1
|
Lamsal R, Fischer G, Shyne M, Somani A. Non-invasive neurally adjusted ventilatory assist (NAVA) in the pediatric ICU: assessing optimal Edi compliance. Minerva Pediatr (Torino) 2025; 77:45-53. [PMID: 34333952 DOI: 10.23736/s2724-5276.21.06431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Bronchiolitis patients are supported with non-invasive conventional modalities (HFNC, CPAP and BiPAP). Neurally adjusted ventilatory assist (NAVA) is a newer mode which supports based on electrical activity of the diaphragm (Edi). It is unclear if non-invasive NAVA is used within optimal operational parameters. The study aim was to evaluate Edi compliance. METHODS A retrospective chart review of bronchiolitis patients admitted to the PICU from January 2015 to January 2018 was undertaken. NAVA compliance within optimal parameters (defined as Edi peak values between 5-15 µV and Edi min <1µV) was assessed as the primary outcome. Secondary outcomes included PICU length of stay (LOS), duration to minimal respiratory support (defined as 4 L/min or less on HFNC) and intubation rate in the conventional (non-NAVA) and non-invasive NAVA. RESULTS Sixty-three patients with a mean age of 6.89 months with 30 on NAVA and 33 on non-NAVA support were analyzed. Compliance with optimal Edi peak and Edi min was 50.4% (±37.5%) and 33.8% (±26.2%) respectively. Regression models for PICU LOS with minimal respiratory support and for 1 L/kg of HFNC showed adjusted R2=0.96 and 0.92, respectively. The mean PICU stay for NAVA was 146.00 hrs. (±66.26) versus 69.58 hrs. (±57.69) for the non-NAVA group (P<0.001). Duration to minimal respiratory support was 125.40 hrs, (±54.90) for NAVA versus 58.03 hrs, (±58.97) for non-NAVA group (P<0.001). A higher intubation rate was found in the NAVA group (13.33% versus 3.03%, P=0.296). CONCLUSIONS We found suboptimal compliance with operational parameters with non-invasive NAVA support. There was longer PICU LOS, time to minimal respiratory support in the NAVA compared to the non-NAVA support.
Collapse
Affiliation(s)
- Riwaaj Lamsal
- Division of Pediatric Critical Care, Department of Pediatrics, Masonic Children's Hospital, University of Minnesota, Minneapolis, MN, USA -
| | - Gwenyth Fischer
- Division of Pediatric Critical Care, Department of Pediatrics, Masonic Children's Hospital, University of Minnesota, Minneapolis, MN, USA
| | - Michael Shyne
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Arif Somani
- Division of Pediatric Critical Care, Department of Pediatrics, Masonic Children's Hospital, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Kuitunen I, Rannankari M, Räsänen K. Neurally adjusted ventilatory assist (NAVA) in neonatal and pediatric critical care-A scoping review of randomized controlled trials. Pediatr Pulmonol 2025; 60:e21525. [PMID: 39330622 PMCID: PMC11715137 DOI: 10.1002/ppul.27293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
We Aimed to analyze for which indications neurally adjusted ventilatory assist (NAVA) has been studied in pediatric patients by conducting a scoping review. PubMed, Scopus, and Web of Science databases were searched in September 2023. We included all randomized trials (including crossover, parallel, and cluster) comparing NAVA to other invasive ventilation modalities in children aged <18 years. We had three key outcomes. What have been the patient and disease groups where NAVA has been studied? What kind of trials and what has been the risk of bias in these randomized trials? What have been the most used outcomes and main findings? The risk of bias was assessed according to the risk of bias 2.0 tool. This review has been reported as preferred in PRISMA-ScR guidelines. After screening 367 abstracts, 27 full reports were assessed and finally 13 studies were included. Six studies were conducted in neonates and seven in older pediatric patients. Ten of the studies were crossover and three were parallel randomized. Overall risk of bias was low in two studies, had some concerns in six studies, and was high in five studies. Most issues came from the randomization process and bias in the selection of reported results. Most used outcomes were changes in clinical parameters or measurements (such as ventilation peak and mean airway pressures, oxygenation index), and ventilator synchrony. Three parallel group trials focused on ventilation duration. The majority of the studies found NAVA as a possible alternative ventilation strategy. Although NAVA is a widely used strategy in neonatal and pediatric intensive care the current literature has notable limitations due to the risk of bias in the original studies and lack of parallel studies focusing on clinical or cost-effectiveness outcomes.
Collapse
Affiliation(s)
- Ilari Kuitunen
- Institute of Clinical Medicine and Department of PediatricsUniversity of Eastern FinlandKuopioFinland
- Department of Pediatrics and NeonatologyKuopio University HospitalKuopioFinland
| | - Markus Rannankari
- Department of Pediatrics and NeonatologyKuopio University HospitalKuopioFinland
| | - Kati Räsänen
- Institute of Clinical Medicine and Department of PediatricsUniversity of Eastern FinlandKuopioFinland
- Department of Pediatrics and NeonatologyKuopio University HospitalKuopioFinland
| |
Collapse
|
3
|
Lin HZ, Lin YF, Zheng YR. Comparison of neurally adjusted ventilatory assist and synchronized intermittent mandatory ventilation in preterm infants after patent ductus arteriosus ligation: a retrospective study. BMC Pediatr 2024; 24:277. [PMID: 38678190 PMCID: PMC11055325 DOI: 10.1186/s12887-024-04727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE This study aimed to compare the efficacy of neurally adjusted ventilatory assist (NAVA) to synchronized intermittent mandatory ventilation (SIMV) in preterm infants requiring mechanical ventilation after patent ductus arteriosus (PDA) ligation. METHODS A retrospective analysis was conducted on intubated preterm infants who underwent PDA ligation at our hospital from July 2021 to January 2023. Infants were divided into NAVA or SIMV groups based on the ventilation mode after surgery. RESULTS Fifty preterm infants were included. During treatment, peak inspiratory pressure (PIP) and mean airway pressure (MAP) were lower with NAVA compared to SIMV (PIP: 19.1 ± 2.9 vs. 22.4 ± 3.6 cmH2O, P < 0.001; MAP: 9.1 ± 1.8 vs. 10.9 ± 2.7 cmH2O, P = 0.002). PaO2 and PaO2/FiO2 were higher with NAVA (PaO2: 94.0 ± 11.7 vs. 84.8 ± 15.8 mmHg, P = 0.031; PaO2/FiO2: 267 [220-322] vs. 232 [186-290] mmHg, P = 0.025). Less sedation was required with NAVA (midazolam: 1.5 ± 0.5 vs. 1.1 ± 0.3 μg/kg/min, P < 0.001). CONCLUSION Compared to SIMV, early use of NAVA post PDA ligation in preterm infants was associated with decreased PIP and MAP. Early NAVA was also associated with reduced sedation needs and improved oxygenation. However, further studies are warranted to quantify the benefits of NAVA ventilation.
Collapse
Affiliation(s)
- Hui-Zi Lin
- Department of Neonatology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, China
- Department of Neonatology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Women and Children's Hospital, Fuzhou, China
| | - Yun-Feng Lin
- Department of Neonatology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, China.
- Department of Neonatology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Women and Children's Hospital, Fuzhou, China.
| | - Yi-Rong Zheng
- Department of Cardiac Surgery, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Women and Children's Hospital, Fuzhou, China.
| |
Collapse
|
4
|
Gong X, Zhu L, Zhang M, Liu Y, Li C, Xu Z, Zheng J. Utilizing Spontaneous Ventilation Modes in Patients Underwent Corrective Surgery for Right Ventricular Outflow Tract Obstructive Congenital Heart Disease: A Crossover Study. Rev Cardiovasc Med 2023; 24:143. [PMID: 39076742 PMCID: PMC11273051 DOI: 10.31083/j.rcm2405143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 07/31/2024] Open
Abstract
Background This study aimed to determine whether the hemodynamics of patients with right ventricle outflow tract obstructive congenital heart disease (RVOTO-CHD) improve after corrective surgery by changing the ventilation mode. Methods Patients with RVOTO-CHD who underwent corrective surgery were enrolled in this study. Echocardiography and advanced hemodynamic monitoring were performed using the pulse indicator continuous cardiac output (PiCCO) technology in the pressure-regulated volume control (PRVC) mode, followed with switching to the pressure support ventilation (PSV) mode and neurally adjusted ventilatory assist (NAVA) mode in random order. Results Overall, 31 patients were enrolled in this study from April 2021 to October 2021. Notably, changing the ventilation mode from PRVC to a spontaneous mode (PSV or NAVA) led to better cardiac function outcomes, including right ventricular cardiac index (PRVC: 3.19 ± 1.07 L/min/ m 2 vs. PSV: 3.45 ± 1.32 L/min/ m 2 vs. NAVA: 3.82 ± 1.03 L/min/ m 2 , p < 0.05) and right ventricle contractility (tricuspid annular peak systolic velocity) (PRVC: 6.58 ± 1.40 cm/s vs. PSV: 7.03 ± 1.33 cm/s vs. NAVA: 7.94 ± 1.50 cm/s, p < 0.05), as detected via echocardiography. Moreover, in the NAVA mode, PiCCO-derived cardiac index (PRVC: 2.92 ± 0.54 L/min/ m 2 vs. PSV: 3.04 ± 0.56 L/min/ m 2 vs. NAVA: 3.20 ± 0.62 L/min/ m 2 , p < 0.05), stroke volume index (PRVC: 20.38 ± 3.97 mL/ m 2 vs. PSV: 21.23 ± 4.33 mL/ m 2 vs. NAVA: 22.00 ± 4.33 mL/ m 2 , p < 0.05), and global end diastolic index (PRVC: 295.74 ± 78.39 mL/ m 2 vs. PSV: 307.26 ± 91.18 mL/ m 2 vs. NAVA: 323.74 ± 102.87 mL/ m 2 , p < 0.05) improved, whereas extravascular lung water index significantly reduced (PRVC: 16.42 ± 7.90 mL/kg vs. PSV: 15.42 ± 5.50 mL/kg vs. NAVA: 14.4 ± 4.19 mL/kg, p < 0.05). Furthermore, peak inspiratory pressure, mean airway pressure, driving pressure, and compliance of the respiratory system improved in the NAVA mode. No deaths were reported in this study. Conclusions We found that utilizing spontaneous ventilator modes, especially the NAVA mode, after corrective surgery in patients with RVOTO-CHD may improve their right heart hemodynamics and respiratory mechanics. However, further randomized controlled trials are required to verify the advantages of spontaneous ventilation modes in such patients. Clinical Trial Registration NCT04825054.
Collapse
Affiliation(s)
- Xiaolei Gong
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Limin Zhu
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Mingjie Zhang
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Yujie Liu
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Chunxiang Li
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Zhuoming Xu
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Jinghao Zheng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| |
Collapse
|
5
|
Brandt JB, Mahlknecht A, Werther T, Ullrich R, Hermon M. Comparing ventilation modes by electrical impedance segmentography in ventilated children. J Clin Monit Comput 2022; 36:1795-1803. [PMID: 35165819 PMCID: PMC8853312 DOI: 10.1007/s10877-022-00828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Electrical impedance segmentography offers a new radiation-free possibility of continuous bedside ventilation monitoring. The aim of this study was to evaluate the efficacy and reproducibility of this bedside tool by comparing synchronized intermittent mandatory ventilation (SIMV) with neurally adjusted ventilatory assist (NAVA) in critically-ill children. In this prospective randomized case-control crossover trial in a pediatric intensive care unit of a tertiary center, including eight mechanically-ventilated children, four sequences of two different ventilation modes were consecutively applied. All children were randomized into two groups; starting on NAVA or SIMV. During ventilation, electric impedance segmentography measurements were recorded. The relative difference of vertical impedance between both ventilatory modes was measured (median 0.52, IQR 0-0.87). These differences in left apical lung segments were present during the first (median 0.58, IQR 0-0.89, p = 0.04) and second crossover (median 0.50, IQR 0-0.88, p = 0.05) as well as across total impedance (0.52 IQR 0-0.87; p = 0.002). During NAVA children showed a shift of impedance towards caudal lung segments, compared to SIMV. Electrical impedance segmentography enables dynamic monitoring of transthoracic impedance. The immediate benefit of personalized ventilatory strategies can be seen when using this simple-to-apply bedside tool for measuring lung impedance.
Collapse
Affiliation(s)
- Jennifer Bettina Brandt
- Division of Neonatology, Medical University of Vienna, Pediatric Intensive Care & Neuropediatrics, Vienna, Austria
| | - Alex Mahlknecht
- Hospital of the Brothers of St. John of God, Eisenstadt, Austria
| | - Tobias Werther
- Division of Neonatology, Medical University of Vienna, Pediatric Intensive Care & Neuropediatrics, Vienna, Austria
| | - Roman Ullrich
- Department for Anesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Hermon
- Division of Neonatology, Medical University of Vienna, Pediatric Intensive Care & Neuropediatrics, Vienna, Austria.
| |
Collapse
|
6
|
Abstract
Patient-ventilator asynchrony is very common in newborns. Achieving synchrony is quite challenging because of small tidal volumes, high respiratory rates, and the presence of leaks. Leaks also cause unreliable monitoring of respiratory metrics. In addition, ventilator adjustment must take into account that infants have strong vagal reflexes and demonstrate central apnea and periodic breathing, with a high variability in breathing pattern. Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation whereby the timing and amount of ventilatory assist is controlled by the patient's own neural respiratory drive. As NAVA uses the diaphragm electrical activity (Edi) as the controller signal, it is possible to deliver synchronized assist, both invasively and noninvasively (NIV-NAVA), to follow the variability in breathing pattern, and to monitor patient respiratory drive, independent of leaks. This article provides an updated review of the physiology and the scientific literature pertaining to the use of NAVA in children (neonatal and pediatric age groups). Both the invasive NAVA and NIV-NAVA publications since 2016 are summarized, as well as the use of Edi monitoring. Overall, the use of NAVA and Edi monitoring is feasible and safe. Compared with conventional ventilation, NAVA improves patient-ventilator interaction, provides lower peak inspiratory pressure, and lowers oxygen requirements. Evidence from several studies suggests improved comfort, less sedation requirements, less apnea, and some trends toward reduced length of stay and more successful extubation.
Collapse
Affiliation(s)
- Jennifer Beck
- Department of Critical Care, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B1W8, Canada; Department of Pediatrics, University of Toronto, Toronto, Canada; Institute for Biomedical Engineering and Science Technology (iBEST) at Ryerson University and St-Michael's Hospital, Toronto, Canada.
| | - Christer Sinderby
- Department of Critical Care, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B1W8, Canada; Institute for Biomedical Engineering and Science Technology (iBEST) at Ryerson University and St-Michael's Hospital, Toronto, Canada; Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Oda A, Parikka V, Lehtonen L, Azimi S, Porres I, Soukka H. Neurally adjusted ventilatory assist in ventilated very preterm infants: A crossover study. Pediatr Pulmonol 2021; 56:3857-3862. [PMID: 34437773 DOI: 10.1002/ppul.25639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To assess the effects of neurally adjusted ventilatory assist (NAVA) ventilation on oxygenation and respiratory parameters in preterm infants. STUDY DESIGN An observational crossover study with a convenience sample of 19 infants born before 30 gestational weeks. Study parameters were recorded during 3-h periods of both NAVA and conventional ventilation. The proportion of time peripheral oxygen saturation (SpO2 ) and cerebral regional oxygen saturation (cRSO2 ) were within their target ranges, plus the number and severity of desaturation episodes were analyzed. In addition, electrical activity of the diaphragm (Edi), neural respiratory rates, and peak inspiratory pressures (PIPs) were recorded. RESULTS Infants were born at a median age of 264/7 gestational weeks (range: 230/7 -293/7 ); the study was performed at a median age of 20 days (range: 1-82). The proportion of time SpO2 was within the target range, the number of peripheral desaturations or cRSO2 did not differ between the modes. However, the desaturation severity index was lower (131 vs. 152; p = .03) and fewer manual supplemental oxygen adjustments (1.3 vs. 2.2/h; p = .006) were needed during the period of NAVA ventilation following conventional ventilation. The mean Edi (8.1 vs. 11.4 µV; p < .006) and PIP values (14.9 vs. 19.1; p < .001) were lower during the NAVA mode. CONCLUSIONS Although NAVA ventilation did not increase the proportion of time with optimal saturation, it was associated with decreased diaphragmatic activity, lower PIPs, less severe hypoxemic events, and fewer manual oxygen adjustments in very preterm infants.
Collapse
Affiliation(s)
- Arata Oda
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Vilhelmiina Parikka
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.,Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Liisa Lehtonen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.,Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Sepinoud Azimi
- Department of Information Technology, Faculty of Natural Sciences and Technology, Åbo Akademi University, Turku, Finland
| | - Ivan Porres
- Department of Information Technology, Faculty of Natural Sciences and Technology, Åbo Akademi University, Turku, Finland
| | - Hanna Soukka
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.,Department of Clinical Medicine, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Miller AG, Bartle RM, Feldman A, Mallory P, Reyes E, Scott B, Rotta AT. A narrative review of advanced ventilator modes in the pediatric intensive care unit. Transl Pediatr 2021; 10:2700-2719. [PMID: 34765495 PMCID: PMC8578787 DOI: 10.21037/tp-20-332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 01/29/2023] Open
Abstract
Respiratory failure is a common reason for pediatric intensive care unit admission. The vast majority of children requiring mechanical ventilation can be supported with conventional mechanical ventilation (CMV) but certain cases with refractory hypoxemia or hypercapnia may require more advanced modes of ventilation. This paper discusses what we have learned about the use of advanced ventilator modes [e.g., high-frequency oscillatory ventilation (HFOV), high-frequency percussive ventilation (HFPV), high-frequency jet ventilation (HFJV) airway pressure release ventilation (APRV), and neurally adjusted ventilatory assist (NAVA)] from clinical, animal, and bench studies. The evidence supporting advanced ventilator modes is weak and consists of largely of single center case series, although a few RCTs have been performed. Animal and bench models illustrate the complexities of different modes and the challenges of applying these clinically. Some modes are proprietary to certain ventilators, are expensive, or may only be available at well-resourced centers. Future efforts should include large, multicenter observational, interventional, or adaptive design trials of different rescue modes (e.g., PROSpect trial), evaluate their use during ECMO, and should incorporate assessments through volumetric capnography, electric impedance tomography, and transpulmonary pressure measurements, along with precise reporting of ventilator parameters and physiologic variables.
Collapse
Affiliation(s)
- Andrew G Miller
- Duke University Medical Center, Durham, NC, USA.,Respiratory Care Services, Duke University Medical Center, Durham, NC, USA
| | - Renee M Bartle
- Duke University Medical Center, Durham, NC, USA.,Respiratory Care Services, Duke University Medical Center, Durham, NC, USA
| | - Alexandra Feldman
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Palen Mallory
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Edith Reyes
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Briana Scott
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Alexandre T Rotta
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
9
|
Spinazzola G, Costa R, De Luca D, Chidini G, Ferrone G, Piastra M, Conti G. Pressure Support Ventilation (PSV) versus Neurally Adjusted Ventilatory Assist (NAVA) in difficult to wean pediatric ARDS patients: a physiologic crossover study. BMC Pediatr 2020; 20:334. [PMID: 32631305 PMCID: PMC7338290 DOI: 10.1186/s12887-020-02227-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurally adjusted ventilatory assist (NAVA) is an innovative mode for assisted ventilation that improves patient-ventilator interaction in children. The aim of this study was to assess the effects of patient-ventilator interaction comparing NAVA with pressure support ventilation (PSV) in patients difficult to wean from mechanical ventilation after moderate pediatric acute respiratory distress syndrome (PARDS). METHODS In this physiological crossover study, 12 patients admitted in the Pediatric Intensive Care Unit (PICU) with moderate PARDS failing up to 3 spontaneous breathing trials in less than 7 days, were enrolled. Patients underwent three study conditions lasting 1 h each: PSV1, NAVA and PSV2. RESULTS The Asynchrony Index (AI) was significantly reduced during the NAVA trial compared to both the PSV1 and PSV2 trials (p = 0.001). During the NAVA trial, the inspiratory and expiratory trigger delays were significantly shorter compared to those obtained during PSV1 and PSV2 trials (Delaytrinspp < 0.001, Delaytrexpp = 0.013). These results explain the significantly longer Timesync observed during the NAVA trial (p < 0.001). In terms of gas exchanges, PaO2 value significantly improved in the NAVA trial with respect to the PSV trials (p < 0.02). The PaO2/FiO2 ratio showed a significant improvement during the NAVA trial compared to both the PSV1 and PSV2 trials (p = 0.004). CONCLUSIONS In this specific PICU population, presenting difficulty in weaning after PARDS, NAVA was associated with a reduction of the AI and a significant improvement in oxygenation compared to PSV mode. TRIAL REGISTRATION ClinicalTrial.gov Identifier: NCT04360590 "Retrospectively registered".
Collapse
Affiliation(s)
- Giorgia Spinazzola
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy.
| | - Roberta Costa
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
| | - Daniele De Luca
- Division of Pediatric and Neonatal Critical Care, South Paris University Hospital, Medical Centers "A. Beclere" Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Giovanna Chidini
- Pediatric Intensive Care Unit, Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuliano Ferrone
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
| | - Marco Piastra
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
| | - Giorgio Conti
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy.,Division of Pediatric and Neonatal Critical Care, South Paris University Hospital, Medical Centers "A. Beclere" Assistance Publique-Hopitaux de Paris (APHP), Paris, France.,Pediatric Intensive Care Unit, Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
10
|
Bonacina D, Bronco A, Nacoti M, Ferrari F, Fazzi F, Bonanomi E, Bellani G. Pressure support ventilation, sigh adjunct to pressure support ventilation, and neurally adjusted ventilatory assist in infants after cardiac surgery: A physiologic crossover randomized study. Pediatr Pulmonol 2019; 54:1078-1086. [PMID: 31004420 DOI: 10.1002/ppul.24335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVES We sought to compare gas exchange, respiratory mechanics, and asynchronies during pressure support ventilation (PSV), sigh adjunct to PSV (PSV SIGH), and neurally adjusted ventilatory assist (NAVA) in hypoxemic infants after cardiac surgery. DESIGN Prospective, single-center, crossover, randomized physiologic study. SETTING Tertiary-care pediatric intensive care unit. PATIENTS Fourteen hypoxemic infants (median age 11.5 days [8.7-74]). INTERVENTIONS The protocol begins with a 1 hour step of PSV, followed by two consecutive steps in PSV SIGH and NAVA in random order, with a washout period of 30 minutes (PSV) between them. MAIN RESULTS Three infants presented an irregular Eadi signal because of diaphragmatic paralysis and were excluded from analysis. For the remaining 11 infants, PaO2 /FiO 2 and oxygenation index improved in PSV SIGH compared with PSV (P < 0.05) but not in NAVA compared with PSV. PSV SIGH showed increased tidal volumes and lower respiratory rate than PSV (P < 0.05), as well as a significant improvement in compliance with respiratory system indexed to body weight when compared with both PSV and NAVA (P < 0.01). No changes in mean airway pressure was registered among steps. Inspiratory time resulted prolonged for both PSV SIGH and NAVA than PSV (P < 0.05). NAVA showed the higher coefficient of variability in respiratory parameters and a significative decrease in asynchrony index when compared with both PSV and PSV SIGH (P < 0.01). CONCLUSIONS The adjunct of one SIGH per minute to PSV improved oxygenation and lung mechanics while NAVA provided the best patient-ventilator synchrony in infants after cardiac surgery.
Collapse
Affiliation(s)
- Daniele Bonacina
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Alfio Bronco
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Mirco Nacoti
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Floriana Ferrari
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Francesco Fazzi
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Ezio Bonanomi
- Pediatric Intensive Care Unit, A.S.S.T. Papa Giovanni XXIII, Bergamo, Italy
| | - Giacomo Bellani
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.,Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| |
Collapse
|
11
|
Baez Hernandez N, Milad A, Li Y, Van Bergen AH. Utilization of Neurally Adjusted Ventilatory Assist (NAVA) Mode in Infants and Children Undergoing Congenital Heart Surgery: A Retrospective Review. Pediatr Cardiol 2019; 40:563-569. [PMID: 30600371 DOI: 10.1007/s00246-018-2027-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/29/2018] [Indexed: 01/15/2023]
Abstract
We assessed the feasibility and the impact of NAVA compared to conventional modes of mechanical ventilation in ventilatory and gas exchange parameters in post-operative children with congenital heart disease. Infants and children (age < 18 years) that underwent congenital heart surgery were enrolled. Patients were ventilated with conventional synchronized intermittent mechanical ventilation (SIMV) and subsequently transitioned to NAVA during their cardiovascular intensive care unit (CVICU) stay. The ventilatory and gas exchange parameters for the 24 h pre- and post-transition to NAVA were compared. Additional parameters assessed included pain scores and sedation requirements. Eighty-one patients met inclusion criteria with a median age of 21 days (interquartile range 13 days-2 months). The majority of patients enrolled (75.3%) had complex congenital heart disease with high surgical severity scores. The transition to NAVA was tolerated by all patients without complications. The mean peak inspiratory pressure (PIP) was 1.8 cm H2O lower (p < 0.001) and mean airway pressure (Paw) was 0.5 cm H2O lower (p = 0.009) on NAVA compared to conventional modes of mechanical ventilation. There was no significant difference in patients' respiratory rate, tidal volume, arterial pH, pCO2, and lactate levels between the two modes of ventilation. There was a decreased sedation requirement during the time of NAVA ventilation. Comfort scores did not differ significantly with ventilator mode change. We concluded that NAVA is safe and well-tolerated mode of mechanical ventilation for our cohort of patients after congenital heart surgery. Compared to conventional ventilation there was a statistically significant decrease in PIP and Paw on NAVA.
Collapse
Affiliation(s)
- Nathanya Baez Hernandez
- Advocate Children's Hospital, Advocate Children's Heart Institute, 4440 West 95th Street, Oak Lawn, IL, 60453, USA
| | - Abdulhamid Milad
- Advocate Children's Hospital, Advocate Children's Heart Institute, 4440 West 95th Street, Oak Lawn, IL, 60453, USA
| | - Yi Li
- Advocate Children's Hospital, Advocate Children's Heart Institute, 4440 West 95th Street, Oak Lawn, IL, 60453, USA
| | - Andrew H Van Bergen
- Advocate Children's Hospital, Advocate Children's Heart Institute, 4440 West 95th Street, Oak Lawn, IL, 60453, USA.
| |
Collapse
|
12
|
Abstract
Respiratory failure affects a significant percentage of critically ill children, necessitating both invasive and non-invasive respiratory support. As the outcomes of these patients have improved, children with higher acuity and more complex respiratory pathophysiology require mechanical ventilation. Despite growing understanding of lung-protective strategies and ventilation induced lung injury, certain patients still require harmful ventilatory settings with conventional mechanical ventilation (CMV). High frequency ventilation, neurally adjusted ventilatory assist, and airway pressure release ventilation offer feasible alternatives to CMV. In addition to minimizing the risk of ventilatory induced lung injury when used appropriately, they provide a unique environment to facilitate operations on certain neonates and older children. Finally, non-invasive ventilation is now commonly employed in children with surgical conditions.
Collapse
Affiliation(s)
- Ana Ruzic
- Department of Surgery, UK Healthcare Kentucky Children's Hospital, 800 Rose St, Lexington KY 40536, USA.
| |
Collapse
|