1
|
Carsi Kuhangana T, Cheyns K, Muta Musambo T, Banza Lubaba Nkulu C, Smolders E, Hoet P, Van Loco J, Nemery B, Demaegdt H. Cottage industry as a source of high exposure to lead: A biomonitoring study among people involved in manufacturing cookware from scrap metal. ENVIRONMENTAL RESEARCH 2024; 250:118493. [PMID: 38378125 DOI: 10.1016/j.envres.2024.118493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
In low-income countries, a widespread but poorly studied type of cottage industry consists of melting scrap metal for making cookware. We assessed the exposure to lead (Pb) among artisanal workers, and their families, involved in manufacturing cookware from scrap metal. In a cross-sectional survey, we compared artisanal cookware manufacturing foundries with carpentry workshops (negative controls) and car battery repair workshops (positive controls), all located in residential areas, in Lubumbashi (DR Congo). We collected surface dust in the workspaces, and blood and urine samples among workers, as well as residents living in the cookware workshops. Trace elements were quantified in the samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In surface dust, median Pb concentrations were higher in cookware foundries (347 mg/kg) than in carpentries (234 mg/kg) but lower than in battery repair workshops (22,000 mg/kg). In workers making the cookware (n = 24), geometric mean (GM) Pb blood cencentration was 118 μg/L [interquartile range (IQR) 78.4-204], i.e. nearly twice as high as among carpenters [60.2 μg/L (44.4-84.7), n = 33], and half the concentration of battery repair workers [255 μg/L (197-362), n = 23]. Resident children from the cookware foundries, had higher urinary Pb [6.2 μg/g creatinine (2.3-19.3), n = 6] than adults [2.3 (2.2-2.5), n = 3]. Our investigation confirms the high Pb hazard linked to car battery repair and reveals a high exposure to Pb among artisanal cookware manufacturers and their families, especially children, in residential areas of a city in a low-income country.
Collapse
Affiliation(s)
- Trésor Carsi Kuhangana
- Ecole de Santé Publique, Université de Kolwezi, Kolwezi, DR Congo; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Unit of Toxicology and Environment, School of Public Health, University of Lubumbashi, DR Congo.
| | - Karlien Cheyns
- Service of Trace Elements and Nanomaterials, Physical and Chemical Health Risks, Sciensano, Tervuren, Belgium
| | - Taty Muta Musambo
- Unit of Toxicology and Environment, School of Public Health, University of Lubumbashi, DR Congo
| | | | - Erik Smolders
- Division of Soil and Water Management, Faculty of Bioscience engineering, KU Leuven, Leuven, Belgium
| | - Peter Hoet
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Joris Van Loco
- Division of Soil and Water Management, Faculty of Bioscience engineering, KU Leuven, Leuven, Belgium; Clinical and Experimental Endocrinology, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Heidi Demaegdt
- Division of Soil and Water Management, Faculty of Bioscience engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Sargsyan A, Nash E, Binkhorst G, Forsyth JE, Jones B, Sanchez Ibarra G, Berg S, McCartor A, Fuller R, Bose-O'Reilly S. Rapid Market Screening to assess lead concentrations in consumer products across 25 low- and middle-income countries. Sci Rep 2024; 14:9713. [PMID: 38678115 PMCID: PMC11055946 DOI: 10.1038/s41598-024-59519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Lead exposure can have serious consequences for health and development. The neurological and behavioral effects of lead are considered irreversible. Young children are particularly vulnerable to lead poisoning. In 2020, Pure Earth and UNICEF estimated that one in three children had elevated blood lead levels above 5 µg/dL. The sources of lead exposure vary around the world and can range from household products, such as spices or foodware, to environmental pollution from nearby industries. The aim of this study was to analyze common products from markets in low- and middle-income countries (LMICs) for their lead content to determine whether they are plausible sources of exposure. In 25 LMICs, the research teams systematically collected consumer products (metal foodware, ceramics, cosmetics, paints, toys, spices and other foods). The items were analyzed on site for detectable lead above 2 ppm using an X-ray fluorescence analyzer. For quality control purposes, a subset of the samples was analyzed in the USA using inductively coupled plasma mass spectrometry. The lead concentrations of the individual product types were compared with established regulatory thresholds. Out of 5007 analyzed products, threshold values (TV) were surpassed in 51% for metal foodware (TV 100 ppm), 45% for ceramics (TV 100 ppm), and 41% for paints (TV 90 ppm). Sources of exposure in LMICs can be diverse, and consumers in LMICs lack adequate protection from preventable sources of lead exposure. Rapid Market Screening is an innovative, simple, and useful tool to identify risky products that could be sources of lead exposure.
Collapse
Affiliation(s)
- Aelita Sargsyan
- Pure Earth, 475 Riverside Drive, New York, NY, 10115, USA
- Doctoral Program in Pollution, Toxicology and Environmental Health, Faculty of Biological Sciences, University of Valencia, c/Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Emily Nash
- Pure Earth, 475 Riverside Drive, New York, NY, 10115, USA
| | | | - Jenna E Forsyth
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Barbara Jones
- Cardinal Resources, Inc., 4410 Broadway Blvd., Monroeville, PA, 15146, USA
| | | | - Sarah Berg
- Pure Earth, 475 Riverside Drive, New York, NY, 10115, USA
| | | | - Richard Fuller
- Pure Earth, 475 Riverside Drive, New York, NY, 10115, USA
| | - Stephan Bose-O'Reilly
- Pure Earth, 475 Riverside Drive, New York, NY, 10115, USA.
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstr. 5, 80336, Munich, Germany.
| |
Collapse
|
3
|
Weidenhamer JD, Chasant M, Gottesfeld P. Metal exposures from source materials for artisanal aluminum cookware. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:374-385. [PMID: 35100934 DOI: 10.1080/09603123.2022.2030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Artisanal aluminum cookware releases lead and other metals that pose significant health risk for people in low and middle-income countries. Cookware is made from recycled engine and electronic appliance parts, cans, and other materials. We obtained fourteen custom-made pots from Ghana, produced from seven different scrap aluminum sources. We sought to determine whether avoiding certain source materials could reduce leaching of metals. Cooking was simulated using dilute acetic acid and palm oil. Aluminum released from all pots exceeded recommended guidelines. Variable amounts of lead, cadmium, chromium, nickel and other metals were leached, with the most lead coming from auto radiators and mixed metals. Pots made from engine blocks did not yield detectable amounts of lead. All pots released potentially harmful concentrations of two or more metals. Selective scrap aluminum sourcing for recycled cookware does not avoid metal contamination of food, although some sources may release lower concentrations of certain metals.
Collapse
|
4
|
Association between Dietary Magnesium Intake and Glycemic Markers in Ghanaian Women of Reproductive Age: A Pilot Cross-Sectional Study. Nutrients 2021; 13:nu13114141. [PMID: 34836395 PMCID: PMC8619971 DOI: 10.3390/nu13114141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023] Open
Abstract
Low magnesium intake has been shown to be associated with an increased risk of type 2 diabetes mellitus (T2DM) in several studies conducted in high-income countries. However, very few studies have been performed in Africa, where many countries have a growing rate of T2DM. We conducted a pilot cross-sectional study among 63 women in Ghana to investigate the association between magnesium intake and glycemic markers. We assessed dietary magnesium using a food frequency questionnaire and glycemic markers using fasting blood glucose and glycated hemoglobin A1c (HbA1c). Our findings showed that the mean magnesium intake was 200 ± 116 mg/day. The prevalence of T2DM was 5% by measuring fasting blood glucose and 8% by measuring HbA1c. Unadjusted linear regression models revealed that higher magnesium intake significantly predicted higher fasting blood glucose levels (β = 0.31; 95% CI: 0.07, 0.55; p = 0.01) and HbA1c levels (β = 0.26; 95% CI: 0.01, 0.51; p = 0.04). In adjusted analyses, magnesium intake was no longer significantly associated with either fasting blood glucose levels (β = 0.22; 95% CI: −0.03, 0.46; p = 0.08) or HbA1c levels (β = 0.15; 95% CI: −0.08, 0.39; p = 0.20). In conclusion, our study did not show a significant association between magnesium intake and glycemic markers in women of reproductive age in Ghana. The results of this study need to be further substantiated because this was the first study to examine magnesium intake and glycemic markers in this population in Africa.
Collapse
|
5
|
Dórea JG. Neurodevelopment and exposure to neurotoxic metal(loid)s in environments polluted by mining, metal scrapping and smelters, and e-waste recycling in low and middle-income countries. ENVIRONMENTAL RESEARCH 2021; 197:111124. [PMID: 33861977 DOI: 10.1016/j.envres.2021.111124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This review covers a wide body of literature to gain an understanding of the impacts of informal activities related to metal extraction (primary mining and recycling) on early life exposure to neurotoxicants and on neurodevelopment. In primary mining, gold extraction with Hg amalgamation is the main environmental cause of Hg pollution in most artisanal small-scale gold mining (ASGM) activities around the world. Nevertheless, in Sub-Saharan Africa (SSA), Pb disrupted from gold-related ores, mining, and artisanal cookware production are an important neurotoxicant that seriously contaminates the affected population, with devastating effects on children. In e-waste recycling settings, the range of neurotoxic substances that contaminate mothers and children is wider than in primary mining environments. Thus, Hg and Pb are major pre- and postnatal neurotoxicants affecting children in the informal metal extraction activities and SSA countries show the highest record of human contamination and of neurotoxic effects on children. There are additional sources of neurotoxic contamination from mining and metal processing activities (cyanide tailing in South America and SSA) and/or co-exposure to Hg-containing products such as cosmetics (soaps and Hg-based skin lightning creams in Africa) and pediatric Thimerosal-containing vaccines (TCVs, that breaks down to ethyl-mercury) in current use in middle and low income countries. However, the action of these neurotoxicants (per se or in combination) on children needs more attention and research. Studies show a negative association between biomarkers of all environmental metal(loid)s (As, Cd, Hg, Mn, and Pb) studied and neurodevelopment in young children. Sadly, in many unregulated activities, child labor is widely employed, thus presenting an additional occupational exposure. Children living in polluted environments related to metal processing are disproportionately exposed to a wide range of co-occurring neurotoxic substances. The review showed compelling evidence from highly representative parts of the world (Africa, Asia, and Latin America) that the studied neurotoxic substances negatively affected areas of the brain associated with language, memory and executive function, as well as psychosocial behavior. Protecting the environment and children from unregulated and highly polluting metal extraction and processing are inextricably intertwined and deserve urgent attention.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|