1
|
Moll M, Hobbs BD, Pratte KA, Zhang C, Ghosh AJ, Bowler RP, Lomas DA, Silverman EK, DeMeo DL. Assessing Inflammatory Protein Biomarkers in COPD Subjects with and without Alpha-1 Antitrypsin Deficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.11.25320392. [PMID: 39867385 PMCID: PMC11759610 DOI: 10.1101/2025.01.11.25320392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Rationale Individuals homozygous for the Alpha-1 Antitrypsin (AAT) Z allele (Pi*ZZ) exhibit heterogeneity in COPD risk. COPD occurrence in non-smokers with AAT deficiency (AATD) suggests inflammatory processes may contribute to COPD risk independently of smoking. We hypothesized that inflammatory protein biomarkers in non-AATD COPD are associated with moderate-to-severe COPD in AATD individuals, after accounting for clinical factors. Methods Participants from the COPDGene (Pi*MM) and AAT Genetic Modifier Study (Pi*ZZ) were included. Proteins associated with FEV1/FVC were identified, adjusting for confounders and familial relatedness. Lung-specific protein-protein interaction (PPI) networks were constructed. Proteins associated with AAT augmentation therapy were identified, and drug repurposing analyses performed. A protein risk score (protRS) was developed in COPDGene and validated in AAT GMS using AUC analysis. Machine learning ranked proteomic predictors, adjusting for age, sex, and smoking history. Results Among 4,446 Pi*MM and 352 Pi*ZZ individuals, sixteen blood proteins were associated with airflow obstruction, fourteen of which were highly expressed in lung. PPI networks implicated regulation of immune system function, cytokine and interleukin signaling, and matrix metalloproteinases. Eleven proteins, including IL4R, were linked to augmentation therapy. Drug repurposing identified antibiotics, thyroid medications, hormone therapies, and antihistamines as potential AATD treatments. Adding protRS improved COPD prediction in AAT GMS (AUC 0.86 vs. 0.80, p = 0.0001). AGER was the top-ranked protein predictor of COPD. Conclusions Sixteen proteins are associated with COPD and inflammatory processes that predict airflow obstruction in AATD after accounting for age and smoking. Immune activation and inflammation are modulators of COPD risk in AATD.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115
- Division of Pulmonary, Critical Care, Sleep and Allergy. Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02123
- Harvard Medical School, Boston, MA, 02115
| | | | | | - Chengyue Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115
| | - Auyon J. Ghosh
- Division of Pulmonary and Critical Care Medicine, SUNY Upstate Medical Center, Syracuse, NY 13210
| | - Russell P. Bowler
- Department of Genomic Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195
| | - David A Lomas
- Division of Medicine, UCL Respiratory, Rayne Institute, University College London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University College London, UK
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115
- Harvard Medical School, Boston, MA, 02115
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115
- Harvard Medical School, Boston, MA, 02115
| |
Collapse
|
2
|
Fricke-Galindo I, García-Carmona S, Alanis-Ponce J, Pérez-Rubio G, Ramírez-Venegas A, Montiel-Lopez F, Robles-Hernández R, Hernández-Zenteno RDJ, Valencia-Pérez Rea D, Bautista-Becerril B, Ramírez-Díaz ME, Cruz-Vicente F, Martínez-Gómez MDL, Sansores R, Falfán-Valencia R. sRAGE levels are decreased in plasma and sputum of COPD secondary to biomass-burning smoke and tobacco smoking: Differences according to the rs3134940 AGER variant. Heliyon 2024; 10:e28675. [PMID: 38571598 PMCID: PMC10988041 DOI: 10.1016/j.heliyon.2024.e28675] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
The receptor for advanced glycation end products (RAGE) and its gene (AGER) have been related to lung injury and inflammatory diseases, including chronic obstructive pulmonary disease (COPD). We aimed to evaluate the association of rs2071288, rs3134940, rs184003, and rs2070600 AGER single-nucleotide variants and the soluble-RAGE plasma and sputum levels with COPD secondary to biomass-burning smoke (BBS) and tobacco smoking. Four groups, including 2189 subjects, were analyzed: COPD secondary to BBS exposure (COPD-BBS, n = 342), BBS-exposed subjects without COPD (BBES, n = 774), tobacco smoking-induced COPD (COPD-TS, n = 434), and smokers without COPD (SWOC, n = 639). Allelic discrimination assays determined the AGER variants. The sRAGE was quantified in plasma (n = 240) and induced-sputum (n = 72) samples from a subgroup of patients using the ELISA technique. In addition, a meta-analysis was performed for the association of rs2070600 with COPD susceptibility. None of the studied genetic variants were found to be associated with COPD-BBS or COPD-TS. A marginal association was observed for the rs3134940 with COPD-BBS (p = 0.066). The results from the meta-analysis, including six case-control studies (n = 4149 subjects), showed a lack of association of rs2070600 with COPD susceptibility (p = 0.681), probably due to interethnic differences. The sRAGE plasma levels were lower in COPD-BBS compared to BBS and in COPD-TS compared to SWOC. The sRAGE levels were also lower in sputum samples from COPD-BBS than BBES. Subjects with rs3134940-TC genotypes exhibit lower sRAGE plasma levels than TT subjects, mainly from the COPD-BBS and SWOC groups. The AGER variants were not associated with COPD-BBS nor COPD-TS, but the sRAGE plasma and sputum levels are related to both COPD-BBS and COPD-TS and are influenced by the rs3134940 variant.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Salvador García-Carmona
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Jesús Alanis-Ponce
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Francisco Montiel-Lopez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Robinson Robles-Hernández
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Rafael de Jesús Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Daniela Valencia-Pérez Rea
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - María Elena Ramírez-Díaz
- Coordinación de Vigilancia Epidemiológica, Jurisdicción 06 Sierra, Tlacolula de Matamoros Oaxaca, Servicios de Salud de Oaxaca, Oaxaca, 70400, Mexico
| | - Filiberto Cruz-Vicente
- Internal Medicine Department, Hospital Civil Aurelio Valdivieso, Servicios de Salud de Oaxaca, Oaxaca, 68050, Mexico
| | | | - Raúl Sansores
- Clínica de Enfermedades Respiratorias, Fundación Médica Sur, Mexico City, 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| |
Collapse
|
3
|
Lu T, Lahousse L, Wijnant S, Chen J, Brusselle GG, van Hoek M, Zillikens MC. The AGE-RAGE axis associates with chronic pulmonary diseases and smoking in the Rotterdam study. Respir Res 2024; 25:85. [PMID: 38336742 PMCID: PMC10858545 DOI: 10.1186/s12931-024-02698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and asthma associate with high morbidity and mortality. High levels of advanced glycation end products (AGEs) were found in tissue and plasma of COPD patients but their role in COPD and asthma is unclear. METHODS In the Rotterdam Study (n = 2577), AGEs (by skin autofluorescence (SAF)), FEV1 and lung diffusing capacity (DLCOc and DLCOc /alveolar volume [VA]) were measured. Associations of SAF with asthma, COPD, GOLD stage, and lung function were analyzed using logistic and linear regression adjusted for covariates, followed by interaction and stratification analyses. sRAGE and EN-RAGE associations with COPD prevalence were analyzed by logistic regression. RESULTS SAF associated with COPD prevalence (OR = 1.299 [1.060, 1.591]) but not when adjusted for smoking (OR = 1.106 [0.89, 1.363]). SAF associated with FEV1% predicted (β=-3.384 [-4.877, -1.892]), DLCOc (β=-0.212 [-0.327, -0.097]) and GOLD stage (OR = 4.073, p = 0.001, stage 3&4 versus 1). Stratified, the association between SAF and FEV1%predicted was stronger in COPD (β=-6.362 [-9.055, -3.670]) than non-COPD (β=-1.712 [-3.306, -0.118]). Association of SAF with DLCOc and DLCOc/VA were confined to COPD (β=-0.550 [-0.909, -0.191]; β=-0.065 [-0.117, -0.014] respectively). SAF interacted with former smoking and COPD prevalence for associations with lung function. Lower sRAGE and higher EN-RAGE associated with COPD prevalence (OR = 0.575[0.354, 0.931]; OR = 1.778[1.142, 2.768], respectively). CONCLUSIONS Associations between SAF, lung function and COPD prevalence were strongly influenced by smoking. SAF associated with COPD severity and its association with lung function was more prominent within COPD. These results fuel further research into interrelations and causality between SAF, smoking and COPD. TAKE-HOME MESSAGE Skin AGEs associated with prevalence and severity of COPD and lung function in the general population with a stronger effect in COPD, calling for further research into interrelations and causality between SAF, smoking and COPD.
Collapse
Affiliation(s)
- Tianqi Lu
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lies Lahousse
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sara Wijnant
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jinluan Chen
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Guy G Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mandy van Hoek
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, 's-Gravendijkwal 230, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
van den Berge M, Faiz A. Blood Biomarkers of Emphysema: What Can They Really Tell Us? Am J Respir Crit Care Med 2024; 209:235-237. [PMID: 38078855 PMCID: PMC10840767 DOI: 10.1164/rccm.202311-2087ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Affiliation(s)
- Maarten van den Berge
- University Medical Center Groningen University of Groningen Groningen, the Netherlands
| | - Alen Faiz
- University Medical Center Groningen University of Groningen Groningen, the Netherlands
- Respiratory Bioinformatics and Molecular Biology Group The University of Technology Sydney Ultimo, New South Wales, Australia
| |
Collapse
|
5
|
Vestal BE, Ghosh D, Estépar RSJ, Kechris K, Fingerlin T, Carlson NE. Quantifying the spatial clustering characteristics of radiographic emphysema explains variability in pulmonary function. Sci Rep 2023; 13:13862. [PMID: 37620507 PMCID: PMC10449810 DOI: 10.1038/s41598-023-40950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Quantitative assessment of emphysema in CT scans has mostly focused on calculating the percentage of lung tissue that is deemed abnormal based on a density thresholding strategy. However, this overall measure of disease burden discards virtually all the spatial information encoded in the scan that is implicitly utilized in a visual assessment. This simplification is likely grouping heterogenous disease patterns and is potentially obscuring clinical phenotypes and variable disease outcomes. To overcome this, several methods that attempt to quantify heterogeneity in emphysema distribution have been proposed. Here, we compare three of those: one based on estimating a power law for the size distribution of contiguous emphysema clusters, a second that looks at the number of emphysema-to-emphysema voxel adjacencies, and a third that applies a parametric spatial point process model to the emphysema voxel locations. This was done using data from 587 individuals from Phase 1 of COPDGene that had an inspiratory CT scan and plasma protein abundance measurements. The associations between these imaging metrics and visual assessment with clinical measures (FEV[Formula: see text], FEV[Formula: see text]-FVC ratio, etc.) and plasma protein biomarker levels were evaluated using a variety of regression models. Our results showed that a selection of spatial measures had the ability to discern heterogeneous patterns among CTs that had similar emphysema burdens. The most informative quantitative measure, average cluster size from the point process model, showed much stronger associations with nearly every clinical outcome examined than existing CT-derived emphysema metrics and visual assessment. Moreover, approximately 75% more plasma biomarkers were found to be associated with an emphysema heterogeneity phenotype when accounting for spatial clustering measures than when they were excluded.
Collapse
Affiliation(s)
- Brian E Vestal
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory (ACIL), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Tasha Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Nichole E Carlson
- Department of Biostatistics and Informatics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Genetically Modified Circulating Levels of Advanced Glycation End-Products and Their Soluble Receptor (AGEs-RAGE Axis) with Risk and Mortality of Breast Cancer. Cancers (Basel) 2022; 14:cancers14246124. [PMID: 36551607 PMCID: PMC9776370 DOI: 10.3390/cancers14246124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The interaction of advanced glycation end-products (AGEs) with their receptor (RAGE) elicits oxidative stress and inflammation, which is involved in the development of breast cancer. However, large-scale population-based evidence exploring genetically modified circulating levels of AGEs-RAGE axis with risk and mortality of breast cancer is scarce. We recruited 1051 pairs of age-matched breast cancers and controls and measured plasma AGEs and sRAGE concentrations by enzyme-linked immunosorbent assay (ELISA). Multivariate logistic regression and Cox proportional hazard model were used to calculate the effects of plasma levels and genetic variants of the AGEs-RAGE axis and their combined effects on breast cancer risk and prognosis, respectively. Furthermore, linear regression was performed to assess the modifications in plasma AGEs/sRAGE levels by genetic predisposition. Higher levels of AGEs and AGEs/sRAGE-ratio were associated with an increased risk of breast cancer, but sRAGE levels were negatively associated with breast cancer risk, especially in women <60 years. We also observed a positive association between AGEs and the bad prognosis of breast cancer. Although we did not observe a significant contribution of genetic variants to breast cancer risk, rs2070600 and rs1800624 in the AGER gene were dose-dependently correlated with sRAGE levels. Further, compared to the haplotype CT at the lowest quartile of AGEs, haplotypes TT and TA were prominently associated with breast cancer risk in the highest quartile of AGEs. This study depicted a significant association between circulating levels of AGEs-RAGE axis and breast cancer risk and mortality and revealed the potential of plasma AGEs, especially coupled with AGER polymorphism as biomarkers of breast cancer.
Collapse
|