1
|
Qu L, Wang F, Wang Y, Li Z. The regulation of LRPs by miRNAs in cancer: influencing cancer characteristics and responses to treatment. Cancer Cell Int 2025; 25:182. [PMID: 40382654 PMCID: PMC12085831 DOI: 10.1186/s12935-025-03804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP) family is a group of cell surface receptors that participate in a variety of biological processes, including lipid metabolism, Wnt signaling, and bone metabolism. miRNAs are small non-coding RNA molecules that regulate gene expression and play a role in many biological processes, including the occurrence and development of tumors. Accumulating evidence demonstrates that LRP members are modulated by miRNAs across multiple cancer types, influencing key oncogenic processes-including tumor cell proliferation, apoptosis suppression, extracellular matrix remodeling, cell adhesion, and angiogenesis. The LRPs, miRNAs, their upstream lncRNAs, and downstream signaling molecules often form complex signaling pathways to regulate the activity of tumor cells. However, the tissue-specific roles and mechanistic underpinnings of these pathways remain incompletely understood. When examining the emerging concept of the interaction between miRNAs and LRPs, we emphasize the significance of these complex regulatory layers in the initiation and progression of cancer. Collectively, these findings are critical for advancing our understanding of the role of the LRPs family in the occurrence and development of tumors, as well as for the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Lianyue Qu
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Fan Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Yuxiang Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zixuan Li
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
- Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
| |
Collapse
|
2
|
He J, Dong Y, Chen X, Wang S, Shen Z, Huang X, Li W, Yang Z, Cheng J, Li J, Liu Q, Xu Z, Sun D, Zhang W. Hypothyroidism induced by excessive-iodine is associated in humans with altered hsa-miR-199a-5p/HIF-1α axis and thyroglobulin. J Nutr Biochem 2025; 138:109841. [PMID: 39805372 DOI: 10.1016/j.jnutbio.2025.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The adverse effect of excessive iodine intake has attracted extensive attention. However, the role of excessive iodine on hypothyroidism and detailed mechanism are not exactly known. Studies have shown that miRNAs are crucial to the occurrence and development of hypothyroidism. Nevertheless, there still limited population-based studies on the miRNA-mRNA regulation in the occurrence of hypothyroidism induced by excessive iodine. Total of 291 hypothyroidism patients and 291 controls matched by sex (1:1) and age (±3 years) were enrolled from Heze City, Shandong Province. Multiple logistic regression analysis revealed that water iodine concentration of 100-300 µg/L was an independent risk factor for hypothyroidism. Additionally, excessive water iodine was associated with an increase in thyroglobulin (Tg) concentration in new diagnosed hypothyroidism patients. Further, high-throughput miRNA sequencing indicated that hsa-miR-19b-3p, hsa-miR-199a-5p, hsa-miR-204-5p and hsa-miR-144-3p were significantly correlated with the occurrence of hypothyroidism. Q-PCR results showed that levels of hsa-miR-199a-5p and hsa-miR-204-5p in the hypothyroidism group were markedly lower than those in the control group. In addition, among the hypothyroidism patients, hsa-miR-199a-5p level in water iodine >100 µg/L group was remarkably higher than that in 10-100 µg/L group. Furthermore, HIF-1α and PD-L1 mRNA levels in whole blood were determined, which are the target genes regulated by miRNA-199a-5p in previous studies. Compared with the control group, HIF-1α mRNA level was significantly increased in the hypothyroidism group. In the hypothyroidism case group, compared with the 10-100 µg/L group, HIF-1α mRNA level was remarkably decreased in water iodine >100 µg/L group. Collectively, miR-199a-5p/HIF-1α axis may contribute to hypothyroidism induced by excessive iodine through thyroglobulin.
Collapse
Affiliation(s)
- Jing He
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Yishan Dong
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Xianglan Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China; Guangdong Provincial People's Hospital Zhuhai Hospital, Zhuhai, Guangdong, China
| | - Shuo Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Zheng Shen
- Department of Public Health, Municipal Hospital of Heze, Heze, China
| | - Xu Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Weijia Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Zhihan Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Jin Cheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Jinyu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Qiaoling Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China
| | - Ziqi Xu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China; Jiaozhou Maternal and Child Health and Family Planning Service Centre, Qingdao, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China.
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China.
| |
Collapse
|
3
|
Zhang T, Yuan B, Yu S. The Application of microRNAs in Papillary Thyroid Cancer: A Bibliometric and Visualized Analysis. Int J Gen Med 2024; 17:4681-4699. [PMID: 39429957 PMCID: PMC11490214 DOI: 10.2147/ijgm.s487239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Thyroid cancer is the most common malignant endocrine tumor, with papillary thyroid carcinoma (PTC) being the most prevalent type, accounting for 85% of thyroid cancer cases. Here, we conducted a bibliometric analysis of the literature in the field of microRNAs in PTC research to demonstrate current trends and research hotspots, and present a visual map of past and emerging trends. Methods We searched the Web of Scientific Core Collection (WoSCC) database for publications from 1999 to 2023 centered on this field. Next, we employed visualization tools such as VOSviewer, CiteSpace, and Microsoft Excel 2019 to present co-occurrence and co-citation analyses, trends, hotspots, and visual representations of contributions from authors, institutions, journals, and countries/regions. Results The bibliometric analysis encompassed the period from 1999 to 2023, with 994 papers from 54 countries/regions. The country with the most publications and highest total citations was the People's Republic of China, but the United States held the highest average citation rate. Among the top ten productive institutions, the Ohio State University (Ohio State Univ) was the most prominent contributor to this field. The JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM (J Clin Endocrinol Metab) ranked first in terms of citation counts and average citations among the top ten productive journals. In terms of keywords, "circular RNAs", "promotes", and "progression" have become prominent research areas. Conclusion This study elucidates current trends, hotspots, and emerging frontiers in miRNA research within PTC, and provides new insights and guidance for future identification of new PTC biomarkers and clinical trials.
Collapse
Affiliation(s)
- Tinghua Zhang
- Department of Clinical Laboratory, the Second People’s Hospital of Huaihua City, Huaihua, Hunan, People’s Republic of China
| | - Bo Yuan
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Guangdong, Shenzhen, People’s Republic of China
| | - Shaofu Yu
- Department of Clinical Pharmacy, the Second People’s Hospital of Huaihua, Huaihua, Hunan, People’s Republic of China
| |
Collapse
|
4
|
Borowczak J, Łaszczych D, Olejnik K, Michalski J, Gutowska A, Kula M, Bator A, Sekielska-Domanowska M, Makarewicz R, Marszałek A, Szylberg Ł, Bodnar M. Tight Junctions and Cancer: Targeting Claudin-1 and Claudin-4 in Thyroid Pathologies. Pharmaceuticals (Basel) 2024; 17:1304. [PMID: 39458944 PMCID: PMC11509894 DOI: 10.3390/ph17101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Purpose: Claudins are tight junction proteins partaking in epithelial-mesenchymal transition and cancer progression. In this study, we investigated the expression patterns of claudin-1 and claudin-4 in thyroid pathologies, discussed their links with the pathogenesis of thyroid cancers, and reviewed the therapeutic potential of targeting claudins in cancers. Methods: The research group 162 cores of thyroid samples from patients (70 female and 11 male) diagnosed with thyroid adenoma, goiter, papillary, medullary, and anaplastic thyroid cancers. All samples were stained for the expression of claudin-1 and claudin-4, and the analysis of IHC was performed. Results: Goiter samples showed negative claudin-1 and mostly positive expression of claudin-4. Papillary thyroid cancer and thyroid adenoma showed positive expression of claudin-1, while claudin-4 was positive in papillary thyroid cancers, goiters, and adenomas. In The Cancer Genome Atlas cohort, claudin-1 and claudin-4 were overexpressed in papillary thyroid cancer compared to normal thyroid tissues. Patients with high claudin-1 expression had significantly lower 5-year overall survival than patients with low claudin-1 levels (86.75% vs. 98.65, respectively). In multivariate analysis, high claudin-1 expression (HR 7.91, CI 95% 1.79-35, p = 0.006) and advanced clinical stage remained statistically significant prognostic factors of poor prognosis in papillary thyroid cancer. Conclusions: The pattern of claudin-1 staining was pathology-specific and changed between cancers of different histology. This phenomenon may be associated with the different pathogenesis of thyroid cancers and early metastasis. The loss of claudin-1 and claudin-4 characterized more aggressive cancers. Several studies have shown the benefits of targeting claudins in cancers, but their implementation into clinical practice requires further trials.
Collapse
Affiliation(s)
- Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Dariusz Łaszczych
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Katarzyna Olejnik
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Jakub Michalski
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Anna Gutowska
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Monika Kula
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Anita Bator
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Marta Sekielska-Domanowska
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| | - Roman Makarewicz
- Department of Oncology and Brachytherapy, Collegium Medicum, Nicolaus Copernicus University, 85-796 Bydgoszcz, Poland
| | - Andrzej Marszałek
- Chair of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences and Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| |
Collapse
|
5
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
6
|
Yu B, Kruse N, Howard KM, Kingsley K. Downstream Target Analysis for miR-365 among Oral Squamous Cell Carcinomas Reveals Differential Associations with Chemoresistance. Life (Basel) 2024; 14:741. [PMID: 38929724 PMCID: PMC11205150 DOI: 10.3390/life14060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Expression of microRNAs, such as miR-365, is known to be dysregulated in many tumors, including oral cancers, although little is known about their role or functions. The objective of this project is to evaluate the downstream targets of miR-365 to determine any potential pathways or effects. Downstream targets for miR-365 (miRdatabase target scores > 90) were used for qPCR screening of oral cancer cell lines (SCC4, SCC9, SCC15, SCC25, CAL27). Each oral cancer cell line expressed miR-365 downstream targets molybdenum cofactor synthesis-2 (MOCS2), erythropoietin receptor (EPOR), IQ motif containing-K (IQCK), carboxypeptidase A3 (CPA3), solute carrier family 24 member-3 (SLC24A3), and coiled-coil domain containing 47 (CCDC47)-although the expression levels varied somewhat. However, differential results were observed with ubiquitin protein ligase E3 component n-recognin-3 (UBR3), nudix hydrolase-12 (NUDT12), zinc finger CCHC-type containing-14 (ZCCHC14), and homeobox and leucine zipper encoding (HOMEZ). These data suggest that many of the miR-365 targets are expressed in the oral cancers screened, with the differential expression of UBR3, ZCCHC14, HOMEZ, and NUDT12, which may be correlated with chemoresistance among two specific oral cancer cell lines (SCC25, SCC9). These results suggest this differential expression may signal potential targets for patient treatment with tumors exhibiting miR-365 and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Brendon Yu
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, 1700 W. Charleston Boulevard, Las Vegas, NV 89106, USA
| | - Nathaniel Kruse
- Department of Clinical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, 1700 W. Charleston Boulevard, Las Vegas, NV 89106, USA
| | - Katherine M. Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| |
Collapse
|
7
|
Geng Y, Hua H, Xia Y, Zhou J, He J, Xu X, Zhao J. miR-199a-5p modulates choroidal neovascularization by regulating Wnt7b/Wnt/β-catenin signaling pathway. J Mol Histol 2024; 55:359-370. [PMID: 38662168 DOI: 10.1007/s10735-024-10194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Choroidal neovascularization (CNV) can be seen in many fundus diseases, and lead to fundus exudation, bleeding, or vision loss. miRNAs are vital regulator in CNV. miR-199a-5p has been proved to be involved in regulating vascular formation of endothelial cells, but its role in CNV remains unclear. This study aims to study the role of miR-199a-5p in CNV. Laser irradiation was used to induce CNV model. The lesion area of CNV was calculated by high-resolution angiography with fluorescein isothiocyanate-dextran. Wnt family member 7b (Wnt7b), β-catenin, and Wnt pathway proteins was measured by western blot. Immunofluorescence was performed to test Wnt7b, β-catenin, CD31, and p-p65. miR-199a-5p and Wnt7b mRNA were tested by reverse transcription real-time polymerase chain reaction. Cell count kit-8, wound healing, Transwell, tube formation, and flow cytometry were used to detect the function of miR-199a-5p and Wnt7b on human retinal microvascular endothelial cells (HRMEC). TargetScan database and dual-luciferase reporter assay verified the interaction between miR-199a-5p and Wnt7b. The results revealed that Wnt7b increased in CNV rats. Knocking down Wnt7b repressed cell proliferation, migration, invasion, and angiogenesis, and accelerated cell apoptosis of HRMEC. Dual-luciferase reporter assay verified that miR-199a-5p targeted Wnt7b. Overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC and promoted cell apoptosis by inhibiting Wbt7b. In vivo experiment found that Wnt7b rescued the promotion of miR-199a-5p inhibition on CNV lesion of rats. In addition, Wnt7b positively regulated Wnt/β-catenin signaling pathway and promoted the angiogenesis of HRMEC. In conclusion, overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC by regulating Wnt7b/Wnt/β-catenin signaling pathway, which may serve as a promising therapy target of CNV.
Collapse
Affiliation(s)
- Yu Geng
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - HaiRong Hua
- Department of Pathology, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yuan Xia
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Jie Zhou
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Jian He
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - XingYu Xu
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - JianFeng Zhao
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
8
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Komatsuda H, Kono M, Wakisaka R, Sato R, Inoue T, Kumai T, Takahara M. Harnessing Immunity to Treat Advanced Thyroid Cancer. Vaccines (Basel) 2023; 12:45. [PMID: 38250858 PMCID: PMC10820966 DOI: 10.3390/vaccines12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The incidence of thyroid cancer (TC) has increased over the past 30 years. Although differentiated thyroid cancer (DTC) has a good prognosis in most patients undergoing total thyroidectomy followed by radioiodine therapy (RAI), 5-10% of patients develop metastasis. Anaplastic thyroid cancer (ATC) has a low survival rate and few effective treatments have been available to date. Recently, tyrosine kinase inhibitors (TKIs) have been successfully applied to RAI-resistant or non-responsive TC to suppress the disease. However, TC eventually develops resistance to TKIs. Immunotherapy is a promising treatment for TC, the majority of which is considered an immune-hot malignancy. Immune suppression by TC cells and immune-suppressing cells, including tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, is complex and dynamic. Negative immune checkpoints, cytokines, vascular endothelial growth factors (VEGF), and indoleamine 2,3-dioxygenase 1 (IDO1) suppress antitumor T cells. Basic and translational advances in immune checkpoint inhibitors (ICIs), molecule-targeted therapy, tumor-specific immunotherapy, and their combinations have enabled us to overcome immune suppression and activate antitumor immune cells. This review summarizes current findings regarding the immune microenvironment, immunosuppression, immunological targets, and immunotherapy for TC and highlights the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
10
|
Xie F, Li L, Peng M, Zhang H. Overexpression of miR-199a-5p improves brain injury in newborn rats with intrauterine infection via inhibition of astrocyte activation. Brain Res 2023; 1820:148560. [PMID: 37648092 DOI: 10.1016/j.brainres.2023.148560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
White matter injury is the most common form of brain injury in preterm infants. In addition to hypoxia ischemia, intrauterine infection is most closely related to brain white matter injury. Our study aimed to explore the mechanism of the miR-199a-5p/HIF-1α axis on astrocyte activation and brain injury in newborn rats caused by intrauterine infection. The animal/cell model was established via escherichia coli infection/lipopolysaccharide induction, followed by the measurement of body weight, brain weight, and the pathological changes in brain tissues of newborn rats, and the pathological changes in placenta and uterus wall of pregnant rats. Also, the levels of GFAP, TNF-α, MDA, GSH, SOD, miR-199a-5p, and HIF-1α were detected though corresponding assays or kits. In vitro, cell viability and apoptosis and the levels of IL-6 and TNF-α were evaluated in astrocytes. Moreover, the targeting relationship between miR-199a-5p and HIF-1α was verified. miR-199a-5p was lowly expressed in the brain tissues of newborn rats with intrauterine infection. Overexpression of miR-199a-5p relieved the injury of placenta and uterus wall in pregnant rats and brain injury in newborn rats, accompanied by decreased HIF-1α, GFAP, TNF-α, and MDA levels and increased GSH and SOD levels. Results from cell models showed that miR-199a-5p overexpression inhibited astrocyte activation, shown by enhanced cell viability, weakened cell apoptosis, and decreased GFAP, IL-6, and TNF-α. Mechanistically, miR-199a-5p targeted HIF-1α to decrease its expression. Collectively, miR-199a-5p inhibited astrocyte activation and alleviated brain injury in newborn rats with intrauterine infection by reducing HIF-1α expression.
Collapse
Affiliation(s)
- Fan Xie
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, NO.745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, PR China
| | - Li Li
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, NO.745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, PR China
| | - Min Peng
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, NO.745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, PR China.
| | - Huan Zhang
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, NO.745 Wuluo Road, Hongshan District, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
11
|
Luvhengo TE, Bombil I, Mokhtari A, Moeng MS, Demetriou D, Sanders C, Dlamini Z. Multi-Omics and Management of Follicular Carcinoma of the Thyroid. Biomedicines 2023; 11:biomedicines11041217. [PMID: 37189835 DOI: 10.3390/biomedicines11041217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Follicular thyroid carcinoma (FTC) is the second most common cancer of the thyroid gland, accounting for up to 20% of all primary malignant tumors in iodine-replete areas. The diagnostic work-up, staging, risk stratification, management, and follow-up strategies in patients who have FTC are modeled after those of papillary thyroid carcinoma (PTC), even though FTC is more aggressive. FTC has a greater propensity for haematogenous metastasis than PTC. Furthermore, FTC is a phenotypically and genotypically heterogeneous disease. The diagnosis and identification of markers of an aggressive FTC depend on the expertise and thoroughness of pathologists during histopathological analysis. An untreated or metastatic FTC is likely to de-differentiate and become poorly differentiated or undifferentiated and resistant to standard treatment. While thyroid lobectomy is adequate for the treatment of selected patients who have low-risk FTC, it is not advisable for patients whose tumor is larger than 4 cm in diameter or has extensive extra-thyroidal extension. Lobectomy is also not adequate for tumors that have aggressive mutations. Although the prognosis for over 80% of PTC and FTC is good, nearly 20% of the tumors behave aggressively. The introduction of radiomics, pathomics, genomics, transcriptomics, metabolomics, and liquid biopsy have led to improvements in the understanding of tumorigenesis, progression, treatment response, and prognostication of thyroid cancer. The article reviews the challenges that are encountered during the diagnostic work-up, staging, risk stratification, management, and follow-up of patients who have FTC. How the application of multi-omics can strengthen decision-making during the management of follicular carcinoma is also discussed.
Collapse
Affiliation(s)
- Thifhelimbilu Emmanuel Luvhengo
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Ifongo Bombil
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg 1864, South Africa
| | - Arian Mokhtari
- Department of Surgery, Dr. George Mukhari Academic Hospital, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0208, South Africa
| | - Maeyane Stephens Moeng
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Demetra Demetriou
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Claire Sanders
- Department of Surgery, Helen Joseph Hospital, University of the Witwatersrand, Auckland Park, Johannesburg 2006, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|