy development and aid in the determination of drug resistance mechanisms. This review aims to summarize the roles of miRNAs in the pathogenesis of CCA, their potential use as biomarkers of diagnosis and prognosis, and their utilization as novel therapeutic targets in CCA.
Collapse
|
20
|
Sato K, Baiocchi L, Kennedy L, Zhang W, Ekser B, Glaser S, Francis H, Alpini G. Current Advances in Basic and Translational Research of Cholangiocarcinoma. Cancers (Basel) 2021; 13:3307. [PMID: 34282753 PMCID: PMC8269372 DOI: 10.3390/cancers13133307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a type of biliary tract cancer emerging from the biliary tree. CCA is the second most common primary liver cancer after hepatocellular carcinoma and is highly aggressive resulting in poor prognosis and patient survival. Treatment options for CCA patients are limited since early diagnosis is challenging, and the efficacy of chemotherapy or radiotherapy is also limited because CCA is a heterogeneous malignancy. Basic research is important for CCA to establish novel diagnostic testing and more effective therapies. Previous studies have introduced new techniques and methodologies for animal models, in vitro models, and biomarkers. Recent experimental strategies include patient-derived xenograft, syngeneic mouse models, and CCA organoids to mimic heterogeneous CCA characteristics of each patient or three-dimensional cellular architecture in vitro. Recent studies have identified various novel CCA biomarkers, especially non-coding RNAs that were associated with poor prognosis or metastases in CCA patients. This review summarizes current advances and limitations in basic and translational studies of CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
| | - Leonardo Baiocchi
- Hepatology Unit, Department of Medicine, University of Tor Vergata, 00133 Rome, Italy;
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA;
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Yang HG, Wang TP, Hu SA, Hu CZ, Jiang CH, He Q. Long Non-coding RNA SNHG12, a New Therapeutic Target, Regulates miR-199a-5p/Klotho to Promote the Growth and Metastasis of Intrahepatic Cholangiocarcinoma Cells. Front Med (Lausanne) 2021; 8:680378. [PMID: 34239888 PMCID: PMC8257934 DOI: 10.3389/fmed.2021.680378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/20/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Small nucleolar RNA host gene 12 (SNHG12) is a newly identified long non-coding RNA (lncRNA) whose involvements have been explored in several cancers. Our study aimed to explore the functions of SNHG12 on intrahepatic cholangiocarcinoma (ICC) progression and its interaction with miR-199a-5p and Klotho. Methods: RT-PCR was performed to examine the expressions of SNHG12, miR-199a-5p and Klotho in ICC cells. Cell counting kit-8 (CCK-8), colony formation assays and transwell assays were applied to analyze the proliferation, migration and invasion of ICC cells. Luciferase assays, RIP assays and RNA pull-down assays were carried out to demonstrate the direct binding relationships among SNHG12, miR-199a-5p and Klotho. The xenograft nude models were applied to test the effects of SNHG12 on ICC tumor growth. Results: The expression of SNHG12 and Klotho was distinctly increased in ICC cells, while miR-199a-5p expressions were decreased. Functionally, the silence of SNHG12 inhibited the proliferation and metastasis of ICC cells, while miR-199a-5p overexpression exhibited an opposite result. Mechanistically, Knockdown of SNHG12 significantly suppressed the expressions of miR-199a-5p by sponging it, and then increased Klotho expression. The final in vivo experiments suggested that the silence of SNHG12 distinctly inhibited tumor growth. Conclusion: Our findings indicated that SNHG12 inhibited cell proliferation and metastasis process of ICC cells through modulating the miR-199a-5p/Klotho axis and it is expected to become a potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Hong-Guo Yang
- Department of Hepatobiliary & Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Tian-Peng Wang
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Sheng-An Hu
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chao-Zhou Hu
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Cheng-Hang Jiang
- Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Qiang He
- Department of General Surgery, Zhejiang Provincial People's Hospital, Haining Hospital, Haining, China
| |
Collapse
|