1
|
Fernández-Pereira C, Agís-Balboa RC. The Insulin-like Growth Factor Family as a Potential Peripheral Biomarker in Psychiatric Disorders: A Systematic Review. Int J Mol Sci 2025; 26:2561. [PMID: 40141202 PMCID: PMC11942524 DOI: 10.3390/ijms26062561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Psychiatric disorders (PDs), including schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder (BD), autism spectrum disorder (ASD), among other disorders, represent a significant global health burden. Despite advancements in understanding their biological mechanisms, there is still no reliable objective and reliable biomarker; therefore, diagnosis remains largely reliant on subjective clinical assessments. Peripheral biomarkers in plasma or serum are interesting due to their accessibility, low cost, and potential to reflect central nervous system processes. Among these, the insulin-like growth factor (IGF) family, IGF-1, IGF-2, and IGF-binding proteins (IGFBPs), has gained attention for its roles in neuroplasticity, cognition, and neuroprotection, as well as for their capability to cross the blood-brain barrier. This review evaluates the evidence for IGF family alterations in PDs, with special focus on SZ, MDD, and BD, while also addressing other PDs covering almost 40 years of history. In SZ patients, IGF-1 alterations have been linked to metabolic dysregulation, treatment response, and hypothalamic-pituitary-adrenal axis dysfunction. In MDD patients, IGF-1 appears to compensate for impaired neurogenesis, although findings are inconsistent. Emerging studies on IGF-2 and IGFBPs suggest potential roles across PDs. While promising, heterogeneity among studies and methodological limitations highlights the need for further research to validate IGFs as reliable psychiatric biomarkers.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain;
- Translational Research in Neurological Diseases (ITEN) Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, SERGAS-USC, 15706 Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Yang S, Kim JW. Electrophysiological Markers Predicting Antipsychotic Treatment Response in Patients with Schizophrenia: A Retrospective Study. Neuropsychiatr Dis Treat 2024; 20:1387-1394. [PMID: 39007072 PMCID: PMC11246663 DOI: 10.2147/ndt.s467180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose This study aimed to provide an objective means of predicting treatment responses in patients with schizophrenia using quantitative electroencephalography (qEEG) as an electrophysiological indicator. We obtained qEEG recordings from patients with schizophrenia and explored them for patterns indicative of treatment responsiveness. Patients and Methods The study included 68 patients had been diagnosed with schizophrenia spectrum disorder. After retrospectively gathering demographic information, clinical data such as qEEG, Positive and Negative Syndrome Scale (PANSS), a multiple regression analysis was performed. This analysis employed baseline qEEG findings as independent variables and PANSS score changes as dependent variables to discern causal relationships. Results The mean age of the participants was 38.4 years(SD =13.73). The mean PANSS score on admission was 92.97, decreasing to 67.41 at discharge. Multiple regression analysis revealed that delta waves in T4 (β=0.346, t=3.165, p=0.002), and high-beta waves in Fp2 (β=0.231, t=2.361, p=0.021) were associated with PANSS changes in absolute power. In addition, the delta waves of O2 (β=0.250, t=3.288, p=0.002); beta waves of T3 (β=-1.463, t=-5.423, p<0.001) and O2 (β=0.551, t=3.366, p=0.001); high beta waves of Fp1 (β=0.307, t=4.026, p<0.001), T3 (β=0.855, t=4.414, p<0.001) and T6 (β=-0.838, t=-4.559, p<0.001) of absolute power using the Z-score were also related to PANSS changes. Pearson's correlation analysis showed that only delta waves at Cz (r= 0.246, p=0.043) in absolute power correlated with changes in the PANSS. Conclusion We found that certain qEEG wave patterns in patients with schizophrenia prior to antipsychotic treatment were linked to PANSS changes before and after treatment. Delta waves and beta waves, primarily in the frontal and temporal regions, were found to be significantly associated with changes in PANSS scores. In the future, the qEEG indicators identified in this study could serve as electrophysiological markers for predicting antipsychotic treatment responses in patients with schizophrenia.
Collapse
Affiliation(s)
- Seungheon Yang
- Department of Psychiatry, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Jun Won Kim
- Department of Psychiatry, Daegu Catholic University Medical Center, Daegu, Republic of Korea
- Department of Psychiatry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
3
|
De Pieri M, Ferrari M, Pistis G, Gamma F, Marino F, Von Gunten A, Conus P, Cosentino M, Eap CB. Prediction of antipsychotics efficacy based on a polygenic risk score: a real-world cohort study. Front Pharmacol 2024; 15:1274442. [PMID: 38523642 PMCID: PMC10958197 DOI: 10.3389/fphar.2024.1274442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 03/26/2024] Open
Abstract
Background: Response to antipsychotics is subject to a wide interindividual variability, due to genetic and non-genetic factors. Several single nucleotide polymorphisms (SNPs) have been associated with response to antipsychotics in genome-wide association studies (GWAS). Polygenic risk scores (PRS) are a powerful tool to aggregate into a single measure the small effects of multiple risk alleles. Materials and methods: We studied the association between a PRS composed of SNPs associated with response to antipsychotics in GWAS studies (PRSresponse) in a real-world sample of patients (N = 460) with different diagnoses (schizophrenia spectrum, bipolar, depressive, neurocognitive, substance use disorders and miscellaneous). Two other PRSs composed of SNPs previously associated with risk of schizophrenia (PRSschizophrenia1 and PRSschizophrenia2) were also tested for their association with response to treatment. Results: PRSresponse was significantly associated with response to antipsychotics considering the whole cohort (OR = 1.14, CI = 1.03-1.26, p = 0.010), the subgroup of patients with schizophrenia, schizoaffective disorder or bipolar disorder (OR = 1.18, CI = 1.02-1.37, p = 0.022, N = 235), with schizophrenia or schizoaffective disorder (OR = 1.24, CI = 1.04-1.47, p = 0.01, N = 176) and with schizophrenia (OR = 1.27, CI = 1.04-1.55, p = 0.01, N = 149). Sensitivity and specificity were sub-optimal (schizophrenia 62%, 61%; schizophrenia spectrum 56%, 55%; schizophrenia spectrum plus bipolar disorder 60%, 56%; all patients 63%, 58%, respectively). PRSschizophrenia1 and PRSschizophrenia2 were not significantly associated with response to treatment. Conclusion: PRSresponse defined from GWAS studies is significantly associated with response to antipsychotics in a real-world cohort; however, the results of the sensitivity-specificity analysis preclude its use as a predictive tool in clinical practice.
Collapse
Affiliation(s)
- Marco De Pieri
- Center for Research in Medical Pharmacology, Varese, Italy
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
- General Psychiatry Service, Hopitaux Universitaires de Genève, Geneva, Switzerland
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Marco Ferrari
- Center for Research in Medical Pharmacology, Varese, Italy
| | - Giorgio Pistis
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Franziska Gamma
- Les Toises Psychiatry and Psychotherapy Center, Lausanne, Switzerland
| | - Franca Marino
- Center for Research in Medical Pharmacology, Varese, Italy
| | - Armin Von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | | | - Chin-Bin Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Schöttle D, Wiedemann K, Correll CU, Janetzky W, Friede M, Jahn H, Brieden A. Response prediction in treatment of patients with schizophrenia after switching from oral aripiprazole to aripiprazole once-monthly. Schizophr Res 2023; 260:183-190. [PMID: 37683508 DOI: 10.1016/j.schres.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/12/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Daniel Schöttle
- Klinik für Psychiatrie und Psychotherapie, Zentrum für Psychosoziale Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Klaus Wiedemann
- Klinik für Psychiatrie und Psychotherapie, Zentrum für Psychosoziale Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA; Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | - Holger Jahn
- AMEOS Kliniken Heiligenhafen, AMEOS Krankenhausgesellschaft Holstein mbH, Oldenburg i. H., Preetz, Kiel, Germany.
| | - Andreas Brieden
- Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany.
| |
Collapse
|
5
|
Long Y, Wu Q, Yang Y, Cai J, Xiao J, Liu Z, Xu Y, Chen Y, Huang M, Zhang R, Xu X, Hu J, Liu Z, Liu F, Zheng Y, Meng H, Wang Z, Tang Y, Song X, Chen Y, Wang X, Liu T, Wu X, Fang M, Wan C, Zhao J, Wu R. Early non-response as a predictor of later non-response to antipsychotics in schizophrenia: a randomized trial. BMC Med 2023; 21:263. [PMID: 37468932 PMCID: PMC10354903 DOI: 10.1186/s12916-023-02968-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND It remains a challenge to predict the long-term response to antipsychotics in patients with schizophrenia who do not respond at an early stage. This study aimed to investigate the optimal predictive cut-off value for early non-response that would better predict later non-response to antipsychotics in patients with schizophrenia. METHODS This multicenter, 8-week, open-label, randomized trial was conducted at 19 psychiatric centers throughout China. All enrolled participants were assigned to olanzapine, risperidone, amisulpride, or aripiprazole monotherapy for 8 weeks. The positive and negative syndrome scale (PANSS) was evaluated at baseline, week 2, week 4, and week 8. The main outcome was the prediction of nonresponse. Nonresponse is defined as a < 20% reduction in the total scores of PANSS from baseline to endpoint. Severity ratings of mild, moderate, and severe illness corresponded to baseline PANSS total scores of 58, 75, and 95, respectively. RESULTS At week 2, a reduction of < 5% in the PANSS total score showed the highest total accuracy in the severe and mild schizophrenia patients (total accuracy, 75.0% and 80.8%, respectively), and patients who were treated with the risperidone and amisulpride groups (total accuracy, 82.4%, and 78.2%, respectively). A 10% decrease exhibited the best overall accuracy in the moderate schizophrenia patients (total accuracy, 84.0%), olanzapine (total accuracy, 79.2%), and aripiprazole group (total accuracy, 77.4%). At week 4, the best predictive cut-off value was < 20%, regardless of the antipsychotic or severity of illness (total accuracy ranging from 89.8 to 92.1%). CONCLUSIONS Symptom reduction at week 2 has acceptable discrimination in predicting later non-response to antipsychotics in schizophrenia, and a more accurate predictive cut-off value should be determined according to the medication regimen and baseline illness severity. The response to treatment during the next 2 weeks after week 2 could be further assessed to determine whether there is a need to change antipsychotic medication during the first four weeks. TRIAL REGISTRATION This study was registered on Clinicaltrials.gov (NCT03451734).
Collapse
Affiliation(s)
- Yujun Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139# Renmin Middle RD, Changsha, 410011, Hunan, China
| | - Qiongqiong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139# Renmin Middle RD, Changsha, 410011, Hunan, China
| | - Ye Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139# Renmin Middle RD, Changsha, 410011, Hunan, China
| | - Jingda Cai
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139# Renmin Middle RD, Changsha, 410011, Hunan, China
| | - Jingmei Xiao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139# Renmin Middle RD, Changsha, 410011, Hunan, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifeng Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruiguo Zhang
- Department of Psychiatry, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xijia Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, Jiangsu, China
| | - Jian Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhifen Liu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huaqing Meng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhimin Wang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yanqing Tang
- Department of Psychiatry, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunchun Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xueyi Wang
- Department of Psychiatry, First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tiebang Liu
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Xiaoli Wu
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139# Renmin Middle RD, Changsha, 410011, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 139# Renmin Middle RD, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Zhang L, Bai A, Tang Z, Liu X, Li Y, Ma J. Incidence and factors associated of early non-response in first-treatment and drug-naïve patients with schizophrenia: a real-world study. Front Psychiatry 2023; 14:1173263. [PMID: 37181883 PMCID: PMC10172471 DOI: 10.3389/fpsyt.2023.1173263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Background Schizophrenia is a severe and persistent mental condition that causes disability. For subsequent clinical care, it is extremely practical to effectively differentiate between patients who respond to therapy quickly and those who do not. This study set out to document the prevalence and risk factors for patient early non-response. Methods The current study included 143 individuals with first-treatment and drug-naïve (FTDN) schizophrenia. Patients were classified as early non-responders based on a Positive and Negative Symptom Scale (PANSS) score reduction of less than 20% after 2 weeks of treatment, otherwise as early responders. Clinical subgroups' differences in demographic data and general clinical data were compared, and variables related to early non-response to therapy were examined. Results Two weeks later, a total of 73 patients were described as early non-responders, with an incidence of 51.05%. The early non-response subgroup had significantly higher PANSS scores, Positive symptom subscale (PSS) scores, General psychopathology subscale (GPS) scores, Clinical global impression scale - severity of illness (CGI-SI) and Fasting blood glucose (FBG) levels compared to the early-response subgroup. CGI-SI and FBG were risk factors for early non-response. Conclusion High rates of early non-response have been seen in FTDN schizophrenia patients, and risk variables for predicting early non-response include CGI-SI scores and FBG levels. However, we need more in-depth studies to confirm the generalizable range of these two parameters.
Collapse
Affiliation(s)
- Lin Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Aohan Bai
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Zhongyu Tang
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Xuebing Liu
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
- Yi Li,
| | - Jun Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
- *Correspondence: Jun Ma,
| |
Collapse
|
7
|
Tang Y, Wu Y, Li X, Hao Q, Deng W, Yue W, Yan H, Zhang Y, Tan L, Chen Q, Yang G, Lu T, Wang L, Yang F, Zhang F, Yang J, Li K, Lv L, Tan Q, Zhang H, Ma X, Li L, Wang C, Ma X, Zhang D, Yu H, Zhao L, Ren H, Wang Y, Zhang G, Li C, Du X, Hu X, Li T, Wang Q. Early Efficacy of Antipsychotic Medications at Week 2 Predicts Subsequent Responses at Week 6 in a Large-scale Randomized Controlled Trial. Curr Neuropharmacol 2023; 21:424-436. [PMID: 36411567 PMCID: PMC10190139 DOI: 10.2174/1570159x21666221118164612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Since the early clinical efficacy of antipsychotics has not yet been well perceived, this study sought to decide whether the efficacy of antipsychotics at week 2 can predict subsequent responses at week 6 and identify how such predictive capacities vary among different antipsychotics and psychotic symptoms. METHODS A total of 3010 patients with schizophrenia enrolled in a randomized controlled trial (RCT) and received a 6-week treatment with one antipsychotic drug randomly chosen from five atypical antipsychotics (risperidone 2-6 mg/d, olanzapine 5-20 mg/d, quetiapine 400-750 mg/d, aripiprazole 10-30 mg/d, and ziprasidone 80-160 mg/d) and two typical antipsychotics (perphenazine 20-60 mg/d and haloperidol 6-20 mg/d). Early efficacy was defined as the reduction rate using the Positive and Negative Syndrome Scale (PANSS) total score at week 2. With cut-offs at 50% reduction, logistic regression, receiver operating characteristic (ROC) and random forests were adopted. RESULTS The reduction rate of PANSS total score and improvement of psychotic symptoms at week 2 enabled subsequent responses to 7 antipsychotics to be predicted, in which improvements in delusions, lack of judgment and insight, unusual thought content, and suspiciousness/ persecution were endowed with the greatest weight. CONCLUSION It is robust enough to clinically predict treatment responses to antipsychotics at week 6 using the reduction rate of PANSS total score and symptom relief at week 2. Psychiatric clinicians had better determine whether to switch the treatment plan by the first 2 weeks.
Collapse
Affiliation(s)
- Yiguo Tang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yulu Wu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - QinJian Hao
- The Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihua Yue
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yamin Zhang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liwen Tan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guigang Yang
- Beijing Anding Hospital, Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lifang Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Beijing, China
| | - Fuquan Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Jianli Yang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China
- Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Keqing Li
- Hebei Mental Health Center, Baoding, Hebei, China
| | - Luxian Lv
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingrong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Hongyan Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Xin Ma
- Beijing Anding Hospital, Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Lingjiang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuanyue Wang
- Beijing Anding Hospital, Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Dai Zhang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Liansheng Zhao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Hongyan Ren
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yingcheng Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Guangya Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, Suzhou, China
- The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Chuanwei Li
- Department of Psychiatry, Suzhou Psychiatric Hospital, Suzhou, China
- The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangdong Du
- Department of Psychiatry, Suzhou Psychiatric Hospital, Suzhou, China
- The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xun Hu
- The Clinical Research Center and the Department of Pathology, Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| |
Collapse
|
8
|
Smart SE, Agbedjro D, Pardiñas AF, Ajnakina O, Alameda L, Andreassen OA, Barnes TRE, Berardi D, Camporesi S, Cleusix M, Conus P, Crespo-Facorro B, D'Andrea G, Demjaha A, Di Forti M, Do K, Doody G, Eap CB, Ferchiou A, Guidi L, Homman L, Jenni R, Joyce E, Kassoumeri L, Lastrina O, Melle I, Morgan C, O'Neill FA, Pignon B, Restellini R, Richard JR, Simonsen C, Španiel F, Szöke A, Tarricone I, Tortelli A, Üçok A, Vázquez-Bourgon J, Murray RM, Walters JTR, Stahl D, MacCabe JH. Clinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium. Schizophr Res 2022; 250:1-9. [PMID: 36242784 PMCID: PMC9834064 DOI: 10.1016/j.schres.2022.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/03/2022] [Accepted: 09/04/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Our aim was to, firstly, identify characteristics at first-episode of psychosis that are associated with later antipsychotic treatment resistance (TR) and, secondly, to develop a parsimonious prediction model for TR. METHODS We combined data from ten prospective, first-episode psychosis cohorts from across Europe and categorised patients as TR or non-treatment resistant (NTR) after a mean follow up of 4.18 years (s.d. = 3.20) for secondary data analysis. We identified a list of potential predictors from clinical and demographic data recorded at first-episode. These potential predictors were entered in two models: a multivariable logistic regression to identify which were independently associated with TR and a penalised logistic regression, which performed variable selection, to produce a parsimonious prediction model. This model was internally validated using a 5-fold, 50-repeat cross-validation optimism-correction. RESULTS Our sample consisted of N = 2216 participants of which 385 (17 %) developed TR. Younger age of psychosis onset and fewer years in education were independently associated with increased odds of developing TR. The prediction model selected 7 out of 17 variables that, when combined, could quantify the risk of being TR better than chance. These included age of onset, years in education, gender, BMI, relationship status, alcohol use, and positive symptoms. The optimism-corrected area under the curve was 0.59 (accuracy = 64 %, sensitivity = 48 %, and specificity = 76 %). IMPLICATIONS Our findings show that treatment resistance can be predicted, at first-episode of psychosis. Pending a model update and external validation, we demonstrate the potential value of prediction models for TR.
Collapse
Affiliation(s)
- Sophie E Smart
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Deborah Agbedjro
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Centro de Investigacion en Red Salud Mental (CIBERSAM), Sevilla, Spain; Department of Psychiatry, Hospital Universitario Virgen del Rocio, IBiS, Universidad de Sevilla, Spain; TIPP (Treatment and Early Intervention in Psychosis Program), Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Domenico Berardi
- Department of Biomedical and Neuro-motor Sciences, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Sara Camporesi
- TIPP (Treatment and Early Intervention in Psychosis Program), Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martine Cleusix
- Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- TIPP (Treatment and Early Intervention in Psychosis Program), Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Benedicto Crespo-Facorro
- Centro de Investigacion en Red Salud Mental (CIBERSAM), Sevilla, Spain; Department of Psychiatry, Hospital Universitario Virgen del Rocio, IBiS, Universidad de Sevilla, Spain
| | - Giuseppe D'Andrea
- Department of Biomedical and Neuro-motor Sciences, Psychiatry Unit, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Arsime Demjaha
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marta Di Forti
- Social Genetics and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Kim Do
- Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Gillian Doody
- Department of Medical Education, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham, UK
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland; School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland; Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Switzerland; Institute of Pharmaceutical Sciences of Western, Switzerland, University of Geneva, University of Lausanne
| | - Aziz Ferchiou
- Univ Paris Est Creteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Creteil, France; AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, FHU ADAPT, Creteil, France
| | - Lorenzo Guidi
- Department of Medical and Surgical Sciences, Bologna Transcultural Psychosomatic Team (BoTPT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Lina Homman
- Disability Research Division (FuSa), Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | - Raoul Jenni
- Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Eileen Joyce
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Laura Kassoumeri
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ornella Lastrina
- Department of Medical and Surgical Sciences, Bologna Transcultural Psychosomatic Team (BoTPT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Craig Morgan
- Health Service and Population Research, King's College London, London, UK; Centre for Society and Mental Health, King's College London, London, UK
| | - Francis A O'Neill
- Centre for Public Health, Institute of Clinical Sciences, Queens University Belfast, Belfast, UK
| | - Baptiste Pignon
- Univ Paris Est Creteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Creteil, France; AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, FHU ADAPT, Creteil, France
| | - Romeo Restellini
- TIPP (Treatment and Early Intervention in Psychosis Program), Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jean-Romain Richard
- Univ Paris Est Creteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Creteil, France
| | - Carmen Simonsen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Early Intervention in Psychosis Advisory Unit for South East Norway (TIPS Sør-Øst), Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Filip Španiel
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Andrei Szöke
- Univ Paris Est Creteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Creteil, France; AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, FHU ADAPT, Creteil, France
| | - Ilaria Tarricone
- Department of Medical and Surgical Sciences, Bologna Transcultural Psychosomatic Team (BoTPT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Andrea Tortelli
- Univ Paris Est Creteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Creteil, France; Groupe Hospitalier Universitaire Psychiatrie Neurosciences Paris, Pôle Psychiatrie Précarité, Paris, France
| | - Alp Üçok
- Istanbul University, Istanbul Faculty of Medicine, Department of Psychiatry, Istanbul, Turkey
| | - Javier Vázquez-Bourgon
- Centro de Investigacion en Red Salud Mental (CIBERSAM), Sevilla, Spain; Department of Psychiatry, University Hospital Marques de Valdecilla - Instituto de Investigación Marques de Valdecilla (IDIVAL), Santander, Spain; Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Daniel Stahl
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Liu H, Liu H, Jiang S, Su L, Lu Y, Chen Z, Li X, Li X, Wang X, Xiu M, Zhang X. Sex-Specific Association between Antioxidant Defense System and Therapeutic Response to Risperidone in Schizophrenia: A Prospective Longitudinal Study. Curr Neuropharmacol 2022; 20:1793-1803. [PMID: 34766896 PMCID: PMC9881066 DOI: 10.2174/1570159x19666211111123918] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND There are various differences in response to different antipsychotics and antioxidant defense systems (ADS) by sex. Previous studies have shown that several ADS enzymes are closely related to the treatment response of patients with antipsychotics-naïve first-episode (ANFE) schizophrenia. OBJECTIVE Therefore, the main goal of this study was to assess the sex difference in the relationship between changes in ADS enzyme activities and risperidone response. METHODS The plasma activities of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and total antioxidant status (TAS) were measured in 218 patients and 125 healthy controls. Patients were treated with risperidone for 3 months, and we measured PANSS for psychopathological symptoms and ADS biomarkers at baseline and at the end of 3 months of treatment. We compared sex-specific group differences between 50 non-responders and 168 responders at baseline and at the end of the three months of treatment. RESULTS We found that female patients responded better to risperidone treatment than male patients. At baseline and 3-month follow-up, there were no significant sex differences in TAS levels and three ADS enzyme activities. Interestingly, only in female patients, after 12 weeks of risperidone treatment, the GPx activity of responders was higher than that of non-responders. CONCLUSION These results indicate that after treatment with risperidone, changes in GPx activity were associated with treatment response, suggesting that changes in GPx may be a predictor of response to risperidone treatment in female patients with ANFE schizophrenia.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Hua Liu
- Qingdao Mental Health Center, Qingdao University, Qingdao, China;
| | - Shuling Jiang
- Department of Neurology, Linyi Central Hospital, Shandong, China;
| | - Lei Su
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Yi Lu
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Zhenli Chen
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Xiaojing Li
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Xirong Li
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Xuemei Wang
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; ,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; E-mail: ; Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; E-mail: ; Linyin Road, Qixing District, Suzhou, Jiangsu, 215006, China; E-mail:
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; ,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; E-mail: ; Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; E-mail: ; Linyin Road, Qixing District, Suzhou, Jiangsu, 215006, China; E-mail:
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; E-mail: ; Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; E-mail: ; Linyin Road, Qixing District, Suzhou, Jiangsu, 215006, China; E-mail:
| |
Collapse
|
10
|
Tkachev A, Stekolshchikova E, Anikanov N, Zozulya S, Barkhatova A, Klyushnik T, Petrova D. Shorter Chain Triglycerides Are Negatively Associated with Symptom Improvement in Schizophrenia. Biomolecules 2021; 11:biom11050720. [PMID: 34064997 PMCID: PMC8151512 DOI: 10.3390/biom11050720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a serious mental disorder requiring lifelong treatment. While medications are available that are effective in treating some patients, individual treatment responses can vary, with some patients exhibiting resistance to one or multiple drugs. Currently, little is known about the causes of the difference in treatment response observed among individuals with schizophrenia, and satisfactory markers of poor response are not available for clinical practice. Here, we studied the changes in the levels of 322 blood plasma lipids between two time points assessed in 92 individuals diagnosed with schizophrenia during their inpatient treatment and their association with the extent of symptom improvement. We found 20 triglyceride species increased in individuals with the least improvement in Positive and Negative Syndrome Scale (PANSS) scores, but not in those with the largest reduction in PANSS scores. These triglyceride species were distinct from the rest of the triglyceride species present in blood plasma. They contained a relatively low number of carbons in their fatty acid residues and were relatively low in abundance compared to the principal triglyceride species of blood plasma.
Collapse
Affiliation(s)
- Anna Tkachev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
- Correspondence:
| | - Elena Stekolshchikova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Nickolay Anikanov
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Svetlana Zozulya
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | | | - Tatiana Klyushnik
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | - Daria Petrova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| |
Collapse
|
11
|
Li XR, Xiu MH, Guan XN, Wang YC, Wang J, Leung E, Zhang XY. Altered Antioxidant Defenses in Drug-Naive First Episode Patients with Schizophrenia Are Associated with Poor Treatment Response to Risperidone: 12-Week Results from a Prospective Longitudinal Study. Neurotherapeutics 2021; 18:1316-1324. [PMID: 33791970 PMCID: PMC8423973 DOI: 10.1007/s13311-021-01036-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal redox regulation is thought to contribute to schizophrenia (SCZ). Accumulating studies have shown that the plasma antioxidant enzyme activity is closely associated with the course and outcome in antipsychotics-naïve first-episode (ANFE) patients with SCZ. The main purpose of this study was to investigate the effect of risperidone on oxidative stress markers in ANFE patients and the relationship between risperidone response and changes in oxidative stress markers. Plasma activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) enzyme, total antioxidant status (TAS), and malondialdehyde (MDA) levels were measured in 354 ANFE patients and 152 healthy controls. The clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). Patients received risperidone monotherapy for 12 weeks and oxidative stress markers and PANSS were measured at baseline and at follow-up. Compared with healthy controls, the patients exhibited higher activities of SOD, CAT, and TAS levels, but lower MDA levels and GPx activity. A comparison between 168 responders and 50 non-responders at baseline and 12-week follow-up showed that GPx activity decreased in both groups after treatment. Moreover, GPx activity decreased less in responders and was higher in responders than in non-responders at follow-up. These results demonstrate that the redox regulatory system and antioxidant defense enzymes may have predictive value for the response of ANFE patients to risperidone treatment.
Collapse
Affiliation(s)
- Xi Rong Li
- Department of Sleep Medicine, Shandong Mental Health Center, Jinan, China
| | - Mei Hong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China.
| | - Xiao Ni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Yue Chan Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Jun Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Edison Leung
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
12
|
JUSTUS UCHENNA ONU, OHAERI JUDEUZOMA. Using data from schizophrenia outcome study to estimate the time to treatment outcome and the early-response cut-off score that predicts outcome at week 16. ARCH CLIN PSYCHIAT 2020. [DOI: 10.1590/0101-60830000000234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Maffioletti E, Valsecchi P, Minelli A, Magri C, Bonvicini C, Barlati S, Sacchetti E, Vita A, Gennarelli M. Association study betweenHTR2Ars6313 polymorphism and early response to risperidone and olanzapine in schizophrenia patients. Drug Dev Res 2020; 81:754-761. [DOI: 10.1002/ddr.21686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Paolo Valsecchi
- Department of Mental Health and Addiction ServicesASST Spedali Civili Brescia Italy
- Department of Clinical and Experimental SciencesUniversity of Brescia Brescia Italy
| | - Alessandra Minelli
- Department of Molecular and Translational MedicineUniversity of Brescia Brescia Italy
| | - Chiara Magri
- Department of Molecular and Translational MedicineUniversity of Brescia Brescia Italy
| | - Cristian Bonvicini
- Genetics UnitIRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction ServicesASST Spedali Civili Brescia Italy
- Department of Clinical and Experimental SciencesUniversity of Brescia Brescia Italy
| | - Emilio Sacchetti
- Department of Mental Health and Addiction ServicesASST Spedali Civili Brescia Italy
- Department of Clinical and Experimental SciencesUniversity of Brescia Brescia Italy
| | - Antonio Vita
- Department of Mental Health and Addiction ServicesASST Spedali Civili Brescia Italy
- Department of Clinical and Experimental SciencesUniversity of Brescia Brescia Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational MedicineUniversity of Brescia Brescia Italy
- Genetics UnitIRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia Italy
| |
Collapse
|