1
|
Qing S, Zhang Y, Qin X. The treatment of a malunited posterior pilon fracture with talar dislocation: A staged surgical treatment protocol. Injury 2023; 54:110934. [PMID: 37478691 DOI: 10.1016/j.injury.2023.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Malunited posterior pilon fractures with talus dislocation (mPPFtd) are rare and there are no appropriate treatment strategies. The purpose of this study was to introduce a stepped strategy featuring preliminary soft tissue management according to the Ilizarov principle and delayed open reduction and internal fixation (ORIF) through a modified posteromedial approach to overcome rigid soft tissue contracture. METHOD From February 2015 to August 2021, 12 selected patients with mPPFtd who were treated with the staged protocol (Group A) were retrospectively analysed. The clinical and radiographic outcomes were evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score, the visual analogue scale (VAS) score, and the Burwell-Charnley score. Moreover, this case series was compared with some cases of fresh fracture (Group B) in patients that had the same baseline data from our previous study. RESULTS In Group A, the average length of time between the date of injury and the date of surgery was 4.8 ± 3.3 months. The average time to external fixator distraction, as the first-stage treatment, was 13.4 ± 1.0 days. In the second stage of ORIF, the posterosuperior dislocation of the talus was corrected with osteotomy and leverage manoeuvres. According to the Burwell-Charnley score system, the reduction quality was excellent in 9 cases and good in 3 cases. After a mean follow-up of 3.8 ± 2.1 years, there were no infections, wound healing problems, or nerve injuries in our cohort, and union was observed in all fractures without a loss of reduction. The baseline data of the two groups were not significantly different (p>0.05). The mean AOFAS score in Group A was 85.0 ± 10.5 and that in Group B was 95.4 ± 6.1 (p<0.05). The mean VAS score in Group A was 1.7 ± 1.4 and that in Group B was 0.7 ± 0.9 (p<0.05). CONCLUSION A staged surgical treatment strategy characterized by soft tissue management will improve the treatment of mPPFtd and produce satisfactory clinical outcomes. LEVEL OF EVIDENCE Level IV, retrospective case series.
Collapse
Affiliation(s)
- Siyuan Qing
- Department of Trauma, the First Affifiliating Hospital of Nanjing Medical University & Jiangsu Province Hospital, China
| | - Yu Zhang
- Department of Trauma, the First Affifiliating Hospital of Nanjing Medical University & Jiangsu Province Hospital, China.
| | - Xiaodong Qin
- Department of Trauma, the First Affifiliating Hospital of Nanjing Medical University & Jiangsu Province Hospital, China.
| |
Collapse
|
2
|
TECAR Therapy Associated with High-Intensity Laser Therapy (Hilt) and Manual Therapy in the Treatment of Muscle Disorders: A Literature Review on the Theorised Effects Supporting Their Use. J Clin Med 2022; 11:jcm11206149. [PMID: 36294470 PMCID: PMC9604865 DOI: 10.3390/jcm11206149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background: It has been estimated that between 30 and 50 per cent of all injuries that take place throughout participation in a sport are the consequence of soft tissue injuries, and muscle injuries are the primary cause of physical disability. Methods: The current literature review was designed between October 2021 and April 2022, according to the PRISMA standards, using the PubMed, Scopus, and Web of Science databases. At the screening stage, we eliminated articles that did not fit into the themes developed in all subchapters of the study (n = 70), articles that dealt exclusively with orthopaedics (n = 34), 29 articles because the articles had only the abstract visible, and 17 articles that dealt exclusively with other techniques for the treatment of musculoskeletal disorders. The initial search revealed 343 titles in the databases, from which 56 duplicate articles were automatically removed, and 2 were added from other sources. Results: The combination of these three techniques results in the following advantages: It increases joint mobility, especially in stiff joints, it increases the range of motion, accelerates tissue repair, improves tissue stability, and extensibility, and it reduces soft tissue inflammation (manual therapy). In addition, it decreases the concentration of pro-inflammatory mediators and improves capillary permeability, resulting in the total eradication of inflammation (HILT). It warms the deep tissues, stimulates vascularity, promotes the repose of tissues (particularly muscle tissue), and stimulates drainage (TECAR). Conclusions: TECAR therapy, combined with manual therapy and High-Intensity Laser therapy in treating muscle diseases, presented optimal collaboration in the recovery process of all muscle diseases.
Collapse
|
3
|
Chen X, Wang Z, Huang Y, Deng W, Zhou Y, Chu M. Identification of novel biomarkers for arthrofibrosis after total knee arthroplasty in animal models and clinical patients. EBioMedicine 2021; 70:103486. [PMID: 34311327 PMCID: PMC8325099 DOI: 10.1016/j.ebiom.2021.103486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Background Arthrofibrosis is a debilitating complication after total knee arthroplasty (TKA) which becomes a considerable burden for both patients and clinical practitioners. Our study aimed to identify novel biomarkers and therapeutic targets for drug discovery. Methods Potential biomarker genes were identified based on bioinformatic analysis. Twelve male New Zealand white rabbits underwent surgical fixation of unilateral knees to mimics the joint immobilization of the clinical scenario after TKA surgery. Macroscopic assessment, hydroxyproline content determination, and histological analysis of tissue were performed separately after 3-days, 1-week, 2-weeks, and 4-weeks of fixation. We also enrolled 46 arthrofibrosis patients and 92 controls to test the biomarkers. Clinical information such as sex, age, range of motion (ROM), and visual analogue scale (VAS) was collected by experienced surgeons Findings Base on bioinformatic analysis, transforming growth factor-beta receptor 1 (TGFBR1) was identified as the potential biomarkers. The level of TGFBR1 was significantly raised in the rabbit synovial tissue after 4-weeks of fixation (p<0.05). TGFBR1 also displayed a highly positive correlation with ROM loss and hydroxyproline contents in the animal model. TGFBR1 showed a significantly higher expression level in arthrofibrosis patients with a receiver operating characteristic (ROC) area under curve (AUC) of 0.838. TGFBR1 also performed positive correlations with VAS baseline (0.83) and VAS after 1 year (0.76) while negatively correlated with ROM baseline (-0.76) in clinical patients. Interpretation Our findings provided novel biomarkers for arthrofibrosis diagnosis and uncovered the role of TGFBR1. This may contribute to arthrofibrosis prevention and therapeutic drug discovery.
Collapse
Affiliation(s)
- Xi Chen
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China; Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University). Beijing, China
| | - Zhaolun Wang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Yong Huang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Wang Deng
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Yixin Zhou
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, 31 East Xinjiekou Street, Beijing 100035, China.
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University). Beijing, China.
| |
Collapse
|
4
|
Thermal and non-thermal effects of capacitive-resistive electric transfer application on different structures of the knee: a cadaveric study. Sci Rep 2020; 10:22290. [PMID: 33339869 PMCID: PMC7749154 DOI: 10.1038/s41598-020-78612-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/24/2020] [Indexed: 11/08/2022] Open
Abstract
Capacitive-resistive electric transfer therapy is used in physical rehabilitation and sports medicine to treat muscle, bone, ligament and tendon injuries. The purpose is to analyze the temperature change and transmission of electric current in superficial and deep knee tissues when applying different protocols of capacitive-resistive electric transfer therapy. Five fresh frozen cadavers (10 legs) were included in this study. Four interventions (high/low power) were performed for 5 min by a physiotherapist with experience. Dynamic movements were performed to the posterior region of the knee. Capsular, intra-articular and superficial temperature were recorded at 1-min intervals and 5 min after the treatment, using thermocouples placed with ultrasound guidance. The low-power protocols had only slight capsular and intra-capsular thermal effects, but electric current flow was observed. The high-power protocols achieved a greater increase in capsular and intra-articular temperature and a greater current flow than the low-power protocols. The information obtained in this in vitro study could serve as basic science data to hypothesize capsular and intra-articular knee recovery in living subjects. The current flow without increasing the temperature in inflammatory processes and increasing the temperature of the tissues in chronic processes with capacitive-resistive electric transfer therapy could be useful for real patients.
Collapse
|
5
|
Xiao D, Liang T, Zhuang Z, He R, Ren J, Jiang S, Zhu L, Wang K, Shi D. Lumican promotes joint fibrosis through TGF-β signaling. FEBS Open Bio 2020; 10:2478-2488. [PMID: 32910552 PMCID: PMC7609791 DOI: 10.1002/2211-5463.12974] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023] Open
Abstract
Joint contracture (also known as arthrofibrosis) is a fibrotic joint disorder characterized by excessive collagen production to form fibrotic scar tissue and adhesions within joint capsules. This can severely affect day‐to‐day activities and quality of life because of a restricted range of motion in affected joints. The precise pathogenic mechanism underlying joint contractures is not fully understood. Lumican belongs to the class II small leucine‐rich repeat proteoglycan superfamily, which makes up collagen fibrils in the extracellular matrix. Lumican is ubiquitously expressed in the skin, liver, heart, uterus and articular cartilage and has reported roles in cell migration, proliferation, angiogenesis and Toll‐like receptor 4 signaling. Previous research has suggested that lumican is involved in the pathogenesis of several fibrotic diseases. Because joint contracture resembles a fibrotic disease, we aimed to investigate the role of lumican in the development of joint contracture in vitro. Here, we showed that protein levels were up‐regulated in the fibrotic joint capsule versus control. We observed that lumican significantly enhanced the proliferation, migration and fibroblast–myofibroblast transition of synovial fibroblasts. Moreover, lumican led to increased transcription of alpha‐smooth muscle actin, matrix metallopeptidase 9, Collagen I, plasminogen activator inhibitor 1 and transforming growth factor‐β in vitro. Lumican treatment promoted collagen lattice contraction in a dose‐dependent manner as early as 24 h after treatment. Thus, our studies reveal that lumican could promote fibroblast–myofibroblast transition and joint contracture.
Collapse
Affiliation(s)
- Dahai Xiao
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ze Zhuang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhua Ren
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shihai Jiang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Zhu
- Department of Plastic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dehai Shi
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Mechanical adaptation of synoviocytes A and B to immobilization and remobilization: a study in the rat knee flexion model. J Mol Histol 2020; 51:605-611. [PMID: 32778991 DOI: 10.1007/s10735-020-09902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
The objective of this study was to quantify the in vivo response of synoviocytes type A and B in the posterior joint capsule to knee immobilization and remobilization. Also, to correlate the immunohistochemical data with selected mRNA expression in the posterior joint capsule. Forty-two adult male Sprague-Dawley rats had one knee joint immobilized in flexion for durations of 1-4 weeks. Fifteen were harvested after immobilization and 15 were remobilized for 4 weeks. They were analyzed immunohistochemically with CD68 and CD55 antibodies as markers for synoviocytes type A and type B, respectively. Controls were 15 age-matched rats. The remaining 12 rats had their posterior capsule harvested and synoviocyte-specific CD68, CD55, and uridine diphosphoglucose dehydrogenase (UDPGD) mRNA expression was measured. Controls were 12 sham-operated knees. Knee immobilization for 2 weeks significantly increased synoviocytes A:B staining ratio compared to controls (3.88 ± 1.39 vs. 1.83 ± 0.76; p < 0.05). Remobilization for 4 weeks abolished the increase. Remobilization of knees that were immobilized for 1 week also significantly lowered the synoviocytes A:B staining ratios compared to immobilized-only knees (0.66 ± 0.23 vs. 2.19 ± 0.54; p < 0.05) and to controls (0.66 ± 0.23 vs. 1.32 ± 0.29; p < 0.05). Consistent with the immunohistochemistry, mRNA expression of synoviocyte type B-specific CD55 and UDPGD genes were significantly lower in the capsules immobilized for 2 weeks (both p < 0.05). Knee immobilization and remobilization significantly modulated synoviocytes in vivo, stressing their mechanosensitive nature and possible contribution to immobility-induced changes of the joint capsule.
Collapse
|
7
|
Wang MM, Feng YS, Xing Y, Dong F, Zhang F. Mechanisms involved in the arthrofibrosis formation and treatments following bone fracture. J Back Musculoskelet Rehabil 2020; 32:947-954. [PMID: 31403938 DOI: 10.3233/bmr-191499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arthrofibrosis is a common complication for patients with bone fracture following external and internal fixation. In this review, we summarize the related factors and significant pathways for joint adhesion following fracture surgery. Moreover, the different types of treatments and related preventive measures are also discussed. Many factors related to the development and treatment of arthrofibrosis are discussed in this review in order to provide possible clues for the prospective targets to develop new medication or treatments for preventing or reducing the joint adhesion following orthopedic surgery.
Collapse
Affiliation(s)
- Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.,Hebei Provincial Orthopedic Biomechanics key laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
8
|
Dehail P, Gaudreault N, Zhou H, Cressot V, Martineau A, Kirouac-Laplante J, Trudel G. Joint contractures and acquired deforming hypertonia in older people: Which determinants? Ann Phys Rehabil Med 2019; 62:435-441. [DOI: 10.1016/j.rehab.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 01/05/2023]
|
9
|
Yu D, Zhuang Z, Ren J, Hu X, Wang Z, Zhang J, Luo Y, Wang K, He R, Wang Y. Hyaluronic acid-curcumin conjugate suppresses the fibrotic functions of myofibroblasts from contractive joint by the PTGER2 demethylation. Regen Biomater 2019; 6:269-277. [PMID: 31616564 PMCID: PMC6783700 DOI: 10.1093/rb/rbz016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Joint contracture is a fibrotic complication induced by joint immobilization and trauma, which is characterized as excessive myofibroblast proliferation in joint capsule. The treatments of joint contracture are unsatisfied and patients are suffered from joint dysfunction. Our previous study has shown that curcumin can inhibit myofibroblast proliferation in vitro, but the major challenge is the low aqueous solubility and biological activity of curcumin. In this study, hyaluronic acid-curcumin (HA-Cur) conjugate was synthesized to suppress myofibroblasts in joint contracture. Cells were isolated from the joint capsules of joint contracture patients and induced to active myofibroblasts by transforming growth factor-β (TGF-β). The anti-fibrotic function and mechanisms of HA-Cur were investigated by immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (PCR), methylation-specific PCR, western blot, transwell migration assay and proliferation assay. Results showed that 30 μM HA-Cur significantly attenuated the fibrotic functions of myofibroblast in joint contracture in vitro by regulating the methylation of prostaglandin E receptor 2 (PTGER2) and inhibiting TGF-β signaling. This may provide a mechanism for the treatment of joint contracture, and provide a molecular target PTGER2 for therapy during the pathogenesis of joint contracture.
Collapse
Affiliation(s)
- Dongjie Yu
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ze Zhuang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhua Ren
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Zhe Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yuansen Luo
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ronghan He
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhuang Z, Yu D, Chen Z, Liu D, Yuan G, Yirong N, Sun L, Liu Y, He R, Wang K. Curcumin Inhibits Joint Contracture through PTEN Demethylation and Targeting PI3K/Akt/mTOR Pathway in Myofibroblasts from Human Joint Capsule. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4301238. [PMID: 31511778 PMCID: PMC6712967 DOI: 10.1155/2019/4301238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Joint contracture is increasingly regarded as a clinical problem that leads to irreversible dysfunction of the joint. It is a pathophysiological process following joint injury, which is marked by the activation of myofibroblasts. There is currently no effective treatment for the prevention of joint contracture. Curcumin is a polyphenol pigment extracted from turmeric, which possesses anti-inflammatory, antioxidative, and antitumor properties. In the present study, we demonstrated that curcumin exerts a protective effect against joint contracture via the inhibition of myofibroblast proliferation and migration in a time- and concentration-dependent manner. Moreover, we indicated that phosphatase and tension homolog (PTEN) was downregulated in myofibroblasts in vitro and in the contracture capsule tissues of patients in vivo. Additionally, western blot analysis revealed a negative correlation between the expression levels of PTEN and the fibrosis marker protein alpha smooth muscle cell actin. Methylation-specific PCR results suggested that curcumin was able to demethylate PTEN in a similar manner to the demethylation agent 5-azacytidine, increasing PTEN expression and further inhibiting phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling. In conclusion, our data illustrate part of the mechanism of curcumin inhibition in joint contracture. These results support the hypothesis that curcumin may potentially be used as a novel candidate for the treatment of joint contracture.
Collapse
Affiliation(s)
- Ze Zhuang
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Dongjie Yu
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Dezhao Liu
- Departments of Anesthesiolgy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Guohui Yuan
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Ni Yirong
- MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Linlin Sun
- Departments of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Yuangao Liu
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Ronghan He
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Kun Wang
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
11
|
Abstract
Large joint arthrofibrosis and scarring, involving the shoulder, elbow, hip, and knee, can result in the loss of function and immobility. The pathway of joint contracture formation is still being elucidated and is due to aberrations in collagen synthesis and misorientation of collagen fibrils. Novel antibodies are being developed to prevent arthrofibrosis, and current treatment methods for arthrofibrosis include medical, physical, and surgical treatments. This article describes the biology of joint contracture formation, along with current and future pharmacologic, biologic, and medical interventions.
Collapse
Affiliation(s)
- Antonia F Chen
- a Department of Orthopaedic Surgery , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Yong Seuk Lee
- b Department of Orthopedic Surgery , Seoul National University College of Medicine, Seoul National University Bundang Hospital , Seoul , Korea
| | - Adam J Seidl
- c Division of Sports Medicine and Shoulder Surgery, Department of Orthopaedics , University of Colorado , Aurora , CO , USA
| | - Joseph A Abboud
- d Department of Orthopaedics , Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
12
|
Endoplasmic reticulum stress-dependent ROS production mediates synovial myofibroblastic differentiation in the immobilization-induced rat knee joint contracture model. Exp Cell Res 2018; 369:325-334. [PMID: 29856991 DOI: 10.1016/j.yexcr.2018.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/25/2023]
Abstract
Joint contracture is a common complication for people with joint immobility that involves fibrosis structural alteration in the joint capsule. Considering that endoplasmic reticulum (ER) stress plays a prominent role in the promotion of tissue fibrosis, we investigated whether the unfolded protein response (UPR) contributes to the fibrotic development in immobilization-induced knee joint contractures. Using a non-traumatic rat knee joint contracture model, twelve female Sprague-Dawley rats received knee joint immobilization for a period of 8 weeks. We found that fibrosis protein markers (type I collagen, α-SMA) and UPR (GRP78, ATF6α, XBP1s) markers were parallelly upregulated in rat primary cultured synovial myofibroblasts. In the same cell types, pre-treatment with an ER stress inhibitor, 4-phenylbutyric acid (4-PBA), not only abrogated cytokine TGFβ1 stimulation but also reduced the protein level of UPR. Additionally, high reactive oxygen species (ROS) generation was detected in synovial myofibroblasts through flow cytometry, as expected. Notably, TGFβ1-induced UPR was significantly reduced through the inhibition of ROS with antioxidants. These data suggest that ER stress act as a pro-fibrotic stimulus through the overexpression of ROS in synovial fibroblasts. Interestingly, immunohistochemical results showed an increase in the UPR protein levels both in human acquired joint contractures capsule tissue and in animal knee joint contracture tissue. Together, our findings suggest that ER stress contributes to synovial myofibroblastic differentiation in joint capsule fibrosis and may also serve as a potential therapeutic target in joint contractures.
Collapse
|
13
|
Lu W, Wang L, Yao J, Wo C, Chen Y. C5a aggravates dysfunction of the articular cartilage and synovial fluid in rats with knee joint immobilization. Mol Med Rep 2018; 18:2110-2116. [PMID: 29956782 PMCID: PMC6072168 DOI: 10.3892/mmr.2018.9208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Degenerative alterations in articular cartilage are involved in the pathogenesis of osteoarthritis. The present study aimed to evaluate the role of complement component 5a (C5a) in osteoarthritic alterations in the articular cartilage and synovialis via a joint immobilization (IM) rat model. Rats were assigned to three groups: Control, IM and IM+anti‑C5a antibody (IM+anti‑C5a) groups. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay and hematoxylin and eosin staining were used to evaluate the morphological alterations in the articular cartilage and synovialis. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis, immunohistochemical analysis and western blotting were used to evaluate C5a expression in the articular cartilage and synovialis. An ELISA was used to evaluate C5a‑induced alterations in interleukin (IL)‑1β, IL‑17A and tumor necrosis factor (TNF)‑α levels in the serum and joint fluid. The results demonstrated that knee joint immobilization induced destruction of knee joint synovial fluid and cartilage in the IM and IM+anti‑C5a antibody groups. Immobilization significantly increased the expression levels of C5a in serum and joint fluid in the IM group. Immunohistochemistry, western blotting and RT‑qPCR analysis illustrated markedly increased expression of C5a in the IM group. Immobilization markedly increased the IL‑1β, IL‑17A and TNF‑α expression levels in the serum and joint fluid in the IM group. Anti‑C5a was able to decrease immobilization‑induced alterations in morphology and cytokines compared with the IM group. The expression of C5a was increased in synoviocytes and joint cartilage in the IM model. Pro‑inflammatory cytokines, including TNF‑α and IL‑1β were released in the activated synoviocytes via the induction of C5a, suggesting that C5a serves an important role in joint inflammatory processes.
Collapse
Affiliation(s)
- Wei Lu
- Department of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lin Wang
- Department of Pain Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jing Yao
- Department of Pain Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chunxin Wo
- Department of Pain Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yu Chen
- Department of Pain Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
14
|
Wong K, Trudel G, Laneuville O. Intra-articular collagenase injection increases range of motion in a rat knee flexion contracture model. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 12:15-24. [PMID: 29317799 PMCID: PMC5743116 DOI: 10.2147/dddt.s144602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Objectives A knee joint contracture, a loss in passive range of motion (ROM), can be caused by prolonged immobility. In a rat knee immobilization flexion contracture model, the posterior capsule was shown to contribute to an irreversible limitation in ROM, and collagen pathways were identified as differentially expressed over the development of a contracture. Collagenases purified from Clostridium histolyticum are currently prescribed to treat Dupuytren’s and Peyronie’s contractures due to their ability to degrade collagen. The potential application of collagenases to target collagen in the posterior capsule was tested in this model. Materials and methods Rats had one hind leg immobilized, developing a knee flexion contracture. After 4 weeks, the immobilization device was removed, and the rats received one 50 µL intra-articular injection of 0.6 mg/mL purified collagenase. Control rats were injected with only the buffer. After 2 weeks of spontaneous remobilization following the injections, ROM was measured with a rat knee arthrometer, and histological sections were immunostained with antibodies against rat collagen types I and III. Results/conclusion Compared with buffer-injected control knees, collagenase-treated knees showed increased ROM in extension by 8.0°±3.8° (p-value <0.05). Immunohistochemical analysis revealed an increase in collagen type III staining (p<0.01) in the posterior capsule of collagenase-treated knees indicating an effect on the extracellular matrix due to the collagenase. Collagen I staining was unchanged (p>0.05). The current study provides experimental evidence for the pharmacological treatment of knee flexion contractures with intra-articular collagenase injection, improving the knee ROM.
Collapse
Affiliation(s)
- Kayleigh Wong
- Bone and Joint Research Laboratory, The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario
| | - Guy Trudel
- Department of Medicine, Bone and Joint Research Laboratory, The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario
| | - Odette Laneuville
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Goto K, Sakamoto J, Nakano J, Kataoka H, Honda Y, Sasabe R, Origuchi T, Okita M. Development and progression of immobilization-induced skin fibrosis through overexpression of transforming growth factor-ß1 and hypoxic conditions in a rat knee joint contracture model. Connect Tissue Res 2017; 58:586-596. [PMID: 28121187 DOI: 10.1080/03008207.2017.1284823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this study was to investigate the pathology and mechanism of immobilization-induced skin fibrosis in a rat joint contracture model. METHODS Rats were randomly divided into control and immobilization groups. In the immobilization groups, knee joints of the rats were immobilized for 1, 2, and 4 weeks. After each immobilization, skin was dissected. To assess fibrosis in the skin, the thickness and area of adipocytes and connective tissue fibers were measured. Myofibroblasts were analyzed by immunohistochemistry by using anti-α-SMA as a marker. Gene expression levels of type I and III collagen, TGF-ß1, and HIF-1α were measured by using RT-PCR. RESULTS One week after immobilization, there was a marked increase in the area of connective tissue fibers in the immobilization group. Type I and type III collagen were significantly increased with prolonged immobilization. Higher numbers of α-SMA-positive cells were noted in the immobilized group at 2 and 4 weeks after immobilization. The expression level of TGF-β1 mRNA in the immobilization group increased after one week of immobilization. In contrast, the expression level of HIF1-α mRNA increased after 2 weeks of immobilization, and a greater increase was seen at 4 weeks after immobilization. CONCLUSIONS These results suggest that immobilization induces skin fibrosis with accumulation of types I and III collagen. These fibrotic changes may be evoked by upregulation of TGF-β1 after one week of immobilization. Additionally, upregulation of HIF-1α may relate to skin fibrosis by accelerating the differentiation of fibroblasts to myofibroblasts starting at 2 weeks after immobilization.
Collapse
Affiliation(s)
- Kyo Goto
- a Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan.,b Department of Rehabilitation , Nagasaki Memorial Hospital , Nagasaki , Japan
| | - Junya Sakamoto
- c Department of Physical Therapy Science, Unit of Physical and Occupational Therapy Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Jiro Nakano
- c Department of Physical Therapy Science, Unit of Physical and Occupational Therapy Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Hideki Kataoka
- a Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan.,b Department of Rehabilitation , Nagasaki Memorial Hospital , Nagasaki , Japan
| | - Yuichiro Honda
- a Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan.,d Department of Rehabilitation , Nagasaki University Hospital , Nagasaki , Japan
| | - Ryo Sasabe
- a Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan.,d Department of Rehabilitation , Nagasaki University Hospital , Nagasaki , Japan
| | - Tomoki Origuchi
- a Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Minoru Okita
- a Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| |
Collapse
|
16
|
Joint Contractures Resulting From Prolonged Immobilization: Etiology, Prevention, and Management. J Am Acad Orthop Surg 2017; 25:110-116. [PMID: 28027065 DOI: 10.5435/jaaos-d-15-00697] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Patients who are immobilized for a prolonged period are at risk for developing joint contractures, which often affect functional outcomes. Nonsurgical interventions are useful for preventing joint contractures. However, once contractures develop, these interventions frequently fail to restore function over the long term. To increase the rehabilitation potential of an extremity with refractory function-limiting contractures, surgery is often required.
Collapse
|
17
|
Chen K, Li P, Zhao H, Yan X, Ma Y. Effects of Tumor Necrosis Factor Inhibitor on Stress-Shielded Tendons. Orthopedics 2017; 40:49-55. [PMID: 27684081 DOI: 10.3928/01477447-20160926-03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/28/2016] [Indexed: 02/03/2023]
Abstract
Mechanical stress plays an important role in preserving the integrity of bone and ligament. Stress shielding reduces mechanical load on bone or tendons, resulting in tissue degradation. Previous studies showed that deterioration of the tendon structure during stress shielding is associated with elevated expression of tumor necrosis factor (TNF)-α. This study examined the therapeutic potential of the TNF inhibitor etanercept in preventing morphologic deterioration of the Achilles tendon after stress shielding. Rats (N=48) were exposed to stress shielding of the left Achilles tendon and treated with etanercept or phosphate-buffered saline for 2 or 4 weeks. The right Achilles tendons were used as controls. After 2 or 4 weeks, stress-shielded tendons appeared less smooth than control tendons, and the stress-shielded tendons formed adhesions with surrounding tissues. Transmission electron microscopy also showed disarray of the collagen fibrils and a significant increase in the number of small-diameter collagen fibrils. These changes were associated with increased expression of TNF-α, matrix metalloproteinase (MMP)-13, MMP-3, collagen I, and collagen III. Treatment with 2 weeks of etanercept injection reduced morphologic changes in collagen organization and structure induced by stress shielding. Etanercept treatment also attenuated upregulation of MMP-13, MMP-3, and collagen III levels. However, no significant difference was observed between the etanercept group and the phosphate-buffered saline group after 4 weeks of treatment. The current findings show that TNF-α inhibition can protect against the early stages of tendon tissue remodeling induced by stress shielding, but additional interventions may be necessary to prevent tendon degeneration with long-term stress shielding. [Orthopedics. 2017; 40(1):49-55.].
Collapse
|
18
|
Laneuville O. CORR Insights ®: Stretching After Heat But Not After Cold Decreases Contractures After Spinal Cord Injury in Rats. Clin Orthop Relat Res 2016; 474:2702-2704. [PMID: 27743303 PMCID: PMC5085963 DOI: 10.1007/s11999-016-5120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/06/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Odette Laneuville
- Department of Biology and The Bone and Joint Research Laboratory, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
19
|
Zhang J, Jing JJ, Jia XL, Qiao LY, Liu JH, Liang C, Liu WZ. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 29:615-23. [PMID: 26954186 PMCID: PMC4852221 DOI: 10.5713/ajas.15.0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/06/2015] [Accepted: 08/02/2015] [Indexed: 11/30/2022]
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.
Collapse
Affiliation(s)
- Jing Zhang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Jiong-Jie Jing
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Xia-Li Jia
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Li-Ying Qiao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Jian-Hua Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Chen Liang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Wen-Zhong Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|