1
|
Imai H. Current drug therapy for pleural mesothelioma. Respir Investig 2025; 63:200-209. [PMID: 39818191 DOI: 10.1016/j.resinv.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
Pleural mesothelioma (PM) is a rare and highly aggressive malignancy originating from the pleural lining, with a median overall survival of merely 1 year. This cancer primarily arises from mesothelial cells following exposure to carcinogenic, biopersistent mineral fibers, particularly asbestos. The histological subtypes of mesothelioma are epithelioid (approximately 60%), sarcomatoid (20%), and biphasic (20%), exhibiting epithelioid and sarcomatoid characteristics. Classification is important for prognosis and guides the therapeutic strategy. Due to the typical late presentation, most patients with PM are ineligible for localized treatments such as surgery or radiotherapy. Systemic therapy, including cytotoxic chemotherapy, targeted therapies, and immunotherapy, is thus critical for managing advanced PM. For unresectable PM, decisions regarding systemic treatment are guided by patient suitability and histological characteristics. First-line therapies for advanced PM currently include the cisplatin-pemetrexed combination and the nivolumab-ipilimumab regimen. Historically, cisplatin-pemetrexed has been administered as first-line treatment, though recent advancements have introduced new therapies that significantly prolong patient survival. Innovative approaches combining immunotherapy and chemotherapy offer promising avenues for further improvement. Future treatment strategies should incorporate novel paradigms, such as combination chemo-immunotherapy, targeted agents, and potential cellular therapies, alongside companion biomarkers tailored to the histologic and molecular diversity of mesothelioma. This review explores the latest advancements in drug therapy for PM and provides an overview of current systemic treatment options.
Collapse
Affiliation(s)
- Hisao Imai
- Department of Respiratory Medicine, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-City, Saitama, 350-1298, Japan.
| |
Collapse
|
2
|
Schmauch B, Cabeli V, Domingues OD, Le Douget JE, Hardy A, Belbahri R, Maussion C, Romagnoni A, Eckstein M, Fuchs F, Swalduz A, Lantuejoul S, Crochet H, Ghiringhelli F, Derangere V, Truntzer C, Pass H, Moreira AL, Chiriboga L, Zheng Y, Ozawa M, Howitt BE, Gevaert O, Girard N, Rexhepaj E, Valtingojer I, Debussche L, de Rinaldis E, Nestle F, Spanakis E, Fantin VR, Durand EY, Classe M, Von Loga K, Pronier E, Cesaroni M. Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients. iScience 2025; 28:111638. [PMID: 39868035 PMCID: PMC11758823 DOI: 10.1016/j.isci.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of YAP1 and TEAD-family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications. Therefore, identifying patients with a dysregulated Hippo pathway is key to enhancing treatment impact. Although recent studies have derived RNA-seq-based signatures, there remains a need for a reproducible and cost-effective method to measure the pathway activation. In recent years, deep learning applied to histology slides have emerged as an effective way to predict molecular information from a data modality available in clinical routine. Here, we trained models to predict YAP1/TEAD activity from H&E-stained histology slides in multiple cancers. The robustness of our approach was assessed in seven independent validation cohorts. Finally, we showed that histological markers of disease aggressiveness were associated with dysfunctional Hippo signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Markus Eckstein
- Bavarian Cancer Research Center (Bayerisches Zentrum für Krebsforschung, BZKF), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Florian Fuchs
- Bavarian Cancer Research Center (Bayerisches Zentrum für Krebsforschung, BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aurélie Swalduz
- Claude Bernard University Lyon I & Léon Bérard Cancer Center, Lyon, France
| | - Sylvie Lantuejoul
- Grenoble Alpes University and Léon Bérard Cancer Center, Lyon, France
| | | | | | - Valentin Derangere
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- University of Burgundy Franche-Comté, Dijon, France
| | - Caroline Truntzer
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- University of Burgundy Franche-Comté, Dijon, France
| | - Harvey Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY, USA
| | - Andre L. Moreira
- Department of Pathology, NYU Langone New York University Langone Medical Center, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone New York University Langone Medical Center, New York, NY, USA
| | - Yuanning Zheng
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Michael Ozawa
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Brooke E. Howitt
- Department of Medicine & Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Department of Medicine & Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhou C, Sun C, Huang M, Tang X, Pi L, Li C. Exploring Degradation of Intrinsically Disordered Protein Yes-Associated Protein Induced by Proteolysis TArgeting Chimeras. J Med Chem 2024; 67:15168-15198. [PMID: 39189384 DOI: 10.1021/acs.jmedchem.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Yes-associated protein (YAP) is a key oncogene in the Hippo tumor suppression pathway, historically challenging to target due to its intrinsically disordered nature. Leveraging recent advances in high-throughput screening that identified several YAP binders, we employed proteolysis-targeting chimera technology to develop a series of YAP degraders. Utilizing NSC682769, a known YAP binder, linked with VHL ligand 2 or pomalidomide via diverse linkers, we synthesized degraders including YZ-6. This degrader not only recruits the E3 ligase VHL for the rapid and sustained degradation of YAP but also effectively inhibits its nuclear localization, curtailing YAP/TEAD-mediated transcription in cancer cell lines such as NCI-H226 and Huh7. This dual action significantly diminishes YAP's oncogenic activity, contributing to the potent antiproliferative effects observed both in vitro and in a Huh7 xenograft mouse model. These results underscore the potential of PROTAC-mediated YAP degradation as a strategy for treating YAP-driven cancers.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chunbao Sun
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32610, United States
| | - Liya Pi
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
4
|
Moure CJ, Vara B, Cheng MM, Sondey C, Muise E, Park E, Vela Ramirez JE, Su D, D'Souza S, Yan Q, Yeung CS, Zhang M, Mansueto MS, Linn D, Buchanan M, Foti R, DiMauro E, Long B, Simov V, Barry ER. Activation of Hepatocyte Growth Factor/MET Signaling as a Mechanism of Acquired Resistance to a Novel YAP1/TEAD Small Molecule Inhibitor. Mol Cancer Ther 2024; 23:1095-1108. [PMID: 38691847 DOI: 10.1158/1535-7163.mct-23-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 05/03/2024]
Abstract
Many tumor types harbor alterations in the Hippo pathway, including mesothelioma, where a high percentage of cases are considered YAP1/TEAD dependent. Identification of autopalmitoylation sites in the hydrophobic palmitate pocket of TEADs, which may be necessary for YAP1 protein interactions, has enabled modern drug discovery platforms to generate compounds that allosterically inhibit YAP1/TEAD complex formation and transcriptional activity. We report the discovery and characterization of a novel YAP1/TEAD inhibitor MRK-A from an aryl ether chemical series demonstrating potent and specific inhibition of YAP1/TEAD activity. In vivo, MRK-A showed a favorable tolerability profile in mice and demonstrated pharmacokinetics suitable for twice daily oral dosing in preclinical efficacy studies. Importantly, monotherapeutic targeting of YAP1/TEAD in preclinical models generated regressions in a mesothelioma CDX model; however, rapid resistance to therapy was observed. RNA-sequencing of resistant tumors revealed mRNA expression changes correlated with the resistance state and a marked increase of hepatocyte growth factor (HGF) expression. In vitro, exogenous HGF was able to fully rescue cytostasis induced by MRK-A in mesothelioma cell lines. In addition, co-administration of small molecule inhibitors of the MET receptor tyrosine kinase suppressed the resistance generating effect of HGF on MRK-A induced growth inhibition. In this work, we report the structure and characterization of MRK-A, demonstrating potent and specific inhibition of YAP1/TAZ-TEAD-mediated transcriptional responses, with potential implications for treating malignancies driven by altered Hippo signaling, including factors resulting in acquired drug resistance.
Collapse
Affiliation(s)
- Casey J Moure
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Brandon Vara
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Mangeng M Cheng
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Christopher Sondey
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Eric Muise
- Department of Data and Genome Sciences, Merck & Co., Inc., Rahway, New Jersey
| | - Eunsil Park
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | | | - Dan Su
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Shanti D'Souza
- Department of Discovery Oncology, Merck & Co., Inc., Rahway, New Jersey
| | - Qingyun Yan
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Minjia Zhang
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - My Sam Mansueto
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Doug Linn
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Mark Buchanan
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Robert Foti
- Department of PPDM, Merck & Co., Inc., Rahway, New Jersey
| | - Erin DiMauro
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Brian Long
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Vladimir Simov
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Evan R Barry
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| |
Collapse
|
5
|
Parrish AG, Arora S, Thirimanne HN, Rudoy D, Schmid S, Sievers P, Sahm F, Holland EC, Szulzewsky F. Aggressive high-grade NF2 mutant meningiomas downregulate oncogenic YAP signaling via the upregulation of VGLL4 and FAT3/4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596719. [PMID: 38854109 PMCID: PMC11160807 DOI: 10.1101/2024.05.30.596719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Meningiomas are the most common primary brain tumors in adults. Although generally benign, a subset of meningiomas is of higher grade, shows aggressive growth behavior and recurs even after multiple surgeries. Around half of all meningiomas harbor inactivating mutations in NF2. While benign low-grade NF2 mutant meningiomas exhibit few genetic events in addition to NF2 inactivation, aggressive high-grade NF2 mutant meningiomas frequently harbor a highly aberrant genome. We and others have previously shown that NF2 inactivation leads to YAP1 activation and that YAP1 acts as the pivotal oncogenic driver in benign NF2 mutant meningiomas. Using bulk and single-cell RNA-Seq data from a large cohort of human meningiomas, we show that aggressive NF2 mutant meningiomas harbor decreased levels YAP1 activity compared to their benign counterparts. Decreased expression levels of YAP target genes are significantly associated with an increased risk of recurrence. We then identify the increased expression of the YAP1 competitor VGLL4 as well as the YAP1 upstream regulators FAT3/4 as a potential mechanism for the downregulation of YAP activity in aggressive NF2 mutant meningiomas. High expression of these genes is significantly associated with an increased risk of recurrence. In vitro, overexpression of VGLL4 resulted in the downregulation of YAP activity in benign NF2 mutant meningioma cells, confirming the direct link between VGLL4 expression and decreased levels of YAP activity observed in aggressive NF2 mutant meningiomas. Our results shed new insight on the biology of benign and aggressive NF2 mutant meningiomas and may have important implications for the efficacy of therapies targeting oncogenic YAP1 activity in NF2 mutant meningiomas.
Collapse
Affiliation(s)
- Abigail G Parrish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sebastian Schmid
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Yun KM, Bazhenova L. Emerging New Targets in Systemic Therapy for Malignant Pleural Mesothelioma. Cancers (Basel) 2024; 16:1252. [PMID: 38610930 PMCID: PMC11011044 DOI: 10.3390/cancers16071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) is a heterogeneous cancer composed of distinct molecular and pathologic subtypes. Unfortunately, MPM is aggressive, and current therapies for advanced, unresectable disease remain limited to cytotoxic chemotherapy and immunotherapy. Our understanding of the genomic landscape of MPM is steadily growing, while the discovery of effective targeted therapies in MPM has advanced more slowly than in other solid tumors. Given the prevalence of alterations in tumor suppressor genes in MPM, it has been challenging to identify actionable targets. However, efforts to characterize the genetic signatures in MPM over the last decade have led to a range of novel targeted therapeutics entering early-phase clinical trials. In this review, we discuss the advancements made thus far in targeted systemic therapies in MPM and the future direction of targeted strategies in patients with advanced MPM.
Collapse
Affiliation(s)
- Karen M. Yun
- Division of Hematology-Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, CA 92093, USA;
| | | |
Collapse
|
7
|
Hillen H, Candi A, Vanderhoydonck B, Kowalczyk W, Sansores-Garcia L, Kesikiadou EC, Van Huffel L, Spiessens L, Nijs M, Soons E, Haeck W, Klaassen H, Smets W, Spieser SA, Marchand A, Chaltin P, Ciesielski F, Debaene F, Chen L, Kamal A, Gwaltney SL, Versele M, Halder GA. A Novel Irreversible TEAD Inhibitor, SWTX-143, Blocks Hippo Pathway Transcriptional Output and Causes Tumor Regression in Preclinical Mesothelioma Models. Mol Cancer Ther 2024; 23:3-13. [PMID: 37748190 DOI: 10.1158/1535-7163.mct-22-0681] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
The Hippo pathway and its downstream effectors, the YAP and TAZ transcriptional coactivators, are deregulated in multiple different types of human cancer and are required for cancer cell phenotypes in vitro and in vivo, while largely dispensable for tissue homeostasis in adult mice. YAP/TAZ and their main partner transcription factors, the TEAD1-4 factors, are therefore promising anticancer targets. Because of frequent YAP/TAZ hyperactivation caused by mutations in the Hippo pathway components NF2 and LATS2, mesothelioma is one of the prime cancer types predicted to be responsive to YAP/TAZ-TEAD inhibitor treatment. Mesothelioma is a devastating disease for which currently no effective treatment options exist. Here, we describe a novel covalent YAP/TAZ-TEAD inhibitor, SWTX-143, that binds to the palmitoylation pocket of all four TEAD isoforms. SWTX-143 caused irreversible and specific inhibition of the transcriptional activity of YAP/TAZ-TEAD in Hippo-mutant tumor cell lines. More importantly, YAP/TAZ-TEAD inhibitor treatment caused strong mesothelioma regression in subcutaneous xenograft models with human cells and in an orthotopic mesothelioma mouse model. Finally, SWTX-143 also selectively impaired the growth of NF2-mutant kidney cancer cell lines, suggesting that the sensitivity of mesothelioma models to these YAP/TAZ-TEAD inhibitors can be extended to other tumor types with aberrations in Hippo signaling. In brief, we describe a novel and specific YAP/TAZ-TEAD inhibitor that has potential to treat multiple Hippo-mutant solid tumor types.
Collapse
Affiliation(s)
- Hanne Hillen
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | | | | | - Weronika Kowalczyk
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - Leticia Sansores-Garcia
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - Elena C Kesikiadou
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - Leen Van Huffel
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lore Spiessens
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | - Patrick Chaltin
- Cistim Leuven vzw, Leuven, Belgium
- Center for Drug Design and Discovery (CD3), KU Leuven, Leuven, Belgium
| | | | | | - Lei Chen
- SpringWorks Therapeutics, Stamford, Connecticut
| | | | | | | | - Georg A Halder
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Jama M, Zhang M, Poile C, Nakas A, Sharkey A, Dzialo J, Dawson A, Kutywayo K, Fennell DA, Hollox EJ. Gene fusions during the early evolution of mesothelioma correlate with impaired DNA repair and Hippo pathways. Genes Chromosomes Cancer 2024; 63:e23189. [PMID: 37421230 DOI: 10.1002/gcc.23189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
Malignant pleural mesothelioma (MPM), a rare cancer a long latency period (up to 40 years) between asbestos exposure and disease presentation. The mechanisms coupling asbestos to recurrent somatic alterations are poorly defined. Gene fusions arising through genomic instability may create novel drivers during early MPM evolution. We explored the gene fusions that occurred early in the evolutionary history of the tumor. We conducted multiregional whole exome sequencing (WES) of 106 samples from 20 patients undergoing pleurectomy decortication and identified 24 clonal nonrecurrent gene fusions, three of which were novel (FMO9P-OR2W5, GBA3, and SP9). The number of early gene fusion events detected varied from zero to eight per tumor, and presence of gene fusions was associated with clonal losses involving the Hippo pathway genes and homologous recombination DNA repair genes. Fusions involved known tumor suppressors BAP1, MTAP, and LRP1B, and a clonal oncogenic fusion involving CACNA1D-ERC2, PARD3B-NT5DC2, and STAB2-NT5DC2 fusions were also identified as clonal fusions. Gene fusions events occur early during MPM evolution. Individual fusions are rare as no recurrent truncal fusions event were found. This suggests the importance of early disruption of these pathways in generating genomic rearrangements resulting in potentially oncogenic gene fusions.
Collapse
Affiliation(s)
- Maymun Jama
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Min Zhang
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Novogene Corpotation Ltd., Building 301, Beijing, China
| | - Charlotte Poile
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Apostolos Nakas
- Thoracic Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Annabel Sharkey
- Department of Cardio-Thoracic Surgery, Sheffield Teaching Hospital NHS Trust, Sheffield, UK
| | - Joanna Dzialo
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Alan Dawson
- Thoracic Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Kudazyi Kutywayo
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Department of Cardio-Thoracic Surgery, Sheffield Teaching Hospital NHS Trust, Sheffield, UK
| | - Dean A Fennell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Thoracic Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
9
|
Guo Z, Guo L. YAP/TEAD-induced PRIM1 contributes to the progression and poor prognosis of gastric carcinoma. Transl Oncol 2023; 38:101791. [PMID: 37741096 PMCID: PMC10541473 DOI: 10.1016/j.tranon.2023.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Gastric carcinoma has a poor prognosis and low survival rate. PRIM1 is closely associated with the origin of DNA replication and serves as a carcinogenic factor in multiple tumors. This study aimed to explore the functions of PRIM1 in the progression of gastric carcinoma. The luciferase reporter assay examined the regulatory effect of YAP1/TEAD4 on PRIM1. A xenograft tumor mouse model was constructed to observe cancer cell proliferation in vivo. The upregulation of PRIM1 was found in gastric carcinoma cells and tissues, and it was associated with poor prognosis. Silencing PRIM1 inhibited cell proliferation, arrested the cell cycle, and upregulated Cdc25, Cyclin B, and Cdc2 expression. In addition, apoptosis was increased upon PRIM1 knockdown, accompanied by increased protein levels of cleaved caspase-3 and caspase-8. In vivo, knockdown of PRIM1 suppressed the growth of xenograft tumors formed by gastric carcinoma cells. Moreover, PRIM1 silencing elevated the chemosensitivity of gastric carcinoma cells. By investigating molecular events downstream of the Hippo signaling pathway, we found that PRIM1 was a target gene of the YAP1/TEAD4 transcriptional regulatory complex. PRIM1 represents a novel target for gastric carcinoma therapeutic approaches.
Collapse
Affiliation(s)
- Zijun Guo
- Department of Operating Room, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
10
|
Dagogo-Jack I. Targeted Approaches to Treatment of Pleural Mesothelioma: A Review. JCO Precis Oncol 2023; 7:e2300344. [PMID: 37992257 PMCID: PMC10681489 DOI: 10.1200/po.23.00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Pleural mesothelioma is an aggressive disease that is enriched for inactivating alterations in tumor suppressor genes. Systemic therapeutic strategies for pleural mesothelioma generally involve chemotherapies and immunotherapies that are chosen without consideration of the tumor's molecular profile. As this generalized approach to treatment rarely yields durable responses, alternative therapeutic regimens are urgently indicated. Preclinical studies have identified synthetic lethal protein and metabolic interactions, recurrently overexpressed proteins, and frequent pathway perturbations that may be therapeutically exploited in mesothelioma. This review discusses the mechanism of action of emerging investigational therapies and summarizes findings from phase I-II clinical trials exploring selective, biomarker-driven therapeutic strategies for mesothelioma, with a focus on five common targets. Finally, using lessons learned from these clinical trials, imperatives for successful implementation of targeted therapy in mesothelioma are discussed.
Collapse
Affiliation(s)
- Ibiayi Dagogo-Jack
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Assié JB, Jean D. Pleural mesothelioma: a snapshot of emerging drug targets and opportunities for non-surgical therapeutic advancement. Expert Opin Ther Targets 2023; 27:1059-1069. [PMID: 37902459 DOI: 10.1080/14728222.2023.2277224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Pleural mesothelioma is a rare and aggressive cancer originating in the pleura, with a devastating prognosis and limited treatment options. There have been significant advancements in the management of this disease in recent years. Since 2021, nivolumab and ipilimumab immune checkpoint inhibitors have become the new standard of care for first-line treatment of pleural mesothelioma. AREAS COVERED While a combination of chemotherapy and immune checkpoint inhibitors appears to be the next step, targeted therapies are emerging thanks to our understanding of the oncogenesis of pleural mesothelioma. Moreover, several new strategies are currently being investigated, including viral therapy, antibody-drug conjugates, and even cell therapies with CAR-T cells or dendritic cells. In this review, we will explore the various future opportunities that could potentially transform patients' lives in light of the clinical trials that have been conducted. EXPERT OPINION Future clinical studies aim to rebiopsy patients after disease progression to identify new molecular alterations and to be associated with ancillary studies, guiding subsequent therapy decisions. Predicting and investigating treatment resistance mechanisms will lead to innovative approaches and improved treatment outcomes.
Collapse
Affiliation(s)
- Jean-Baptiste Assié
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
- GRC OncoThoParisEst, Service de Pneumologie, Centre Hospitalier IntercommunaI, UPEC, Créteil, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
| |
Collapse
|
12
|
Tammaccaro SL, Prigent P, Le Bail JC, Dos-Santos O, Dassencourt L, Eskandar M, Buzy A, Venier O, Guillemot JC, Veeranagouda Y, Didier M, Spanakis E, Kanno T, Cesaroni M, Mathieu S, Canard L, Casse A, Windenberger F, Calvet L, Noblet L, Sidhu S, Debussche L, Moll J, Valtingojer I. TEAD Inhibitors Sensitize KRASG12C Inhibitors via Dual Cell Cycle Arrest in KRASG12C-Mutant NSCLC. Pharmaceuticals (Basel) 2023; 16:ph16040553. [PMID: 37111311 PMCID: PMC10142471 DOI: 10.3390/ph16040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
KRASG12C is one of the most common mutations detected in non-small cell lung cancer (NSCLC) patients, and it is a marker of poor prognosis. The first FDA-approved KRASG12C inhibitors, sotorasib and adagrasib, have been an enormous breakthrough for patients with KRASG12C mutant NSCLC; however, resistance to therapy is emerging. The transcriptional coactivators YAP1/TAZ and the family of transcription factors TEAD1-4 are the downstream effectors of the Hippo pathway and regulate essential cellular processes such as cell proliferation and cell survival. YAP1/TAZ-TEAD activity has further been implicated as a mechanism of resistance to targeted therapies. Here, we investigate the effect of combining TEAD inhibitors with KRASG12C inhibitors in KRASG12C mutant NSCLC tumor models. We show that TEAD inhibitors, while being inactive as single agents in KRASG12C-driven NSCLC cells, enhance KRASG12C inhibitor-mediated anti-tumor efficacy in vitro and in vivo. Mechanistically, the dual inhibition of KRASG12C and TEAD results in the downregulation of MYC and E2F signatures and in the alteration of the G2/M checkpoint, converging in an increase in G1 and a decrease in G2/M cell cycle phases. Our data suggest that the co-inhibition of KRASG12C and TEAD leads to a specific dual cell cycle arrest in KRASG12C NSCLC cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Armelle Buzy
- Bio Structure and Biophysics, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Olivier Venier
- Small Molecules Medicinal Chemistry, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Jean-Claude Guillemot
- Genomics and Proteomics, Translational Sciences, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Yaligara Veeranagouda
- Genomics and Proteomics, Translational Sciences, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Michel Didier
- Genomics and Proteomics, Translational Sciences, Sanofi R&D, 91380 Chilly-Mazarin, France
| | | | - Tokuwa Kanno
- Precision Oncology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Matteo Cesaroni
- Precision Oncology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Stephane Mathieu
- Molecular & Digital Histopathology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Luc Canard
- Molecular & Digital Histopathology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Alhassan Casse
- Molecular & Digital Histopathology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Fanny Windenberger
- Non-Clinical Efficacy and Safety, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | | | | | | | | | - Jurgen Moll
- Oncology, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | | |
Collapse
|
13
|
Pobbati AV, Kumar R, Rubin BP, Hong W. Therapeutic targeting of TEAD transcription factors in cancer. Trends Biochem Sci 2023; 48:450-462. [PMID: 36709077 DOI: 10.1016/j.tibs.2022.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673.
| |
Collapse
|