1
|
Seaman K, Lin C, Song X, Sassi A, Du WW, Yang B, Sun Y, You L. Mechanical Loading of Osteocytes via Oscillatory Fluid Flow Regulates Early-Stage PC-3 Prostate Cancer Metastasis to Bone. Adv Biol (Weinh) 2025; 9:e2400824. [PMID: 39969425 PMCID: PMC12000999 DOI: 10.1002/adbi.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Bone metastasis is a devastating complication for advanced-stage prostate cancer patients. Osteocytes, as the primary mechanosensors in bone, have been recently investigated for their role in prostate cancer bone metastasis. In vivo findings show potential benefits of exercise as a preventative intervention strategy for bone metastasis. In contrast, in vitro studies indicate direct prostate cancer-osteocyte interactions under mechanical loading promote prostate cancer growth and migration. These findings are not consistent with in vivo results and may be more reflective of late-stage metastatic colonization. Here, the role of flow-stimulated osteocytes during early-stage bone metastasis, particularly prostate cancer-endothelial interactions, is examined. Flow-stimulated osteocytes reduce PC-3 prostate cancer cell adhesion and trans-endothelial migration by 32.3% and 40% compared to static controls. Both MLO-Y4 and primary murine osteocytes under mechanical loading regulate the extravasation distance and frequency of PC-3 cells in a microfluidic tissue model. Application of vascular cellular adhesion molecule 1 (VCAM-1) neutralizing antibody abolishes the difference in cancer cell adhesion, extravasation frequency, and number of extravasated PC-3 cells between static and flow-stimulated groups. Taken together, the role of osteocytes in early-stage bone metastasis using PC-3 cells as a model is demonstrated here, bridging the gap between in vitro and in vivo findings.
Collapse
Affiliation(s)
- Kimberly Seaman
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Chun‐Yu Lin
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5S 3G9Canada
| | - Xin Song
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Amel Sassi
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5S 3G9Canada
| | - William W. Du
- Sunnybrook Research Institute and Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioM4N 3M5Canada
| | - Burton Yang
- Sunnybrook Research Institute and Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioM4N 3M5Canada
| | - Yu Sun
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5S 3G9Canada
| | - Lidan You
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5S 3G9Canada
- Department of Mechanical and Materials EngineeringQueen's UniversityKingstonOntarioK7L 3N6Canada
| |
Collapse
|
2
|
Zhang X, Al‐Danakh A, Zhu X, Feng D, Yang L, Wu H, Li Y, Wang S, Chen Q, Yang D. Insights into the mechanisms, regulation, and therapeutic implications of extracellular matrix stiffness in cancer. Bioeng Transl Med 2025; 10:e10698. [PMID: 39801760 PMCID: PMC11711218 DOI: 10.1002/btm2.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 01/03/2025] Open
Abstract
The tumor microenvironment (TME) is critical for cancer initiation, growth, metastasis, and therapeutic resistance. The extracellular matrix (ECM) is a significant tumor component that serves various functions, including mechanical support, TME regulation, and signal molecule generation. The quantity and cross-linking status of ECM components are crucial factors in tumor development, as they determine tissue stiffness and the interaction between stiff TME and cancer cells, resulting in aberrant mechanotransduction, proliferation, migration, invasion, angiogenesis, immune evasion, and treatment resistance. Therefore, broad knowledge of ECM dysregulation in the TME might aid in developing innovative cancer therapies. This review summarized the available information on major ECM components, their functions, factors that increase and decrease matrix stiffness, and related signaling pathways that interplay between cancer cells and the ECM in TME. Moreover, mechanotransduction alters during tumorogenesis, and current drug therapy based on ECM as targets, as well as future efforts in ECM and cancer, are also discussed.
Collapse
Affiliation(s)
- Ximo Zhang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Abdullah Al‐Danakh
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xinqing Zhu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Dan Feng
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Linlin Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haotian Wu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yingying Li
- Department of Discipline ConstructionDalian Medical UniversityDalianChina
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of GlycobiologyDalian Medical UniversityDalianChina
| | - Qiwei Chen
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Zhongda Hospital, Medical School Advanced Institute Life HealthSoutheast UniversityNanjingChina
| | - Deyong Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of SurgeryHealinghands ClinicDalianChina
| |
Collapse
|
3
|
Nturubika BDD, Logan J, Johnson IRD, Moore C, Li KL, Tang J, Lam G, Parkinson-Lawrence E, Williams DB, Chakiris J, Hindes M, Brooks RD, Miles MA, Selemidis S, Gregory P, Weigert R, Butler L, Ward MP, Waugh DJJ, O’Leary JJ, Brooks DA. Components of the Endosome-Lysosome Vesicular Machinery as Drivers of the Metastatic Cascade in Prostate Cancer. Cancers (Basel) 2024; 17:43. [PMID: 39796673 PMCID: PMC11718918 DOI: 10.3390/cancers17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer remains a significant global health concern, with over 1.4 million new cases diagnosed and more than 330,000 deaths each year. The primary clinical challenge that contributes to poor patient outcomes involves the failure to accurately predict and treat at the onset of metastasis, which remains an incurable stage of the disease. This review discusses the emerging paradigm that prostate cancer metastasis is driven by a dysregulation of critical molecular machinery that regulates endosome-lysosome homeostasis. Endosome and lysosome compartments have crucial roles in maintaining normal cellular function but are also involved in many hallmarks of cancer pathogenesis, including inflammation, immune response, nutrient sensing, metabolism, proliferation, signalling, and migration. Here we discuss new insight into how alterations in the complex network of trafficking machinery, responsible for the microtubule-based transport of endosomes and lysosomes, may be involved in prostate cancer progression. A better understanding of endosome-lysosome dynamics may facilitate the discovery of novel strategies to detect and manage prostate cancer metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- Bukuru Dieu-Donne Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jessica Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ian R. D. Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jingying Tang
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Giang Lam
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Emma Parkinson-Lawrence
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Desmond B. Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - James Chakiris
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Madison Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Philip Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa Butler
- South Australian ImmunoGENomics Cancer Institute, Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5000, Australia;
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mark P. Ward
- Department of Pathology, The Coombe Women and Infants University Hospital, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - David J. J. Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - Douglas A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| |
Collapse
|
4
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
5
|
Kaarijärvi R, Kaljunen H, Nappi L, Fazli L, Kung SHY, Hartikainen JM, Paakinaho V, Capra J, Rilla K, Malinen M, Mäkinen PI, Ylä-Herttuala S, Zoubeidi A, Wang Y, Gleave ME, Hiltunen M, Ketola K. DPYSL5 is highly expressed in treatment-induced neuroendocrine prostate cancer and promotes lineage plasticity via EZH2/PRC2. Commun Biol 2024; 7:108. [PMID: 38238517 PMCID: PMC10796342 DOI: 10.1038/s42003-023-05741-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is a lethal subtype of castration-resistant prostate cancer resistant to androgen receptor (AR) inhibitors. Our study unveils that AR suppresses the neuronal development protein dihydropyrimidinase-related protein 5 (DPYSL5), providing a mechanism for neuroendocrine transformation under androgen deprivation therapy. Our unique CRPC-NEPC cohort, comprising 135 patient tumor samples, including 55 t-NEPC patient samples, exhibits a high expression of DPYSL5 in t-NEPC patient tumors. DPYSL5 correlates with neuroendocrine-related markers and inversely with AR and PSA. DPYSL5 overexpression in prostate cancer cells induces a neuron-like phenotype, enhances invasion, proliferation, and upregulates stemness and neuroendocrine-related markers. Mechanistically, DPYSL5 promotes prostate cancer cell plasticity via EZH2-mediated PRC2 activation. Depletion of DPYSL5 decreases proliferation, induces G1 phase cell cycle arrest, reverses neuroendocrine phenotype, and upregulates luminal genes. In conclusion, DPYSL5 plays a critical role in regulating prostate cancer cell plasticity, and we propose the AR/DPYSL5/EZH2/PRC2 axis as a driver of t-NEPC progression.
Collapse
Affiliation(s)
- Roosa Kaarijärvi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Heidi Kaljunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Lucia Nappi
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ladan Fazli
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sonia H Y Kung
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Janne Capra
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Petri I Mäkinen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Amina Zoubeidi
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Yoodee S, Thongboonkerd V. Epigenetic regulation of epithelial-mesenchymal transition during cancer development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:1-61. [PMID: 37657856 DOI: 10.1016/bs.ircmb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays essential roles in promoting malignant transformation of epithelial cells, leading to cancer progression and metastasis. During EMT-induced cancer development, a wide variety of genes are dramatically modified, especially down-regulation of epithelial-related genes and up-regulation of mesenchymal-related genes. Expression of other EMT-related genes is also modified during the carcinogenic process. Especially, epigenetic modifications are observed in the EMT-related genes, indicating their involvement in cancer development. Mechanically, epigenetic modifications of histone, DNA, mRNA and non-coding RNA stably change the EMT-related gene expression at transcription and translation levels. Herein, we summarize current knowledge on epigenetic regulatory mechanisms observed in EMT process relate to cancer development in humans. The better understanding of epigenetic regulation of EMT during cancer development may lead to improvement of drug design and preventive strategies in cancer therapy.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
7
|
Zhu Y, Hu Y, Wang P, Dai X, Fu Y, Xia Y, Sun L, Ruan S. Comprehensive bioinformatics and experimental analysis of SH3PXD2B reveals its carcinogenic effect in gastric carcinoma. Life Sci 2023; 326:121792. [PMID: 37211344 DOI: 10.1016/j.lfs.2023.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
AIMS We aim to explore the possibility and mechanism of SH3PXD2B as a reliable biomarker for gastric cancer (GC). MAIN METHODS We used public databases to analyze the molecular characteristics and disease associations of SH3PXD2B, and KM database for prognostic analysis. The TCGA gastric cancer dataset was used for single gene correlation, differential expression, functional enrichment and immunoinfiltration analysis. SH3PXD2B protein interaction network was constructed by the STRING database. And the GSCALite database was used to explore sensitive drugs and perform SH3PXD2B molecular docking. The impact of SH3PXD2B silencing and over-expression by lentivirus transduction on the proliferation and invasion of human GC HGC-27 and NUGC-3 cells was determined. KEY FINDINGS The high expression of SH3PXD2B in gastric cancer was related to the poor prognosis of patients. It may affect the progression of gastric cancer by forming a regulatory network with FBN1, ADAM15 and other molecules, and the mechanism may involve regulating the infiltration of Treg, TAM and other immunosuppressive cells. The cytofunctional experiments verified that it significantly promoted the proliferation and migration of gastric cancer cells. In addition, we found that some drugs were sensitive to the expression of SH3PXD2B such as sotrastaurin, BHG712 and sirolimus, and they had strong molecular combination of SH3PXD2B, which may provide guidance for the treatment of gastric cancer. SIGNIFICANCE Our study strongly suggests that SH3PXD2B is a carcinogenic molecule that can be used as a biomarker for GC detection, prognosis, treatment design, and follow-up.
Collapse
Affiliation(s)
- Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Yunhong Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Peipei Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xinyang Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuhan Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuwei Xia
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
8
|
Wu C, Sun W, Shen D, Li H, Tong X, Guo Y. TEM1 up-regulates MMP-2 and promotes ECM remodeling for facilitating invasion and migration of uterine sarcoma. Discov Oncol 2023; 14:5. [PMID: 36639546 PMCID: PMC9839929 DOI: 10.1007/s12672-023-00613-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 04/17/2023] Open
Abstract
OBJECTIVES To explore the correlation between tumor endothelial marker 1 (TEM1) and matrix metalloproteinase 2 (MMP-2) in uterine sarcoma and their roles in the progression of uterine sarcoma. METHODS Uterine leiomyosarcoma (uLMS, n = 25) and uterine leiomyoma (n = 25) specimens were collected from a total of 50 patients. Immunohistochemistry assay was conducted to determine the expression of TEM1, MMP-2 and MMP-9. TEM1 over expression (hTEM1) and low expression (shRNA-TEM1) MES-SA cell lines were established as in vitro uterine sarcoma models. MMP-2 mRNA, protein expression and enzymatic activity were verified using qPCR, Western blot and gelatin zymography respectively. MMP-2 expression was downregulated using MMP-2 siRNA in hTEM1 MES-SA cells to better study the role of MMP-2. The invasive and migratory capacities of hTEM1, shRNA-TEM1, and hTEM1 treated with MMP-2 siRNA MES-SA cells were determined using transwell assays. Extracellular matrix (ECM) remodeling mediated by TEM1 was examined using cell-ECM adhesion and fluorescent gelatin-ECM degradation assays. The immunofluorescence of F-actin was examined to analyze the formation of invadopodia. Subcutaneous and intraperitoneal xenografts were established to validate the role of TEM1 in promoting uterine sarcoma metastasis. RESULTS TEM1 and MMP-2 were expressed in 92% (n = 23) and 88% (n = 22) of uterine leiomyosarcoma specimens, respectively. Both TEM1 and MMP-2 were highly expressed in 100% (n = 17) of high stage (III-IV) uterine leiomyosarcoma specimens. In addition, TEM1 expression was positively correlated with MMP-2 expression in uterine leiomyosarcoma. The successful establishment of in vitro uterine sarcoma models was confirmed with qPCR and Western blotting tests. TEM1 promoted the invasion and metastasis of uterine sarcoma in vivo and in vitro. MMP-2 expression and activity were up-regulated in hTEM1 cells but down-regulated in shRNA-TEM1 cells. Importantly, MMP-2 knockdown impaired the invasive and migratory capacity of hTEM1 cells. TEM1 promoted ECM remodeling by increasing cell-ECM adhesion and ECM degradation. TEM1 overexpression also induced the formation of invadopodia. CONCLUSION TEM1 was co-expressed and positively correlated with MMP-2 in uterine leiomyosarcoma specimens. In addition, both TEM1 and MMP-2 were associated with tumor development. TEM1 promoted uterine sarcoma progression by regulating MMP-2 activity and ECM remodeling.
Collapse
Affiliation(s)
- Chenghao Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Wenhuizi Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Yi Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
9
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|