1
|
Terra ML, Sant’Anna TBF, de Barros JJF, de Araujo NM. Geographic and Viral Etiology Patterns of TERT Promoter and CTNNB1 Exon 3 Mutations in Hepatocellular Carcinoma: A Comprehensive Review. Int J Mol Sci 2025; 26:2889. [PMID: 40243493 PMCID: PMC11988703 DOI: 10.3390/ijms26072889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and a leading cause of cancer-related mortality worldwide. Genetic alterations play a critical role in hepatocarcinogenesis, with mutations in the telomerase reverse transcriptase promoter (TERTp) and CTNNB1 exon 3 representing two of the most frequently reported somatic events in HCC. However, the frequency and distribution of these mutations vary across geographic regions and viral etiologies, particularly hepatitis B virus (HBV) and hepatitis C virus (HCV). This study aimed to assess the global distribution and etiological associations of TERTp and CTNNB1 exon 3 mutations in HCC through a comprehensive literature review. Our analysis, encompassing over 4000 HCC cases, revealed that TERTp mutations were present in 49.2% of tumors, with C228T being the predominant variant (93.3% among mutated cases). A striking contrast was observed between viral etiologies: TERTp mutations were detected in 31.6% of HBV-related HCCs, compared to 66.2% in HCV-related cases. CTNNB1 exon 3 mutations were identified in 23.1% of HCCs, showing a similar association with viral etiology, being more common in HCV-related cases (30.7%) than in HBV-related tumors (12.8%). Geographically, both mutations exhibited comparable patterns, with higher frequencies in Europe, Japan, and the USA, while lower rates were observed in China, Taiwan, and South Korea. Our findings underscore the distinct molecular profiles of HCC according to viral etiology and geographic origin, highlighting the need for region- and etiology-specific approaches to HCC prevention, diagnosis, and targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Natalia Motta de Araujo
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (M.L.T.); (T.B.F.S.); (J.J.F.d.B.)
| |
Collapse
|
2
|
Shu Q, Zhu J, Mo J, Wei X, Zhu Z, Chen X, He F, Zhong L. Identification and validation of PANoptosis-related LncRNAs prognosis system in hepatocellular carcinoma. Sci Rep 2025; 15:6030. [PMID: 39972122 PMCID: PMC11840146 DOI: 10.1038/s41598-025-90498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common solid malignancies in the world. Due to the limited effectiveness of current drug treatments, further research on HCC is necessary. PANoptosis is defined as an inflammatory RCD whose main features combine pyroptosis, apoptosis and necroptosis which cannot be explained by any of these three RCDs alone. In HCC, risk stratification based on PANoptosis-associated lncRNAs has clinical application potential. In this study, we explored HCC related PANoptosis-related lncRNAs (PRLs) by analyzing significantly differentially expressed genes in HCC. HCC-associated PRL scores were established by WGCNA, LASSO analysis and multivariate Cox assessment. Subsequently, we verified the prognostic analysis ability of PRL score for HCC patients, and on this basis established a prognostic risk assessment model for HCC and verified its reliability. The relationship between PRL score and immune infiltration as well as drug sensitivity was further analyzed to evaluate the clinical reference value of this model. Western blot analysis and PCR further verified the reliability of bioinformatics results. The observed suppression of HCC progression and invasiveness following selected PRL knockdown further validated the reliability of our bioinformatics analysis results. Our results provide new evidence for the role of PANoptosis-associated lncRNAs in HCC.
Collapse
Affiliation(s)
- Qi Shu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Junfeng Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jiaping Mo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiaoyan Wei
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhenjie Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiaojuan Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Fugen He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Like Zhong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
3
|
Sun P, Gu KJ, Zheng G, Sikora AG, Li C, Zafereo M, Wei P, Wu J, Shete S, Liu J, Li G. Genetic variations associated with telomere length predict the risk of recurrence of non-oropharyngeal head and neck squamous cell carcinoma. Mol Carcinog 2024; 63:1722-1737. [PMID: 38837510 DOI: 10.1002/mc.23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Genetic factors underlying lymphocyte telomere length (LTL) may provide insights into genomic stability and integrity, with direct links to susceptibility to cancer recurrence. Polymorphisms in telomere-associated genes are strongly associated with LTL and cancer risk, while few large studies have explored the associations between LTL-related polymorphisms and recurrence risk of non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC). Totally 1403 non-OPHNSCC patients were recruited and genotyped for 16 LTL-related polymorphisms identified by genome-wide association studies. Univariate and multivariate analyzes were performed to evaluate associations between the polymorphisms and non-OPHNSCC recurrence risk. Patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes exhibited shorter DFS than those with the rs755017 AA, rs2487999 CC, rs2736108 CC, or s6772228 TT genotypes, respectively (all log-rank p < 0.05). Multivariable analysis confirmed an increased risk of recurrence for patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes (adjusted hazard ratio [aHR]: 1.66, 95% confidence interval [CI]: 1.32-2.07; aHR: 1.77, 95% CI: 1.41-2.23; aHR: 1.56, 95% CI: 1.22-1.99; aHR: 1.52, 95% CI: 1.20-1.93, respectively). Further stratified analysis revealed stronger associations between these genotypes and recurrence risk in ever-smokers and patients undergoing chemoradiotherapy. The similar but particularly pronounced results were observed for the combined risk genotypes of the four significant polymorphisms. This is the first large study on non-OPHNSCC patients showing that LTL-related polymorphisms may modify risk of non-OPHNSCC recurrence individually and jointly, particularly when analyzed in the context of smoking status and personized treatment. Larger studies are needed to validate these results.
Collapse
Affiliation(s)
- Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyle J Gu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Guibin Zheng
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chao Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Mahadik JD, Fernandez RJ, Ramani NS. Metastatic hepatocellular carcinoma to the shoulder with an unknown primary. Indian J Gastroenterol 2024; 43:519-521. [PMID: 37450101 DOI: 10.1007/s12664-023-01383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Affiliation(s)
- Juhi D Mahadik
- Department of Pathology, Michael E. DeBakey VA Medical Center, 2002 Holcombe Blvd, Houston, TX, 77030, USA
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Ryan J Fernandez
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Nisha S Ramani
- Department of Pathology, Michael E. DeBakey VA Medical Center, 2002 Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Mallela VR, Rajtmajerová M, Trailin A, Liška V, Hemminki K, Ambrozkiewicz F. miRNA and lncRNA as potential tissue biomarkers in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:24-32. [PMID: 38075204 PMCID: PMC10700120 DOI: 10.1016/j.ncrna.2023.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 12/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is primary liver cancer, frequently diagnosed at advanced stages with limited therapeutic options. MicroRNAs (miRNAs) regulate target gene expression and through inhibitory competitive binding of miRNA influence cellular processes including carcinogenesis. Extensive evidence proved that certain miRNA's are specifically expressed in neoplastic tissues of HCC patients and are confirmed as important factors that can participate in the regulation of key signalling pathways in cancer cells. As such, miRNAs have a great potential in the clinical diagnosis and treatment of HCC and can improve the limitations of standard diagnosis and treatment. Long non-coding RNAs (lncRNAs) have a critical role in the development and progression of HCC. HCC-related lncRNAs have been demonstrated to exhibit abnormal expression and contribute to transformation process (such as proliferation, apoptosis, accelerated vascular formation, and gain of invasive potential) through their interaction with DNA, RNA, or proteins. LncRNAs can bind mRNAs to release their target mRNA and enable its translation. These lncRNA-miRNA networks regulate cancer cell expression and so its proliferation, apoptosis, invasion, metastasis, angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and autophagy. In this narrative review, we focus on miRNA and lncRNA in HCC tumor tissue and their interaction as current tools, and biomarkers and therapeutic targets unravelled in recent years.
Collapse
Affiliation(s)
- Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Marie Rajtmajerová
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
6
|
Hong H, Wehrle CJ, Zhang M, Fares S, Stitzel H, Garib D, Estfan B, Kamath S, Krishnamurthi S, Ma WW, Kuzmanovic T, Azzato E, Yilmaz E, Modaresi Esfeh J, Linganna MW, Khalil M, Pita A, Schlegel A, Kim J, Walsh RM, Miller C, Hashimoto K, Kwon DCH, Aucejo F. Circulating Tumor DNA Profiling in Liver Transplant for Hepatocellular Carcinoma, Cholangiocarcinoma, and Colorectal Liver Metastases: A Programmatic Proof of Concept. Cancers (Basel) 2024; 16:927. [PMID: 38473290 DOI: 10.3390/cancers16050927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION Circulating tumor DNA (ctDNA) is emerging as a promising, non-invasive diagnostic and surveillance biomarker in solid organ malignancy. However, its utility before and after liver transplant (LT) for patients with primary and secondary liver cancers is still underexplored. METHODS Patients undergoing LT for hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and colorectal liver metastases (CRLM) with ctDNA testing were included. CtDNA testing was conducted pre-transplant, post-transplant, or both (sequential) from 11/2019 to 09/2023 using Guardant360, Guardant Reveal, and Guardant360 CDx. RESULTS 21 patients with HCC (n = 9, 43%), CRLM (n = 8, 38%), CCA (n = 3, 14%), and mixed HCC/CCA (n = 1, 5%) were included in the study. The median follow-up time was 15 months (range: 1-124). The median time from pre-operative testing to surgery was 3 months (IQR: 1-4; range: 0-5), and from surgery to post-operative testing, it was 9 months (IQR: 2-22; range: 0.4-112). A total of 13 (62%) patients had pre-transplant testing, with 8 (62%) having ctDNA detected (ctDNA+) and 5 (32%) not having ctDNA detected (ctDNA-). A total of 18 (86%) patients had post-transplant testing, 11 (61%) of whom were ctDNA+ and 7 (33%) of whom were ctDNA-. The absolute recurrence rates were 50% (n = 5) in those who were ctDNA+ vs. 25% (n = 1) in those who were ctDNA- in the post-transplant setting, though this difference was not statistically significant (p = 0.367). Six (29%) patients (HCC = 3, CCA = 1, CRLM = 2) experienced recurrence with a median recurrence-free survival of 14 (IQR: 6-40) months. Four of these patients had positive post-transplant ctDNA collected following diagnosis of recurrence, while one patient had positive post-transplant ctDNA collected preceding recurrence. A total of 10 (48%) patients had sequential ctDNA testing, of whom n = 5 (50%) achieved ctDNA clearance (+/-). The remainder were ctDNA+/+ (n = 3, 30%), ctDNA-/- (n = 1, 10%), and ctDNA-/+ (n = 1, 11%). Three (30%) patients showed the acquisition of new genomic alterations following transplant, all without recurrence. Overall, the median tumor mutation burden (TMB) decreased from 1.23 mut/Mb pre-transplant to 0.00 mut/Mb post-transplant. CONCLUSIONS Patients with ctDNA positivity experienced recurrence at a higher rate than the ctDNA- patients, indicating the potential role of ctDNA in predicting recurrence after curative-intent transplant. Based on sequential testing, LT has the potential to clear ctDNA, demonstrating the capability of LT in the treatment of systemic disease. Transplant providers should be aware of the potential of donor-derived cell-free DNA and improved approaches are necessary to address such concerns.
Collapse
Affiliation(s)
- Hanna Hong
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Chase J Wehrle
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Mingyi Zhang
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sami Fares
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Henry Stitzel
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - David Garib
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Bassam Estfan
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Suneel Kamath
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Smitha Krishnamurthi
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wen Wee Ma
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Teodora Kuzmanovic
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Elizabeth Azzato
- Molecular Pathology and Cytogenomics, Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Emrullah Yilmaz
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Jamak Modaresi Esfeh
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Maureen Whitsett Linganna
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Mazhar Khalil
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Alejandro Pita
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Andrea Schlegel
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Jaekeun Kim
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - R Matthew Walsh
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Charles Miller
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Koji Hashimoto
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - David Choon Hyuck Kwon
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Federico Aucejo
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Zhang L, Chen ZY, Wei XX, Li JD, Chen G. What are the changes in the hotspots and frontiers of microRNAs in hepatocellular carcinoma over the past decade? World J Clin Oncol 2024; 15:145-158. [PMID: 38292666 PMCID: PMC10823937 DOI: 10.5306/wjco.v15.i1.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Emerging research suggests that microRNAs (miRNAs) play an important role in the development of hepatocellular carcinoma (HCC). A comprehensive analysis of recent research concerning miRNAs in HCC development could provide researchers with a valuable reference for further studies. AIM To make a comprehensive analysis of recent studies concerning miRNAs in HCC. METHODS All relevant publications were retrieved from the Web of Science Core Collection database. Bibliometrix software, VOSviewer software and CiteSpace software were used to visually analyze the distribution by time, countries, institutions, journals, and authors, as well as the keywords, burst keywords and thematic map. RESULTS A total of 9426 publications on this topic were found worldwide. According to the keywords analysis, we found that the studies of miRNAs focused on their expression level, effects, and mechanisms on the biological behaviour of HCC. Keywords bursting analysis showed that in the early years (2013-2017), "microRNA expression", "gene expression", "expression profile", "functional polymorphism", "circulating microRNA", "susceptibility" and "mir 21" started to attract attention. In the latest phase (2018-2022), the hot topics turned to "sorafenib resistance", "tumor microenvironment" and so on. CONCLUSION This study provides a comprehensive overview of the role of miRNAs in HCC development based on bibliometric analysis. The hotspots in this field focus on miRNAs expression level, effects, and mechanisms on the biological behavior of HCC. The frontiers turned to sorafenib resistance, tumor microenvironment and so on.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zu-Yuan Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Xian Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
8
|
Idrissi YA, Rajabi MR, Beumer JH, Monga SP, Saeed A. Exploring the Impact of the β-Catenin Mutations in Hepatocellular Carcinoma: An In-Depth Review. Cancer Control 2024; 31:10732748241293680. [PMID: 39428608 PMCID: PMC11528747 DOI: 10.1177/10732748241293680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, represents a major global health issue with significant clinical, economic, and psychological impacts. Its incidence continues to rise, driven by risk factors such as hepatitis B and C infections, nonalcoholic steatohepatitis, and various environmental influences. The Wnt/β-Catenin signaling pathway, frequently dysregulated in HCC, emerges as a promising therapeutic target. Critical genetic alterations, particularly in the CTNNB1 gene, involve mutations at key phosphorylation sites on β-catenin's N-terminal domain (S33, S37, T41, and S45) and in armadillo repeat domains (K335I and N387 K). These mutations impede β-catenin degradation, enhancing its oncogenic potential. In addition to genetic alterations, molecular and epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNAs, further influence β-catenin signaling and tumor progression. However, β-catenin activation alone is insufficient for hepatocarcinogenesis; additional genetic "hits" are required for tumor initiation. Mutations or alterations in genes such as Ras, c-Met, NRF2, and LKB1, when combined with β-catenin activation, significantly contribute to HCC development and progression. Understanding these cooperative mutations provides crucial insights into the disease and reveals potential therapeutic strategies. The complex interplay between genetic variations and the tumor microenvironment, coupled with novel therapeutic approaches targeting the Wnt/β-Catenin pathway, offers promise for improved treatment of HCC. Despite advances, translating preclinical findings into clinical practice remains a challenge. Future research should focus on elucidating how specific β-catenin mutations and additional genetic alterations contribute to HCC pathogenesis, leveraging genetically clengineered mouse models to explore distinct signaling impacts, and identifying downstream targets. Relevant clinical trials will be essential for advancing personalized therapies and enhancing patient outcomes. This review provides a comprehensive analysis of β-Catenin signaling in HCC, highlighting its role in pathogenesis, diagnosis, and therapeutic targeting, and identifies key research directions to improve understanding and clinical outcomes.
Collapse
Affiliation(s)
- Yassine Alami Idrissi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mohammad Reza Rajabi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jan H. Beumer
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Yu J, Ling S, Hong J, Zhang L, Zhou W, Yin L, Xu S, Que Q, Wu Y, Zhan Q, Bao J, Xu N, Liu Y, Chen K, Wei X, Liu Z, Feng T, Zhou L, Xie H, Wang S, Liu J, Zheng S, Xu X. TP53/mTORC1-mediated bidirectional regulation of PD-L1 modulates immune evasion in hepatocellular carcinoma. J Immunother Cancer 2023; 11:e007479. [PMID: 38030304 PMCID: PMC10689408 DOI: 10.1136/jitc-2023-007479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Immunotherapy has facilitated great breakthroughs in the treatment of hepatocellular carcinoma (HCC). However, the efficacy and response rate of immunotherapy are limited and vary among different patients with HCC. TP53 mutation substantially affects the expression of immune checkpoint molecules in multiple cancers. However, the regulatory relationship between programmed death ligand 1 (PD-L1) and TP53 is poorly studied in HCC. We aimed to elucidate the regulatory mechanism of PD-L1 in HCC with different TP53 statuses and to assess its role in modulating immune evasion in HCC. METHODS HCC mouse models and cell lines with different TP53 statuses were constructed. PD-L1 levels were detected by PCR, western blotting and flow cytometry. RNA-seqencing, immunoprecipitation, chromatin immunoprecipitation and transmission electron microscopy were used to elucidate the regulatory mechanism in HCC with different TP53 status. HCC mouse models and patient with HCC samples were analyzed to demonstrate the preclinical and clinical significance of the findings. RESULTS We report that loss of p53 promoted PD-L1 expression and reduced CD8+ T-cell infiltration in patient with HCC samples and mouse models. Mammalian target of rapamycin (mTOR) pathway was activated in p53-loss-of-function HCC or after knocking down TP53. The transcription factor E2F1 was found to bind to the p53 protein in TP53 wild-type HCC cells, and inhibiting mammalian target of rapamycin complex 1 (mTORC1) disrupted this binding and enhanced E2F1 translocation to the nucleus, where it bound to the PD-L1 promoter and transcriptionally upregulated PD-L1. In p53-loss-of-function HCC cells, autophagosomes were activated after mTORC1 suppression, promoting the degradation of PD-L1 protein. The combination of mTOR inhibitor and anti-PD-L1 antibody enhanced CD8+ T-cell infiltration and tumor suppression in TP53 wild-type HCC mouse models, but no benefit was observed in p53-loss-of-function HCC mouse models. In patients with TP53 wild-type HCC, PD-L1 levels were significantly higher in the high E2F1 group than in the low E2F1 group, and the low E2F1 level group had significantly superior survival. CONCLUSION We revealed the bidirectional regulatory mechanism of PD-L1 mediated by TP53/mTORC1 in HCC. The combination of mTOR inhibitor and anti-PD-L1 antibody could be a novel precise immunotherapy scheme for TP53 wild-type HCC.
Collapse
Affiliation(s)
- Jiongjie Yu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Sunbin Ling
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | | | - Lincheng Zhang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Wei Zhou
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Lu Yin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Shengjun Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Qingyang Que
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Yongfeng Wu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Qifan Zhan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Yuchen Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kangchen Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhikun Liu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Tingting Feng
- Department of Colorectal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| |
Collapse
|
10
|
Liu T, Wang Y, Li Z, Sun L, Yang K, Chen J, Han X, Qi L, Zhou X, Wang P. Establishment of a new molecular subtyping and prognostic signature with m6A/m5C/m1A/m7G regulatory genes for hepatocellular carcinoma. Heliyon 2023; 9:e21285. [PMID: 38027812 PMCID: PMC10660009 DOI: 10.1016/j.heliyon.2023.e21285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/19/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background RNA modification, including m6A, m5C, m1A, and m7G, participated in tumor progress. Therefore, the purpose of the present study was to explore the role of m6A/m5C/m1A/m7G regulatory genes in the prognosis and tumor microenvironment (TME) for hepatocellular carcinoma (HCC). Methods 71 m6A/m5C/m1A/m7G regulatory genes expression for HCC was detected, differentially expressed genes were screened, and molecular forms were classified by unsupervised consensus clustering. Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) analysis were applied to establish a prognostic signature. Time-dependent receiver operating characteristic (ROC) curves were evaluated for clinical effectiveness and accuracy of the prognostic hazard model. In cluster subtypes and risk models, the differences in prognosis, immune cell infiltration, immune checkpoint, immunotherapy, and drug sensitivity between different subtypes were evaluated. Results HCC patients were classified into two clusters (cluster 1 and cluster 2) according to the expression of 71 m6A/m5C/m1A/m7G regulatory genes. Cluster 1 had a poor prognosis and different immune cell infiltration. Cluster 1 had higher immune checkpoint expression and TIDE score than cluster 2. Subsequently, we construct a five-gene prognostic model of m6A/m5C/m1A/m7G regulatory genes (YTHDF2, YTHDF1,YBX1, TRMT61A, TRMT10C). The Kaplan-Meier and ROC curve analysis showed that the prognostic signature exhibited good predictability. The risk score was considered an independent poor prognostic index. The high-risk group had higher immune checkpoint expression and higher TIDE scores. 5-Fluorouracil, docetaxel, doxorubicin, etoposide, gemcitabine, paclitaxel, sorafenib, and vinblastine were more suitable for high-risk patients. ECM receptor interaction, cell cycle, and Leishmania infection were enriched in the high-risk group. Conclusion The clustering subgroups and prognostic model of m6A/m5C/m1A/m7G regulatory genes were linked with bad prognosis and TME for HCC, and had the potential to be a novel tool to evaluate the outcomes of HCC patients.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Yang Wang
- Department of General Surgical Department, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People’s Republic of China
| | - Zhizhao Li
- Department of Cardiovasology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Jiamin Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Xiaoyi Han
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Liming Qi
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing 100015, People's Republic of China
| |
Collapse
|
11
|
Gorji L, Brown ZJ, Pawlik TM. Mutational Landscape and Precision Medicine in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4221. [PMID: 37686496 PMCID: PMC10487145 DOI: 10.3390/cancers15174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common malignancy worldwide and exhibits a universal burden as the incidence of the disease continues to rise. In addition to curative-intent therapies such as liver resection and transplantation, locoregional and systemic therapy options also exist. However, existing treatments carry a dismal prognosis, often plagued with high recurrence and mortality. For this reason, understanding the tumor microenvironment and mutational pathophysiology has become the center of investigation for disease control. The use of precision medicine and genetic analysis can supplement current treatment modalities to promote individualized management of HCC. In the search for personalized medicine, tools such as next-generation sequencing have been used to identify unique tumor mutations and improve targeted therapies. Furthermore, investigations are underway for specific HCC biomarkers to augment the diagnosis of malignancy, the prediction of whether the tumor environment is amenable to available therapies, the surveillance of treatment response, the monitoring for disease recurrence, and even the identification of novel therapeutic opportunities. Understanding the mutational landscape and biomarkers of the disease is imperative for tailored management of the malignancy. In this review, we summarize the molecular targets of HCC and discuss the current role of precision medicine in the treatment of HCC.
Collapse
Affiliation(s)
- Leva Gorji
- Department of Surgery, Kettering Health Dayton, Dayton, OH 45405, USA;
| | - Zachary J. Brown
- Department of Surgery, Division of Surgical Oncology, New York University—Long Island, Mineola, NY 11501, USA;
| | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
13
|
Gao T, Li M, Wu D, Xiao N, Huang D, Deng L, Yang L, Tian C, Cao Y, Zhang J, Gu J, Yu Y. Exploring the pathogenesis of colorectal carcinoma complicated with hepatocellular carcinoma via microarray data analysis. Front Pharmacol 2023; 14:1201401. [PMID: 37383715 PMCID: PMC10293624 DOI: 10.3389/fphar.2023.1201401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background: Despite the increasing number of research endeavors dedicated to investigating the relationship between colorectal carcinoma (CRC) and hepatocellular carcinoma (HCC), the underlying pathogenic mechanism remains largely elusive. The aim of this study is to shed light on the molecular mechanism involved in the development of this comorbidity. Methods: The gene expression profiles of CRC (GSE90627) and HCC (GSE45267) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) of psoriasis and atherosclerosis, three kinds of analyses were performed, namely, functional annotation, protein-protein interaction (PPI) network and module construction, and hub gene identification, survival analysis and co-expression analysis. Results: A total of 150 common downregulated differentially expressed genes and 148 upregulated differentially expressed genes were selected for subsequent analyses. The significance of chemokines and cytokines in the pathogenesis of these two ailments is underscored by functional analysis. Seven gene modules that were closely connected were identified. Moreover, the lipopolysaccharide-mediated signaling pathway is intricately linked to the development of both diseases. Finally, 10 important hub genes were identified using cytoHubba, including CDK1, KIF11, CDC20, CCNA2, TOP2A, CCNB1, NUSAP1, BUB1B, ASPM, and MAD2L1. Conclusion: Our study reveals the common pathogenesis of colorectal carcinoma and hepatocellular carcinoma. These common pathways and hub genes may provide new ideas for further mechanism research.
Collapse
Affiliation(s)
- Tianqi Gao
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengping Li
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dailin Wu
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ni Xiao
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Huang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Deng
- Department of Oncology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lunwei Yang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Tian
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Cao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jihong Gu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yang Yu
- Department of Gastrointestinal and Thyroid Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Giunco S, Padovan M, Angelini C, Cavallin F, Cerretti G, Morello M, Caccese M, Rizzo B, d'Avella D, Della Puppa A, Chioffi F, De Bonis P, Zagonel V, De Rossi A, Lombardi G. Prognostic role and interaction of TERT promoter status, telomere length and MGMT promoter methylation in newly diagnosed IDH wild-type glioblastoma patients. ESMO Open 2023; 8:101570. [PMID: 37230028 PMCID: PMC10265608 DOI: 10.1016/j.esmoop.2023.101570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The clinical relevance of promoter mutations and single nucleotide polymorphism rs2853669 of telomerase reverse transcriptase (TERT) and telomere length in patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) patients remains unclear. Moreover, some studies speculated that TERT promoter status might influence the prognostic role of O6-methylguanine DNA methyltransferase (MGMT) promoter methylation in newly diagnosed GBM. We carried out a large study to investigate their clinical impact and their interaction in newly diagnosed GBM patients. PATIENTS AND METHODS We included 273 newly diagnosed IDH wild-type GBM patients who started treatment at Veneto Institute of Oncology IOV - IRCCS (Padua, Italy) from December 2016 to January 2020. TERT promoter mutations (-124 C>T and -146 C>T) and SNP rs2853669 (-245 T>C), relative telomere length (RTL) and MGMT methylation status were retrospectively assessed in this prospective cohort of patients. RESULTS Median overall survival (OS) of 273 newly diagnosed IDH wild-type GBM patients was 15 months. TERT promoter was mutated in 80.2% of patients, and most had the rs2853669 single nucleotide polymorphism as T/T genotype (46.2%). Median RTL was 1.57 (interquartile range 1.13-2.32). MGMT promoter was methylated in 53.4% of cases. At multivariable analysis, RTL and TERT promoter mutations were not associated with OS or progression-free survival (PFS). Notably, patients C carrier of rs2853669 (C/C+C/T genotypes) showed a better PFS compared with those with the T/T genotype (hazard ratio 0.69, P = 0.007). In terms of OS and PFS, all interactions between MGMT, TERT and RTL and between TERT and rs2853669 genotype were not statistically significant. CONCLUSIONS Our findings suggest the presence of the C variant allele at the rs2853669 of the TERT promoter as an attractive independent prognostic biomarker of disease progression in IDH wild-type GBM patients. RTL and TERT promoter mutational status were not correlated to survival regardless of MGMT methylation status.
Collapse
Affiliation(s)
- S Giunco
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - M Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - C Angelini
- Neurosurgery, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - F Cavallin
- Independent Statistician, Solagna, Italy
| | - G Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - M Morello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - M Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - B Rizzo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - D d'Avella
- Department of Neuroscience, Neurosurgery, University of Padua, Padua, Italy
| | - A Della Puppa
- Department of Neurosurgery, Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Careggi University Hospital, Florence, Italy
| | - F Chioffi
- Neurosurgery, Azienda Ospedaliera- Università Padova, Padua, Italy
| | - P De Bonis
- Neurosurgery, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - V Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - A De Rossi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - G Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| |
Collapse
|
15
|
Gao YX, Ning QQ, Yang PX, Guan YY, Liu PX, Liu ML, Qiao LX, Guo XH, Yang TW, Chen DX. Recent advances in recurrent hepatocellular carcinoma therapy. World J Hepatol 2023; 15:460-476. [PMID: 37206651 PMCID: PMC10190692 DOI: 10.4254/wjh.v15.i4.460] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, accounting for 75%-85% of cases. Although treatments are given to cure early-stage HCC, up to 50%-70% of individuals may experience a relapse of the illness in the liver after 5 years. Research on the fundamental treatment modalities for recurrent HCC is moving significantly further. The precise selection of individuals for therapy strategies with established survival advantages is crucial to ensuring better outcomes. These strategies aim to minimize substantial morbidity, support good life quality, and enhance survival for patients with recurrent HCC. For individuals with recurring HCC after curative treatment, no approved therapeutic regimen is currently available. A recent study presented novel approaches, like immunotherapy and antiviral medication, to improve the prognosis of patients with recurring HCC with the apparent lack of data to guide the clinical treatment. The data supporting several neoadjuvant and adjuvant therapies for patients with recurring HCC are outlined in this review. We also discuss the potential for future clinical and translational investigations.
Collapse
Affiliation(s)
- Yu-Xue Gao
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Qi-Qi Ning
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Peng-Xiang Yang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yuan-Yue Guan
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Peng-Xiang Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Meng-Lu Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Lu-Xin Qiao
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Xiang-Hua Guo
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Tong-Wang Yang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Academician Workstation, Changsha Medical University, Changsha 410219, Hunan Province, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - De-Xi Chen
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| |
Collapse
|
16
|
Huang B, Zhang P, Zhong YY, Wang K, Chen XM, Yu DJ. Transcriptional data analysis reveals the association between infantile hemangiomas and venous malformations. Front Genet 2022; 13:1045244. [PMID: 36338963 PMCID: PMC9626979 DOI: 10.3389/fgene.2022.1045244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Infantile hemangiomas (IH) and venous malformations (VM) are the most common types of vascular abnormalities that seriously affect the health of children. Although there is evidence that these two diseases share some common genetic changes, the underlying mechanisms need to be further studied. Methods: The microarray datasets of IH (GSE127487) and VM (GSE7190) were downloaded from GEO database. Extensive bioinformatics methods were used to investigate the common differentially expressed genes (DEGs) of IH and VM, and to estimate their Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Trough the constructing of protein-protein interaction (PPI) network, gene models and hub genes were obtained by using Cytoscape and STRING. Finally, we analyzed the co-expression and the TF-mRNA-microRNA regulatory network of hub genes. Results: A total of 144 common DEGs were identified between IH and VM. Functional analysis indicated their important role in cell growth, regulation of vasculature development and regulation of angiogenesis. Five hub genes (CTNNB1, IL6, CD34, IGF2, MAPK11) and two microRNA (has-miR-141-3p, has-miR-150-5p) were significantly differentially expressed between IH and normal control (p < 0.05). Conclusion: In conclusion, our study investigated the common DEGs and molecular mechanism in IH and VM. Identified hub genes and signaling pathways can regulate both diseases simultaneously. This study provides insight into the crosstalk of IH and VM and obtains several biomarkers relevant to the diagnosis and pathophysiology of vascular abnormalities.
Collapse
Affiliation(s)
- Biao Huang
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ping Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuan-Yuan Zhong
- Department of Health Management Center, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Kuan Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiao-Ming Chen
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Dao-Jiang Yu, ; Xiao-Ming Chen,
| | - Dao-Jiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Dao-Jiang Yu, ; Xiao-Ming Chen,
| |
Collapse
|