1
|
Chan NH, Hawkins CC, Rodrigues BV, Cornet M, Gonzalez FF, Wu YW. Neuroprotection for neonatal hypoxic-ischemic encephalopathy: A review of novel therapies evaluated in clinical studies. Dev Med Child Neurol 2025; 67:591-599. [PMID: 39563426 PMCID: PMC11965974 DOI: 10.1111/dmcn.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Therapeutic hypothermia is an effective therapy for moderate-to-severe hypoxic-ischemic encephalopathy (HIE) in infants born at term or near-term in high-resource settings. Yet there remains a substantial proportion of infants who do not benefit or who will have significant disability despite therapeutic hypothermia. Novel investigational therapies that may confer additional neuroprotection by targeting known pathogenic mechanisms of hypoxic-ischemic brain injury are under development. This review focuses on putative neuroprotective agents that have shown promise in animal models of HIE, and that have been translated to clinical studies in neonates with HIE. We include agents that have been studied both with and without concurrent therapeutic hypothermia. Our review therefore addresses not just neonatal HIE in high-resource countries where therapeutic hypothermia is the standard of care, but also neonatal HIE in low- and middle-income countries where therapeutic hypothermia has been shown to be ineffective, and where the greatest burden of HIE-related morbidity and mortality exists.
Collapse
Affiliation(s)
- Natalie H. Chan
- Department of PediatricsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Cheryl C. Hawkins
- Department of PediatricsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | | | | | - Yvonne W. Wu
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
2
|
Yang M, Wang K, Liu B, Shen Y, Liu G. Hypoxic-Ischemic Encephalopathy: Pathogenesis and Promising Therapies. Mol Neurobiol 2025; 62:2105-2122. [PMID: 39073530 DOI: 10.1007/s12035-024-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain lesion caused by inadequate blood supply and oxygen deprivation, often occurring in neonates. It has emerged as a grave complication of neonatal asphyxia, leading to chronic neurological damage. Nevertheless, the precise pathophysiological mechanisms underlying HIE are not entirely understood. This paper aims to comprehensively elucidate the contributions of hypoxia-ischemia, reperfusion injury, inflammation, oxidative stress, mitochondrial dysfunction, excitotoxicity, ferroptosis, endoplasmic reticulum stress, and apoptosis to the onset and progression of HIE. Currently, hypothermia therapy stands as the sole standard treatment for neonatal HIE, albeit providing only partial neuroprotection. Drug therapy and stem cell therapy have been explored in the treatment of HIE, exhibiting certain neuroprotective effects. Employing drug therapy or stem cell therapy as adjunctive treatments to hypothermia therapy holds great significance. This article presents a systematic review of the pathogenesis and treatment strategies of HIE, with the goal of enhancing the effect of treatment and improving the quality of life for HIE patients.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Guangliang Liu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
3
|
Huntingford SL, Boyd SM, McIntyre SJ, Goldsmith SC, Hunt RW, Badawi N. Long-Term Outcomes Following Hypoxic Ischemic Encephalopathy. Clin Perinatol 2024; 51:683-709. [PMID: 39095104 DOI: 10.1016/j.clp.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Hypoxic ischemic encephalopathy (HIE) is the most common cause of neonatal encephalopathy and results in significant morbidity and mortality. Long-term outcomes of the condition encompass impairments across all developmental domains. While therapeutic hypothermia (TH) has improved outcomes for term and late preterm infants with moderate to severe HIE, trials are ongoing to investigate the use of TH for infants with mild or preterm HIE. There is no evidence that adjuvant therapies in combination with TH improve long-term outcomes. Numerous trials of various adjuvant therapies are underway in the quest to further improve outcomes for infants with HIE.
Collapse
Affiliation(s)
- Simone L Huntingford
- Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia; Monash Newborn, Monash Health, 246 Clayton Road, Clayton, Victoria 3168, Australia; Paediatric Infant Perinatal Emergency Retrieval, Royal Children's Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia.
| | - Stephanie M Boyd
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Hawkesbury Road, Westmead, New South Wales 2145, Australia; Faculty of Medicine and Health, University of Sydney, Campderdown, New South Wales 2006, Australia
| | - Sarah J McIntyre
- CP Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Shona C Goldsmith
- CP Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rod W Hunt
- Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia; Monash Newborn, Monash Health, 246 Clayton Road, Clayton, Victoria 3168, Australia; CP Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Hawkesbury Road, Westmead, New South Wales 2145, Australia; CP Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Gao H, Jiang H. Current status and controversies in the treatment of neonatal hypoxic-ischemic encephalopathy: A review. Medicine (Baltimore) 2024; 103:e38993. [PMID: 39093737 PMCID: PMC11296446 DOI: 10.1097/md.0000000000038993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a type of traumatic brain injury caused by insufficient cerebral perfusion and oxygen supply in the perinatal neonate, which can be accompanied by different types of long-term neurodevelopmental sequelae, such as cerebral palsy, learning disabilities, mental retardation and epilepsy It is one of the main causes of neonatal death and disability, and it has caused a great burden on families and society. Therefore, this article mainly reviews the latest developments in mild hypothermia therapy and related drugs for neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
| | - Hong Jiang
- Department of Neonatology, Yanan University Affiliated Hospital, Shaanxi, Yan’an, China
| |
Collapse
|
5
|
Ranjan AK, Gulati A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2023; 12:6653. [PMID: 37892791 PMCID: PMC10607511 DOI: 10.3390/jcm12206653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition that results in brain damage in newborns due to insufficient blood and oxygen supply during or after birth. HIE is a major cause of neurological disability and mortality in newborns, with over one million neonatal deaths occurring annually worldwide. The severity of brain injury and the outcome of HIE depend on several factors, including the cause of oxygen deprivation, brain maturity, regional blood flow, and maternal health conditions. HIE is classified into mild, moderate, and severe categories based on the extent of brain damage and resulting neurological issues. The pathophysiology of HIE involves different phases, including the primary phase, latent phase, secondary phase, and tertiary phase. The primary and secondary phases are characterized by episodes of energy and cell metabolism failures, increased cytotoxicity and apoptosis, and activated microglia and inflammation in the brain. A tertiary phase occurs if the brain injury persists, characterized by reduced neural plasticity and neuronal loss. Understanding the cellular and molecular aspects of the different phases of HIE is crucial for developing new interventions and therapeutics. This review aims to discuss the pathophysiology of HIE, therapeutic hypothermia (TH), the only approved therapy for HIE, ongoing developments of adjuvants for TH, and potential future drugs for HIE.
Collapse
Affiliation(s)
- Amaresh K Ranjan
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
| | - Anil Gulati
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA
- College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
6
|
Victor S, Rocha-Ferreira E, Rahim A, Hagberg H, Edwards D. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. Eur J Pediatr 2022; 181:875-887. [PMID: 34820702 PMCID: PMC8897336 DOI: 10.1007/s00431-021-04320-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022]
Abstract
Around 0.75 million babies worldwide suffer from moderate or severe hypoxic-ischemic encephalopathy (HIE) each year resulting in around 400,000 babies with neurodevelopmental impairment. In 2010, neonatal HIE was associated with 2.4% of the total Global Burden of Disease. Therapeutic hypothermia (TH), a treatment that is now standard of care in high-income countries, provides proof of concept that strategies that aim to improve neurodevelopment are not only possible but can also be implemented to clinical practice. While TH is beneficial, neonates with moderate or severe HIE treated with TH still experience devastating complications: 48% (range: 44-53) combined death or moderate/severe disability. There is a concern that TH may not be effective in low- and middle-income countries. Therapies that further improve outcomes are desperately needed, and in high-income countries, they must be tested in conjunction with TH. We have in this review focussed on pharmacological treatment options (e.g. erythropoietin, allopurinol, melatonin, cannabidiol, exendin-4/exenatide). Erythropoietin and allopurinol show promise and are progressing towards the clinic with ongoing definitive phase 3 randomised placebo-controlled trials. However, there remain global challenges for the next decade. Conclusion: There is a need for more optimal animal models, greater industry support/sponsorship, increased use of juvenile toxicology, dose-ranging studies with pharmacokinetic-pharmacodynamic modelling, and well-designed clinical trials to avoid exposure to harmful medications or abandoning putative treatments. What is Known: • Therapeutic hypothermia is beneficial in neonatal hypoxic-ischemic encephalopathy. • Neonates with moderate or severe hypoxic-ischemic encephalopathy treated with therapeutic hypothermia still experience severe sequelae. What is New: • Erythropoietin, allopurinol, melatonin, cannabidiol, and exendin-4/exenatide show promise in conjunction with therapeutic hypothermia. • There is a need for more optimal animal models, greater industry support/sponsorship, increased use of juvenile toxicology, dose-ranging studies with pharmacokinetic-pharmacodynamic modelling, and well-designed clinical trials.
Collapse
Affiliation(s)
- Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, 1st Floor, South Wing, St Thomas’ Hospital, Westmister Bridge Road, London, UK
| | - Eridan Rocha-Ferreira
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ahad Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Henrik Hagberg
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, 1st Floor, South Wing, St Thomas’ Hospital, Westmister Bridge Road, London, UK
| |
Collapse
|
7
|
Abdel-Aziz SM, Rahman MSMA, Shoreit AH, Din MEE, Hamed EA, Gad EF. Outcome of Infants with Hypoxic-Ischemic Encephalopathy Treated by Whole Body Cooling and Magnesium Sulfate. JOURNAL OF CHILD SCIENCE 2021. [DOI: 10.1055/s-0041-1736562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTherapeutic hypothermia (TH) either by selective head cooling or whole-body cooling decreases brain damage and provide neuroprotection and reduced mortality rate in cases of moderate-to-severe hypoxia-ischemia encephalopathy (HIE) of newborns, especially if started at first 6 hours after birth. Also, management with adjuvant therapies like magnesium sulfate (MS) provides more neuroprotection. The interventional randomized controlled research aimed to assess short-term actions of TH as sole therapy and in combination with MS as a neuroprotective agent for the treatment of HIE newborn infants. A total of 36 full-terms and near-term infants delivered at Assiut University Children's Hospital and fulfilled HIE criteria were enrolled. They were divided equally into three groups; Group 1 (n = 12) received whole body cooling during first 6 hours of life as a sole therapy; Group 2 (n = 12) received whole body cooling in addition to MS as adjuvant therapy; Group 3 (n = 12) received supportive intensive care measures as a control. TH plus MS group (group 2) had a significantly good short-term outcomes as short period of respiratory support and mechanical ventilation (p-value =0.001), less in incidence of convulsion (p-value = 0.001) and early in feeding initiation (p-value = 0.009), compared with other groups managed by TH (group 1) or by supportive treatment (group 3). In conclusion, whole body cooling in addition to MS as adjunctive therapy for the treatment of HIE neonates is safe therapy that improves short-term outcome both clinically and radiologically.
Collapse
Affiliation(s)
- Safwat M. Abdel-Aziz
- Department of Pediatrics and Neonatology, Assiut University Children's Hospital, Assiut, Egypt
| | | | - Asmaa H. Shoreit
- Department of Pediatrics and Neonatology, Assiut University Children's Hospital, Assiut, Egypt
| | - Moustafa Ez El Din
- Department of Radiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Enas A. Hamed
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Fathalla Gad
- Department of Pediatrics and Neonatology, Assiut University Children's Hospital, Assiut, Egypt
| |
Collapse
|
8
|
Chakkarapani AA, Aly H, Benders M, Cotten CM, El-Dib M, Gressens P, Hagberg H, Sabir H, Wintermark P, Robertson NJ. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Semin Fetal Neonatal Med 2021; 26:101256. [PMID: 34154945 DOI: 10.1016/j.siny.2021.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In term and near-term neonates with neonatal encephalopathy, therapeutic hypothermia protocols are well established. The current focus is on how to improve outcomes further and the challenge is to find safe and complementary therapies that confer additional protection, regeneration or repair in addition to cooling. Following hypoxia-ischemia, brain injury evolves over three main phases (latent, secondary and tertiary), each with a different brain energy, perfusion, neurochemical and inflammatory milieu. While therapeutic hypothermia has targeted the latent and secondary phase, we now need therapies that cover the continuum of brain injury that spans hours, days, weeks and months after the initial event. Most agents have several therapeutic actions but can be broadly classified under a predominant action (e.g., free radical scavenging, anti-apoptotic, anti-inflammatory, neuroregeneration, and vascular effects). Promising early/secondary phase therapies include Allopurinol, Azithromycin, Exendin-4, Magnesium, Melatonin, Noble gases and Sildenafil. Tertiary phase agents include Erythropoietin, Stem cells and others. We review a selection of promising therapeutic agents on the translational pipeline and suggest a framework for neuroprotection and neurorestoration that targets the evolving injury.
Collapse
Affiliation(s)
| | - Hany Aly
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA.
| | - Manon Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - C Michael Cotten
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom.
| | - Henrik Hagberg
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom; Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Nicola J Robertson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, Edinburgh, United Kingdom; Institute for Women's Health, University College London, London, United Kingdom.
| | | |
Collapse
|
9
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
10
|
Yang G, Xue Z, Zhao Y. Efficacy of erythropoietin alone in treatment of neonates with hypoxic-ischemic encephalopathy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26365. [PMID: 34128891 PMCID: PMC8213261 DOI: 10.1097/md.0000000000026365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Multiple clinical trials have demonstrated the safety and efficacy of erythropoietin in improving neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy (HIE). It is undoubtedly urgent to include only randomized controlled trials (RCTs) for more standardized systematic reviews and meta-analyses. The purpose of this study is to examine whether erythropoietin reduces the risk of death and improve neurodevelopmental disorders in infants with HIE. METHODS The electronic databases of Cochrane Library, EMBASE, PubMed, and Web of Science were searched from the inception to June 2021 using the following key terms: "erythropoietin," "hypoxic-ischemic encephalopathy," and "prospective," for all relevant RCTs. Only English publications were included. The primary outcome was mortality rate. Secondary outcomes included neurodevelopmental disorders, brain injury, and cognitive impairment. The Cochrane risk of bias tool was independently used to evaluate the risk of bias of included RCTs by 2 reviewers. RESULTS We hypothesized that group with erythropoietin would provide better therapeutic benefits compared with control group. OSF REGISTRATION NUMBER 10.17605/OSF.IO/FERUS.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Shanxi Medical University
| | - Zhimin Xue
- Neonatal Medicine, Shanxi Children's Hospital, Shanxi, China
| | - Yuan Zhao
- Neonatal Medicine, Shanxi Children's Hospital, Shanxi, China
| |
Collapse
|
11
|
[Effect of astragaloside IV on the expression of NOD-like receptor protein 3 inflammasome in neonatal rats with hypoxic-ischemic brain damage]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23. [PMID: 33840414 PMCID: PMC8050542 DOI: 10.7499/j.issn.1008-8830.2010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the effect of astragaloside IV (AS-IV) on NOD-like receptor protein 3 (NLRP3) inflammasome in neonatal rats with hypoxic-ischemic brain damage (HIBD). METHODS A total of 24 Sprague-Dawley rats, aged 7 days, were randomly divided into a sham-operation group, an HIBD group, and an AS-IV treatment group, with 8 rats in each group. After 24 hours of modeling, brain tissue was collected for hematoxylin-eosin staining, yo-PRO-1 staining, and EthD-2 immunofluorescent staining in order to observe the cerebral protection effect of AS-IV in vivo. HT22 cells were used to prepare a model of oxygen-glycogen deprivation (OGD), and a concentration gradient (50-400 μmol/L) was established for AS-IV. CCK-8 assay was used to measure the viability of HT22 cells. RT-PCR and Western blot were used to observe the effect of different concentrations of AS-IV on the mRNA and protein expression of NLRP3, gasdermin D (GSDMD), caspase-1, and interleukin-1β (IL-1β). RESULTS Yo-Pro-1 and EthD-2 staining showed that compared with the sham-operation group, the HIBD group had an increase in pyroptotic cells with a small number of necrotic cells, and the AS-IV group had reductions in both pyroptotic and necrotic cells. Compared with the sham-operation group, the HIBD group had significantly higher protein expression levels of NLRP3, IL-1β, caspase-1, and GSDMD (P < 0.05). Compared with the HIBD group, the AS-IV group had significant reductions in the protein expression levels of NLRP3, caspase-1, and GSDMD (P < 0.05). HT22 cell experiment showed that compared with the OGD group, the AS-IV group had inhibited mRNA and protein expression of NLRP3, GSDMD, caspase-1, and IL-1β, with the best therapeutic effect at the concentration of 200 μmol/L (P < 0.05). CONCLUSIONS AS-IV may alleviate HIBD in neonatal rats by inhibiting the expression of NLRP3, GSDMD, caspase-1, and IL-1β.
Collapse
|
12
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
13
|
Cardiovascular management following hypoxic-ischemic encephalopathy in North America: need for physiologic consideration. Pediatr Res 2021; 90:600-607. [PMID: 33070162 PMCID: PMC8249436 DOI: 10.1038/s41390-020-01205-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Hypotension and hypoxemic respiratory failure are common among neonates with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). Right ventricular (RV) dysfunction is associated with adverse neurodevelopment. Individualized management utilizing targeted neonatal echocardiography (TnECHO) may enhance care. METHODS We evaluated the influence of TnECHO programs on cardiovascular practices in HIE/TH patients utilizing a 77-item REDCap survey. Nominated representatives of TnECHO (n = 19) or non-TnECHO (n = 96) sites were approached. RESULTS Seventy-one (62%) sites responded. Baseline neonatal intensive care unit characteristics and HIE volume were comparable between groups. Most centers monitor invasive blood pressure; however, we identified 17 unique definitions of hypotension. TnECHO centers were likelier to trend systolic/diastolic blood pressure and request earlier echocardiography. TnECHO responders were less likely to use fluid boluses; TnECHO responders more commonly chose an inotrope first-line, while non-TnECHO centers used a vasopressor. For HRF, TnECHO centers chose vasopressors with a favorable pulmonary vascular profile. Non-TnECHO centers used more dopamine and more extracorporeal membrane oxygen for patients with HRF. CONCLUSIONS Cardiovascular practices in neonates with HIE differ between centers with and without TnECHO. Consensus regarding the definition of hypotension is lacking and dopamine use is common. The merits of these practices among these patients, who frequently have comorbid pulmonary hypertension and RV dysfunction, need prospective evaluation. IMPACT Cardiovascular care following HIE while undergoing therapeutic hypothermia varies between centers with access to trained hemodynamics specialists and those without. Because cardiovascular dysfunction is associated with brain injury, precision medicine-based care may be an avenue to improving outcomes. Therapeutic hypothermia has introduced new physiological considerations and enhanced survival. It is essential that hemodynamic strategies evolve to keep pace; however, little literature exists. Lack of consensus regarding fundamental definitions (e.g., hypotension) highlights the importance of collaboration among the scientific community to advance the field. The value of enhanced cardiovascular care guided by hemodynamic specialists requires prospective evaluation.
Collapse
|
14
|
Hagag AA, El Frargy MS, Abd El-Latif AE. Study of Cord Blood Erythropoietin, Leptin and Adiponectin Levels in Neonates with Hypoxic Ischemic Encephalopathy. Endocr Metab Immune Disord Drug Targets 2020; 20:213-220. [PMID: 31345155 DOI: 10.2174/1871530319666190725110619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/20/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy (HIE) is a serious condition which results in neonatal morbidity and mortality. Early prediction of HIE especially in the first six hours of birth leads to early treatment with better prognosis. AIM The aim of this study was to compare the concentrations of leptin, adiponectin, and erythropoietin between normal neonates and those with HIE for the possible use of these markers for assessment of the degree of HIE and as markers for early prediction of HIE. PATIENTS AND METHODS This study was carried out on 50 appropriate for gestational age (AGA) neonates with HIE born in Tanta University Hospital during the period from June 2016 to March 2018 (Group I). This study also included 50 appropriate for gestational age (AGA) normal neonates not suffering from any complications and matched with group I in age and sex as a control group (Group II). For all neonates in both groups, the following were done: Complete prenatal, natal, and postnatal history, assessment of APGAR score at 5 and 10 minutes, complete clinical examination with special account on clinical evidence of encephalopathy including hypotonia, abnormal oculomotor or pupillary movements, weak or absent suckling, apnea, hyperpnea, or seizures, measurement of cord blood gases and measurement of serum erythropoietin, leptin and adiponectin levels by ELISA immediately after birth. RESULTS There were no significant differences between Group I and Group II regarding gestational age, male to female ratio, mode of delivery, and weight while there were significant differences regarding Apgar score at 1 and 5 minutes with significantly lower Apgar score at 1 and 5 minutes in group I compared with Group II. There were significantly lower cord blood PH and adiponectin level and significantly higher cord blood Leptin and erythropoietin in group I compared with group II. There were significant differences between cord blood adiponectin, leptin, erythropoietin, and PH in different degrees of HIE with significantly lower cord blood adiponectin and PH and significantly higher cord blood leptin and erythropoietin in severe degree of hypoxia compared with moderate degree and in moderate degree compared with mild degree of hypoxia. There was a significant positive correlation between cord blood erythropoietin and leptin and a significant negative correlation between cord blood erythropoietin and both adiponectin and PH in studied neonates with hypoxia. ROC curve showed that EPO had the best sensitivity and specificity followed by leptin then adiponectin while the PH had the least sensitivity and specificity as early predictors of hypoxic neonates. CONCLUSION AND RECOMMENDATIONS Neonates with HIE had lower cord blood PH and adiponectin levels and higher leptin and erythropoietin levels than normal healthy neonates at birth and during the early postnatal period. The significant differences between cord blood erythropoietin, leptin, and adiponectin between neonates with hypoxia compared with normal neonates may arouse our attention about the use of these markers in the cord blood as early predictors of neonatal HIE which can lead early treatment and subsequently better prognosis.
Collapse
Affiliation(s)
- Adel A Hagag
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Mohamed S El Frargy
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Amal E Abd El-Latif
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| |
Collapse
|
15
|
Zhang X, Peng K, Zhang X. The Function of the NMDA Receptor in Hypoxic-Ischemic Encephalopathy. Front Neurosci 2020; 14:567665. [PMID: 33117117 PMCID: PMC7573650 DOI: 10.3389/fnins.2020.567665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main forms of neonatal brain injury which could lead to neonatal disability or even cause neonatal death. Therefore, HIE strongly affects the health of newborns and brings heavy burden to the family and society. It has been well studied that N-methyl-D-aspartate (NMDA) receptors are involved in the excitotoxicity induced by hypoxia ischemia in adult brain. Recently, it has been shown that the NMDA receptor also plays important roles in HIE. In the present review, we made a summary of the molecular mechanism of NMDA receptor in the pathological process of HIE, focusing on the distinct role of GluN2A- and GluN2B-containing NMDA receptor subtypes and aiming to provide some insights into the clinical treatment and drug development of HIE.
Collapse
|
16
|
Oorschot DE, Sizemore RJ, Amer AR. Treatment of Neonatal Hypoxic-Ischemic Encephalopathy with Erythropoietin Alone, and Erythropoietin Combined with Hypothermia: History, Current Status, and Future Research. Int J Mol Sci 2020; 21:E1487. [PMID: 32098276 PMCID: PMC7073127 DOI: 10.3390/ijms21041487] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) remains a major cause of morbidity and mortality. Moderate hypothermia (33.5 °C) is currently the sole established standard treatment. However, there are a large number of infants for whom this therapy is ineffective. This inspired global research to find neuroprotectants to potentiate the effect of moderate hypothermia. Here we examine erythropoietin (EPO) as a prominent candidate. Neonatal animal studies show that immediate, as well as delayed, treatment with EPO post-injury, can be neuroprotective and/or neurorestorative. The observed improvements of EPO therapy were generally not to the level of control uninjured animals, however. This suggested that combining EPO treatment with an adjunct therapeutic strategy should be researched. Treatment with EPO plus hypothermia led to less cerebral palsy in a non-human primate model of perinatal asphyxia, leading to clinical trials. A recent Phase II clinical trial on neonatal infants with HIE reported better 12-month motor outcomes for treatment with EPO plus hypothermia compared to hypothermia alone. Hence, the effectiveness of combined treatment with moderate hypothermia and EPO for neonatal HIE currently looks promising. The outcomes of two current clinical trials on neurological outcomes at 18-24 months-of-age, and at older ages, are now required. Further research on the optimal dose, onset, and duration of treatment with EPO, and critical consideration of the effect of injury severity and of gender, are also required.
Collapse
Affiliation(s)
- Dorothy E. Oorschot
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (R.J.S.); (A.R.A.)
| | | | | |
Collapse
|
17
|
Magnesium sulfate: a last roll of the dice for anti-excitotoxicity? Pediatr Res 2019; 86:685-687. [PMID: 31412352 DOI: 10.1038/s41390-019-0539-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 11/08/2022]
|