1
|
Miranda MR, Montano C, Golino V, de Chiara M, Del Prete C, Pepe G, De Biase D, Ciaglia T, Bertamino A, Campiglia P, Sommella E, Vestuto V, Pasolini MP. Integrated proteomics highlights functional activation induced by advanced-platelet rich fibrin plus (A-PRF +) in primary equine fibroblasts. Sci Rep 2025; 15:18021. [PMID: 40410219 PMCID: PMC12102165 DOI: 10.1038/s41598-025-01820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
Wounds are common in equine practice, and often lead to complications such as infections, delayed healing and hypertrophic scarring, which can be costly and difficult to manage. Developing affordable and effective treatments has become an increasingly important focus in veterinary research. Equine advanced-platelet-rich fibrin plus (A-PRF+) demonstrates regenerative properties comparable to its human counterpart, but cellular-level investigations exploring its molecular mechanisms remain limited. This study aimed to investigate the in vitro effects of equine A-PRF + on primary fibroblast cell cultures. The secretome analysis of A-PRF + revealed a complex protein profile involved in matrix remodelling, cell proliferation, and inflammation. Treatment with this platelet concentrate resulted in increased cell proliferation, enhanced migration, and significant changes in cell cycle progression compared to control groups. Reactive oxygen species production and organelles metabolism stimulation were observed, indicating active cellular responses, as well as an increase in genes and proteins associated with cell proliferation and wound regeneration. Proteomic analysis of treated fibroblasts confirmed the differential expression of key proteins associated with extracellular matrix dynamics and tissue regeneration processes. These findings provide insights into the molecular profile and functional responses of equine fibroblasts exposed to A-PRF + , contributing to our understanding of its cellular effects, supporting further exploration of this product in regenerative medicine applications.
Collapse
Affiliation(s)
- Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
- NBFC-National Biodiversity Future Center, 90133, Palermo, Italy
| | - Chiara Montano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Valentina Golino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
- National PhD Program in "RNA Therapeutics and Gene Therapy", Napoli, Italy
| | - Mariaelena de Chiara
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
- NBFC-National Biodiversity Future Center, 90133, Palermo, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy.
| | - Maria Pia Pasolini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Wang Y, Zhu X, Li L, Su D, Ai L, Xie H, Zhou D, Yang H, Li B. Fibroblast EGFR signaling mediates ricin toxin-induced acute lung injury via EGR1/CXCL1 axis. Arch Toxicol 2025:10.1007/s00204-025-04067-3. [PMID: 40317338 DOI: 10.1007/s00204-025-04067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Ricin toxin (RT), a highly potent plant-derived toxin, represents a critical threat due to its capacity to induce fatal acute lung injury (ALI) upon inhalation. While the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase predominantly expressed on epithelial cells and fibroblasts, regulates cellular processes such as growth, proliferation, differentiation and inflammation, its involvement in RT-induced ALI remains unexplored. This study investigates this relationship using a mouse model of ALI induced by aerosolized RT at a dose of 2.0 × LD50 (approximately 0.01 mg kg -1). The results demonstrate that damage to alveolar epithelial type II (AT2) cells leads to the release of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which activates EGFR on fibroblasts, exacerbating lung injury pathology and reducing survival. Mechanistically, EGFR activation in fibroblasts induces the early growth response protein 1 (EGR1), which subsequently enhances chemokine C-X-C motif ligand 1 (CXCL1) secretion 24 h post-exposure, promoting neutrophil infiltration in the lung. RNA sequencing analysis corroborates these findings. Notably, pharmacological inhibition of EGFR phosphorylation using Erlotinib (ERL) significantly mitigates the inflammatory response in RT-induced ALI. These results not only illuminate the immune response in lung tissue but also highlight EGFR signaling in fibroblasts as a pivotal mediator of RT-induced ALI. This study identifies a novel therapeutic strategy targeting EGFR signaling in fibroblasts for the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
- Graduate School of PLA General Hospital, Beijing, 100853, China
| | - Xiaoyu Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lu Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Duo Su
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lingli Ai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hao Xie
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Boan Li
- Department of Clinical Laboratory, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
3
|
He Y, Shen X, Zhai K, Nian S. Advances in understanding the role of interleukins in pulmonary fibrosis (Review). Exp Ther Med 2025; 29:25. [PMID: 39650776 PMCID: PMC11619568 DOI: 10.3892/etm.2024.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 12/11/2024] Open
Abstract
Pulmonary fibrosis (PF) is a progressive, irreversible disease characterized by heterogeneous interstitial lung tissue damage. It originates from persistent or repeated lung epithelial injury and leads to the activation and differentiation of fibroblasts into myofibroblasts. Interleukins (ILs) are a group of lymphokines crucial for immunomodulation that are implicated in the pathogenesis of PF. However, different types of ILs exert disparate effects on PF. In the present review, based on the effect on PF, ILs are classified into three categories: i) Promotors of PF; ii) inhibitors of PF; and iii) those that exert dual effects on PF. Several types of ILs can promote PF by provoking inflammation, initiating proliferation and transdifferentiation of epithelial cells, exacerbating lung injury, while other ILs can inhibit PF through suppressing expression of inflammatory factors, modulating the Th1/Th2 balance and autophagy. The present review summarizes the association of ILs and PF, focusing on the roles and mechanisms of ILs underlying PF.
Collapse
Affiliation(s)
- Yuqing He
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xuebin Shen
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, P.R. China
| | - Sihui Nian
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
4
|
An Y, Yan SY, Xu W, Li MQ, Dong RR, Yang QR, Ma ZZ. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) activates p38 to affect pulmonary fibrosis. Regen Ther 2024; 26:27-32. [PMID: 38798743 PMCID: PMC11127469 DOI: 10.1016/j.reth.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Objective We aimed to examine whether heparin-binding epidermal growth factor-like growth factor (HB-EGF) affects the lung fibrosis process through the activation of p38 protein in mitogen-activated protein kinases (MAPK) signaling pathway, as well as the expression of downstream inflammatory factors. Methods The expression levels of HB-EGF, collagen type I (COL-I), and hexokinase 2 (HK2) in peripheral blood mononuclear cells (PBMCs) of patients with connective tissue disease-related interstitial lung disease (CTD-ILD) were examined by qPCR, Western blotting and ELISA. Results In vitro experiments showed that HB-EGF was increased in almost all subtypes [rheumatoid arthritis (RA), systemic sclerosis (SSc) and idiopathic inflammatory myopathies (IIMs)] as well as in all groups (P < 0.05). For embryonic lung fibroblast (A549) cells, the expression levels of HK2 and α-smooth muscle actin (α-SMA) genes were elevated during 0-4 h and then plateaued. Transforming growth factor-β1 (TGF-β1) induced fibrosis in human embryonic lung fibroblasts (MRC-5) cells and A549 for a certain period of time, but the degree of induction varied, which may be related to the redifferentiability of cells at different spatial locations. Moreover, HB-EGF at concentrations above 1 ng/ml stimulation increased COL-I expression (P < 0.05), and for α-SMA gene, even 1 ng/ml concentration of HB-EGF had a stimulatory effect, and different concentrations of HB-EGF did activate the expression of p38 in a concentration-dependent manner within a certain concentration range, and by The qPCR results showed that for interleukin 6 (IL-6), an inflammatory factor regulated downstream of p38, the expression was significantly increased in A549 cells compared to control (P < 0.05), but tumor necrosis factor-α (TNF-α) expression was downregulated (P < 0.05), but for interleukin-1β (IL-1β) gene, there was no significant difference in A549 cells, and expression was downregulated in MRC-5 cells. Therefore, it is suggested that HB-EGF regulates the expression of inflammatory factors through p38 will be differential across cells. Conclusion Our study shows that HB-EGF can suppress pulmonary fibrosis through downstream activation of p38/MAPK pathway activity, as well as the expression of various inflammatory factors downstream of it.
Collapse
Affiliation(s)
- Yan An
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Su-Yan Yan
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Xu
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mei-Qi Li
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rong-Rong Dong
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing-Rui Yang
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhen-Zhen Ma
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Costanzo G, Costanzo GAML, Del Moro L, Nappi E, Pelaia C, Puggioni F, Canonica GW, Heffler E, Paoletti G. Mast Cells in Upper and Lower Airway Diseases: Sentinels in the Front Line. Int J Mol Sci 2023; 24:ijms24119771. [PMID: 37298721 DOI: 10.3390/ijms24119771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells (MCs) are fascinating cells of the innate immune system involved not only in allergic reaction but also in tissue homeostasis, response to infection, wound healing, protection against kidney injury, the effects of pollution and, in some circumstances, cancer. Indeed, exploring their role in respiratory allergic diseases would give us, perhaps, novel therapy targets. Based on this, there is currently a great demand for therapeutic regimens to enfeeble the damaging impact of MCs in these pathological conditions. Several strategies can accomplish this at different levels in response to MC activation, including targeting individual mediators released by MCs, blockade of receptors for MC-released compounds, inhibition of MC activation, limiting mast cell growth, or inducing mast cell apoptosis. The current work focuses on and summarizes the mast cells' role in pathogenesis and as a personalized treatment target in allergic rhinitis and asthma; even these supposed treatments are still at the preclinical stage.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Emanuele Nappi
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
6
|
Hult EM, Gurczynski SJ, O’Dwyer DN, Zemans RL, Rasky A, Wang Y, Murray S, Crawford HC, Moore BB. Myeloid- and Epithelial-derived Heparin-Binding Epidermal Growth Factor-like Growth Factor Promotes Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 67:641-653. [PMID: 36036796 PMCID: PMC9743186 DOI: 10.1165/rcmb.2022-0174oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a poorly understood, progressive lethal lung disease with no known cure. In addition to alveolar epithelial cell (AEC) injury and excessive deposition of extracellular matrix proteins, chronic inflammation is a hallmark of IPF. Literature suggests that the persistent inflammation seen in IPF primarily consists of monocytes and macrophages. Recent work demonstrates that monocyte-derived alveolar macrophages (moAMs) drive lung fibrosis, but further characterization of critical moAM cell attributes is necessary. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an important epidermal growth factor receptor ligand that has essential roles in angiogenesis, wound healing, keratinocyte migration, and epithelial-mesenchymal transition. Our past work has shown HB-EGF is a primary marker of profibrotic M2 macrophages, and this study seeks to characterize myeloid-derived HB-EGF and its primary mechanism of action in bleomycin-induced lung fibrosis using Hbegff/f;Lyz2Cre+ mice. Here, we show that patients with IPF and mice with pulmonary fibrosis have increased expression of HB-EGF and that lung macrophages and transitional AECs of mice with pulmonary fibrosis and humans all express HB-EGF. We also show that Hbegff/f;Lyz2Cre+ mice are protected from bleomycin-induced fibrosis and that this protection is likely multifactorial, caused by decreased CCL2-dependent monocyte migration, decreased fibroblast migration, and decreased contribution of HB-EGF from AEC sources when HB-EGF is removed under the Lyz2Cre promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Yizhuo Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; and
| | - Susan Murray
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; and
| | - Howard C. Crawford
- Henry Ford Pancreatic Center, Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | - Bethany B. Moore
- Department of Microbiology and Immunology
- Department of Internal Medicine
| |
Collapse
|
7
|
Hou S, Wu H, Chen S, Li X, Zhang Z, Cheng Y, Chen Y, He M, An Q, Man C, Du L, Chen Q, Wang F. Bovine skin fibroblasts mediated immune responses to defend against bovine Acinetobacter baumannii infection. Microb Pathog 2022; 173:105806. [PMID: 36179976 DOI: 10.1016/j.micpath.2022.105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen which can cause pneumonia, sepsis and infections of skin and soft tissue. The host mostly relies on innate immune responses to defend against the infection of A. baumannii. Currently, it has been confirmed that fibroblasts involved in innate immune responses. Therefore, to explore how bovine skin fibroblasts mediated immune responses to defend against A. baumannii infection, we analyzed the differential transcripts data of bovine skin fibroblasts infected with bovine A. baumannii by RNA-sequencing (RNA-seq). We found that there were 3014 differentially expressed genes (DEGs) at 14h with bovine A. baumannii infection, including 1940 up-regulated genes and 1074 down-regulated genes. Gene Ontology (GO) enrichment showed that ubiquitin protein ligase binding, IL-6 receptor complex, ERK1 and ERK2 cascade terms were mainly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that innate immune pathways were significantly enriched, such as TNF, IL-17, NLR, MAPK, NF-κB, endocytosis, apoptosis and HIF-1 signaling pathways. Furthermore, Gene Set Enrichment Analysis (GSEA) revealed that GO terms such as chemokine receptor binding and Th17 cell differentiation and KEGG pathways such as TLR and cytokine-cytokine receptor interaction pathways were up-regulated. In addition, CASP3 and JUN were the core functional genes of apoptosis, while IL-6, ERBB2, EGFR, CHUK and MAPK8 were the core functional genes of immunity by Protein-Protein Interaction (PPI) analysis. Our study provided an in-depth understanding of the molecular mechanisms of fibroblasts against A. baumannii infection. It also lays the foundation for the development of new therapeutic targets for the diseases caused by A. baumannii infection and formulates effective therapeutic strategies for the prevention and control of the diseases caused by A. baumannii.
Collapse
Affiliation(s)
- Simeng Hou
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Haotian Wu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Xubo Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Yuanyuan Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Meirong He
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
8
|
Abstract
Immunity with SARS-CoV-2 infection during the acute phase is not sufficiently well understood to differentiate mild from severe cases and identify prognostic markers. We evaluated the immune response profile using a total of 71 biomarkers in sera from patients with SARS-CoV-2 infection, confirmed by RT-PCR and controls. We correlated biological marker levels with negative control (C) asymptomatic (A), nonhospitalized (mild cases-M), and hospitalized (severe cases-S) groups. Among angiogenesis markers, we identified biomarkers that were more frequently elevated in severe cases when compared to the other groups (C, A, and M). Among cardiovascular diseases, there were biomarkers with differences between the groups, with D-dimer, GDF-15, and sICAM-1 higher in the S group. The levels of the biomarkers Myoglobin and P-Selectin were lower among patients in group M compared to those in groups S and A. Important differences in cytokines and chemokines according to the clinical course were identified. Severe cases presented altered levels when compared to group C. This study helps to characterize biological markers related to angiogenesis, growth factors, heart disease, and cytokine/chemokine production in individuals infected with SARS-CoV-2, offering prognostic signatures and a basis for understanding the biological factors in disease severity.
Collapse
|
9
|
The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int J Mol Sci 2022; 23:ijms23158336. [PMID: 35955471 PMCID: PMC9369056 DOI: 10.3390/ijms23158336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.
Collapse
|
10
|
Banafea GH, Bakhashab S, Alshaibi HF, Natesan Pushparaj P, Rasool M. The role of human mast cells in allergy and asthma. Bioengineered 2022; 13:7049-7064. [PMID: 35266441 PMCID: PMC9208518 DOI: 10.1080/21655979.2022.2044278] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.
Collapse
Affiliation(s)
- Ghalya H Banafea
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda F Alshaibi
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Yang K, Chen Y, Xiang X, Lin Y, Fei C, Chen Z, Lai Z, Yu Y, Tan R, Dong J, Zhang J, Li P, Wang L, Zhang Z. EGF Contributes to Hypertrophy of Human Ligamentum Flavum via the TGF-β1/Smad3 Signaling Pathway. Int J Med Sci 2022; 19:1510-1518. [PMID: 36185336 PMCID: PMC9515692 DOI: 10.7150/ijms.76077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The most common spinal disorder in elderly is lumbar spinal canal stenosis (LSCS). Previous studies showed that ligamentum flavum hypertrophy (LFH) with fibrosis as the main pathological change is one of the pathogenic factors leading to LSCS. Epidermal Growth Factor (EGF) is known to have an intimate relationship with fibrosis in various tissues. Nevertheless, currently, there are few studies regarding EGF in LFH. The effect of EGF on the development of LFH is unknown, and the underlying pathomechanism remains unclear. In this study, we investigated the role of EGF in LFH and its potential molecular mechanism. Methods: First, the expression levels of EGF, phosphorylation of EGF receptor (pEGFR), Transforming growth factor-β1 (TGF-β1), Phosphorylated Smad3 (pSmad3), collagen I and collagen III were examined via immunohistochemistry and Western blot in LF tissues from patients with LSCS or Non-LSCS. Second, primary LF cells were isolated from adults with normal LF thickness and were cultured with different concentrations of exogenous EGF with or without erlotinib/TGF-β1-neutralizing antibody. Results: The results showed that EGF, pEGFR, TGF-β1, pSmad3, collagen I and collagen III protein expression in the LSCS group was significantly higher than that in the Non-LSCS group. Meanwhile, pEGFR, TGF-β1, pSmad3, collagen I and collagen III protein expression was significantly enhanced in LF cells after exogenous EGF exposure, which can be notably blocked by erlotinib. In addition, pSmad3, collagen I and collagen III protein expression was blocked by TGF-β1-neutralizing antibody. Conclusions: EGF promotes the synthesis of collagen I and collagen III via the TGF-β1/Smad3 signaling pathway, which eventually contributes to LFH.
Collapse
Affiliation(s)
- Kaifan Yang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanlin Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanling Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengshuo Fei
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zesen Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongming Lai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongpeng Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiqian Tan
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiale Dong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junxiong Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|