1
|
Frączek W, Kotela A, Kotela I, Grodzik M. Nanostructures in Orthopedics: Advancing Diagnostics, Targeted Therapies, and Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6162. [PMID: 39769763 PMCID: PMC11677186 DOI: 10.3390/ma17246162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Nanotechnology, delving into the realm of nanometric structures, stands as a transformative force in orthopedics, reshaping diagnostics, and numerous regenerative interventions. Commencing with diagnostics, this scientific discipline empowers accurate analyses of various diseases and implant stability, heralding an era of unparalleled precision. Acting as carriers for medications, nanomaterials introduce novel therapeutic possibilities, propelling the field towards more targeted and effective treatments. In arthroplasty, nanostructural modifications to implant surfaces not only enhance mechanical properties but also promote superior osteointegration and durability. Simultaneously, nanotechnology propels tissue regeneration, with nanostructured dressings emerging as pivotal elements in accelerating wound healing. As we navigate the frontiers of nanotechnology, ongoing research illuminates promising avenues for further advancements, assuring a future where orthopedic practices are not only personalized but also highly efficient, promising a captivating journey through groundbreaking innovations and tailored patient care.
Collapse
Affiliation(s)
- Wiktoria Frączek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Andrzej Kotela
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland
| | - Ireneusz Kotela
- National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
2
|
Younis Z, Hamid MA, Amin J, Khan MM, Gurukiran G, Sapra R, Singh R, Wani KF, Younus Z. Proximal Humerus Fractures: A Review of Anatomy, Classification, Management Strategies, and Complications. Cureus 2024; 16:e73075. [PMID: 39640099 PMCID: PMC11620479 DOI: 10.7759/cureus.73075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Proximal humerus fractures are prevalent in older adults, particularly women, primarily due to osteoporosis and increased fall risk. These fractures often result from low-energy falls in elderly patients, while in younger individuals, they are more likely to occur with high-energy trauma, which may involve additional injuries to soft tissue and neurovascular structures. Proper anatomical understanding, including key structures and blood supply, is crucial for effective management and to prevent complications. Several classification systems assist in guiding treatment for proximal humerus fractures, including Codman's, Neer's, Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association (AO/OTA) system, and the Codman-Hertel system, which helps predict ischemia risk. Evaluation of proximal humerus fractures begins with Advanced Trauma Life Support (ATLS) protocols, emphasizing a thorough shoulder assessment, particularly focusing on skin integrity in elderly patients. Neurological and vascular examinations are essential due to the common occurrence of nerve injuries, especially involving the axillary nerve. Imaging typically includes multiple standard views, with advanced imaging reserved for complex cases and for assessing associated soft tissue injuries. Treatment options range from conservative management for stable fractures to surgical intervention for more complex cases. Surgical choices include techniques like fixation, nailing, and various arthroplasty options, with some procedures potentially offering advantages for older adults with bone quality or soft tissue challenges. Rehabilitation is a vital component of recovery, with emphasis on early mobility and gradual strengthening to restore function, especially in older patients. Complications following open reduction and internal fixation (ORIF) for proximal humerus fractures can include issues such as non-union, malunion, osteonecrosis, infection, joint stiffness, and fixation failure. In cases where non-union or fixation failure occurs, revision surgery or arthroplasty may be necessary. Joint stiffness may require further intervention if physical therapy is insufficient, while symptomatic osteonecrosis might also need surgical management. Malunion is generally better tolerated in older patients but may require correction in younger individuals. Other surgical options, such as hemiarthroplasty (HA) and reverse shoulder arthroplasty (RSA), share similar risks, including infection, fractures, complications at the tuberosity, stiffness, and instability. RSA may be favored when there are tuberosity or rotator cuff issues. Closed reduction with percutaneous pinning carries a high risk of pin migration and malunion, which can result in deformities, pain, and dysfunction. Proper anatomical knowledge is essential to avoid neurovascular injury and to manage common issues such as pin-site infections effectively.
Collapse
Affiliation(s)
- Zubair Younis
- Orthopaedics, The Royal Wolverhampton NHS Trust, Wolverhampton, GBR
| | - Muhammad A Hamid
- Orthopaedic Surgery, University Hospitals Birmingham, Birmingham, GBR
| | - Jebran Amin
- Trauma and Orthopaedics, Ysbyty Gwynedd Hospital, Bangor, GBR
| | | | | | - Rahul Sapra
- Trauma and Orthopaedics, Walsall Manor Hospital, Walsall, GBR
| | - Rohit Singh
- Orthopaedics, Shrewsbury and Telford Hospitals NHS Trust, Shrewsbury, GBR
| | | | - Zuhaib Younus
- Pulmonology and Critical Care, Government Medical College, Srinagar, Srinagar, IND
| |
Collapse
|
3
|
Jha G, Malasani S, Barakat A, Sola SC, Gera K, Gupta G. Innovative Nanotechnological Approaches in Trauma and Orthopaedic Surgery: A Comprehensive Review. Cureus 2024; 16:e72838. [PMID: 39552742 PMCID: PMC11568882 DOI: 10.7759/cureus.72838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
The application of nanotechnology to health has been one of the revolutionizing factors in the field of trauma and orthopaedic surgery over the last decade. Advances in nanomedicine, in comparison to conventional modes of treatment, have influenced immensely the approach towards trauma and orthopaedic surgery and provided some unique answers to some very complex problems like bone reconstruction, soft tissue repair, and prevention of infection. The current narrative review intends to underpin an extensive analysis of modern applications and recent advances in nanotechnology-driven therapies in orthopaedics. Having leveraged unique properties inherent in nanoparticles and nanoscale materials, novel interventions, such as nanostructured scaffolds, drug delivery systems, and bioactive coatings, have flourished into a variety of promising means to enhance osseointegration, accelerate the healing process, and reduce postoperative complications. This review at once acknowledges the huge potential of these technologies and some of the problems impeding their wide-range clinical application, including long-term safety, main regulatory hurdles, and scale-up issues. The following review aims to give orthopaedic surgeons, researchers, and biomedical engineers an overview of the present status and perspectives for the future regarding nanomedicine in trauma and orthopaedic surgery, pointing out the expectations of a much-improved outcome in patients and overall quality of life.
Collapse
Affiliation(s)
- Gaurav Jha
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
- Trauma and Orthopaedics, Guy's and St Thomas' NHS Foundation Trust, London, GBR
| | - Surya Malasani
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Ahmed Barakat
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Siri Chandana Sola
- Geriatrics, University Hospitals of Leicester NHS Trust, Leicester, GBR
- Internal Medicine, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Kashish Gera
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Garima Gupta
- Cardiology, University Hospitals of Leicester NHS Trust, Leicester, GBR
| |
Collapse
|
4
|
Liang W, Zhou C, Zhang H, Bai J, Long H, Jiang B, Liu L, Xia L, Jiang C, Zhang H, Zhao J. Pioneering nanomedicine in orthopedic treatment care: a review of current research and practices. Front Bioeng Biotechnol 2024; 12:1389071. [PMID: 38860139 PMCID: PMC11163052 DOI: 10.3389/fbioe.2024.1389071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
A developing use of nanotechnology in medicine involves using nanoparticles to administer drugs, genes, biologicals, or other materials to targeted cell types, such as cancer cells. In healthcare, nanotechnology has brought about revolutionary changes in the treatment of various medical and surgical conditions, including in orthopedic. Its clinical applications in surgery range from developing surgical instruments and suture materials to enhancing imaging techniques, targeted drug delivery, visualization methods, and wound healing procedures. Notably, nanotechnology plays a significant role in preventing, diagnosing, and treating orthopedic disorders, which is crucial for patients' functional rehabilitation. The integration of nanotechnology improves standards of patient care, fuels research endeavors, facilitates clinical trials, and eventually improves the patient's quality of life. Looking ahead, nanotechnology holds promise for achieving sustained success in numerous surgical disciplines, including orthopedic surgery, in the years to come. This review aims to focus on the application of nanotechnology in orthopedic surgery, highlighting the recent development and future perspective to bridge the bridge for clinical translation.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
5
|
Goyal S, Ambade R, Singh R, Lohiya A, Patel H, Patel SK, Kanani K. A Comprehensive Review of Proximal Humerus Fractures: From Epidemiology to Treatment Strategies. Cureus 2024; 16:e57691. [PMID: 38711710 PMCID: PMC11070885 DOI: 10.7759/cureus.57691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
This comprehensive review delves into the intricate landscape of proximal humerus fractures (PHFs), exploring their epidemiology, historical evolution, contemporary classification systems, treatment strategies, and outcome measures. PHFs present a complex orthopedic challenge, necessitating a nuanced understanding of their multifaceted dimensions. Despite their clinical significance, PHFs remain relatively understudied in population-based epidemiology. This review critically examines existing literature to uncover the incidence, prevalence, and demographic patterns associated with these fractures. A foundational understanding of the epidemiological landscape is crucial for effective preventive strategies and optimized fracture management. Tracing back to historical records, the review explores the evolution of diagnostic and therapeutic approaches for PHFs. From ancient treatment modalities documented on the Edwin Smith papyrus to contemporary X-ray-based classifications such as Neer and AO/OTA, a historical context is provided to understand the journey of managing these fractures. Navigating through a spectrum of treatment strategies, the review contrasts nonoperative approaches with various surgical interventions. The challenges and outcomes associated with conservative management are juxtaposed against methods like open reduction internal fixation and tension band osteosynthesis. Evidence synthesis guides clinicians in making informed decisions based on patient characteristics and fracture complexities. Central to assessing PHF management are patient-reported outcome measures. The review explores the significance of instruments such as the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire and the Constant-Murley score in evaluating treatment success. The shift toward subjective measures is discussed, considering their correlation with patient experiences and the concept of minimal clinically important difference. The impact of demographic factors, including age and gender, on PHFs is scrutinized. The association between these fractures and osteoporosis is highlighted, emphasizing the crucial role of bone health in fracture prevention and management. Through this comprehensive exploration, the review provides a robust foundation for understanding, evaluating, and advancing the management strategies for PHFs. The synthesis of historical perspectives, contemporary classifications, and treatment modalities serves as a valuable resource for the orthopedic community, fostering improved clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Saksham Goyal
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Ratnakar Ambade
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Rahul Singh
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Ashutosh Lohiya
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Hardik Patel
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Siddharth K Patel
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Kashyap Kanani
- Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
6
|
Gamal S, Mikhail M, Salem N, El-Wakad MT, Abdelbaset R. Effect of using nano-particles of magnesium oxide and titanium dioxide to enhance physical and mechanical properties of hip joint bone cement. Sci Rep 2024; 14:2838. [PMID: 38310142 PMCID: PMC10838278 DOI: 10.1038/s41598-024-53084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
In this work, the effect of adding Magnesium Oxide (MgO) and Titanium Dioxide (TiO2) nanoparticles to enhance the properties of the bone cement used for hip prosthesis fixation. Related to previous work on enhanced bone cement properties utilizing MgO and TiO2, samples of composite bone cement were made using three different ratios (0.5%:1%, 1.5%:1.5%, and 1%:0.5%) w/w of MgO and TiO2 to determine the optimal enhancement ratio. Hardness, compression, and bending tests were calculated to check the mechanical properties of pure and composite bone cement. The surface structure was studied using Fourier transform infrared spectroscopy (FTIR) and Field emission scanning electron microscopy (FE-SEM). Setting temperature, porosity, and degradation were calculated for each specimen ratio to check values matched with the standard range of bone cement. The results demonstrate a slight decrease in porosity up to 2.2% and degradation up to 0.17% with NP-containing composites, as well as acceptable variations in FTIR and setting temperature. The compression strength increased by 2.8% and hardness strength increased by 1.89% on adding 0.5%w/w of MgO and 1.5%w/w TiO2 NPs. Bending strength increases by 0.35% on adding 1.5% w/w of MgO and 0.5% w/w TiO2 NPs, however, SEM scan shows remarkable improvement for surface structure.
Collapse
Affiliation(s)
- Safaa Gamal
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
- Mechatronics Engineering Department, Canadian International College, Cairo, Egypt.
| | - Mina Mikhail
- Mechatronics Engineering Department, Canadian International College, Cairo, Egypt
| | - Nancy Salem
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt
| | - Mohamed Tarek El-Wakad
- Biomedical Engineering Department, Faculty of Engineering and Technology, Future University, Cairo, Egypt
| | - Reda Abdelbaset
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Govindarajan D, Saravanan S, Sudhakar S, Vimalraj S. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications. ACS OMEGA 2024; 9:67-80. [PMID: 38222554 PMCID: PMC10785094 DOI: 10.1021/acsomega.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Tissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials. The purpose of these biomaterials is to facilitate bone tissue regeneration. Carbon nanomaterial-based scaffolds are particularly notable due to their accessibility, mechanical durability, and biofunctionality. The scaffolds exhibit the capacity to enhance cellular proliferation, mitigate cell damage, induce bone tissue growth, and maintain biological compatibility. Therefore, they play a crucial role in the development of the bone matrix and the necessary cellular interactions required for bone tissue restoration. The attachment, growth, and specialization of osteogenic stem cells on biomaterial scaffolds play critical roles in bone tissue engineering. The optimal biomaterial should facilitate the development of bone tissue in a manner that closely resembles that of human bone. This comprehensive review encompasses the examination of graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds, and their respective derivatives. The biomaterial frameworks possess the ability to replicate the intricate characteristics of the bone microenvironment, thereby rendering them suitable for utilization in tissue engineering endeavors.
Collapse
Affiliation(s)
- Dharunya Govindarajan
- Department
of Biotechnology, Stem Cell and Molecular Biology Laboratory, Bhupat
& Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Sekaran Saravanan
- Department
of Prosthodontics, Saveetha Dental College and Hospital, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Swathi Sudhakar
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
8
|
Amin T, Hossain A, Jerin N, Mahmud I, Rahman MA, Rafiqul Islam SM, Islam SMBUL. Immunoediting Dynamics in Glioblastoma: Implications for Immunotherapy Approaches. Cancer Control 2024; 31:10732748241290067. [PMID: 39353594 PMCID: PMC11459535 DOI: 10.1177/10732748241290067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that poses many therapeutic difficulties because of the high rate of proliferation, genetic variability, and its immunosuppressive microenvironment. The theory of cancer immunoediting, which includes the phases of elimination, equilibrium, and escape, offers a paradigm for comprehending interactions between the immune system and glioblastoma. Immunoediting indicates the process by which immune cells initially suppress tumor development, but thereafter select for immune-resistant versions leading to tumor escape and progression. The tumor microenvironment (TME) in glioblastoma is particularly immunosuppressive, with regulatory T cells and myeloid-derived suppressor cells being involved in immune escape. To achieve an efficient immunotherapy for glioblastoma, it is crucial to understand these mechanisms within the TME. Existing immunotherapeutic modalities such as chimeric antigen receptor T cells and immune checkpoint inhibitors have been met with some level of resistance because of the heterogeneous nature of the immune response to glioblastoma. Solving these issues is critical to develop novel strategies capable of modulating the TME and re-establishing normal immune monitoring. Further studies should be conducted to identify the molecular and cellular events that underlie the immunosuppressive tumor microenvironment in glioblastoma. Comprehending and modifying the stages of immunoediting in glioblastoma could facilitate the development of more potent and long-lasting therapies.
Collapse
Affiliation(s)
- Tasbir Amin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Amana Hossain
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Nusrat Jerin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Imteaz Mahmud
- Department of Public Health, North South University, Dhaka, Bangladesh
| | - Md Ahasanur Rahman
- Department of Physiology and Biophysics, Howard University, College of Medicine, Washington, DC, USA
| | - SM Rafiqul Islam
- Surgery Branch, National Cancer Institute, National Institute of Health, Bethesda, USA
| | - S M Bakhtiar UL Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
9
|
Liang W, Zhou C, Jin S, Fu L, Zhang H, Huang X, Long H, Ming W, Zhao J. An update on the advances in the field of nanostructured drug delivery systems for a variety of orthopedic applications. Drug Deliv 2023; 30:2241667. [PMID: 38037335 PMCID: PMC10987052 DOI: 10.1080/10717544.2023.2241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/09/2023] [Indexed: 12/02/2023] Open
Abstract
Nanotechnology has made significant progress in various fields, including medicine, in recent times. The application of nanotechnology in drug delivery has sparked a lot of research interest, especially due to its potential to revolutionize the field. Researchers have been working on developing nanomaterials with distinctive characteristics that can be utilized in the improvement of drug delivery systems (DDS) for the local, targeted, and sustained release of drugs. This approach has shown great potential in managing diseases more effectively with reduced toxicity. In the medical field of orthopedics, the use of nanotechnology is also being explored, and there is extensive research being conducted to determine its potential benefits in treatment, diagnostics, and research. Specifically, nanophase drug delivery is a promising technique that has demonstrated the capability of delivering medications on a nanoscale for various orthopedic applications. In this article, we will explore current advancements in the area of nanostructured DDS for orthopedic use.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Songtao Jin
- Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of traditional Chinese Medicine, Shaoxing, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
10
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
11
|
Shang J, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Zhao J, Liang W, Zeng B. Recent developments in nanomaterials for upgrading treatment of orthopedics diseases. Front Bioeng Biotechnol 2023; 11:1221365. [PMID: 37621999 PMCID: PMC10446844 DOI: 10.3389/fbioe.2023.1221365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
Nanotechnology has changed science in the last three decades. Recent applications of nanotechnology in the disciplines of medicine and biology have enhanced medical diagnostics, manufacturing, and drug delivery. The latest studies have demonstrated this modern technology's potential for developing novel methods of disease detection and treatment, particularly in orthopedics. According to recent developments in bone tissue engineering, implantable substances, diagnostics and treatment, and surface adhesives, nanomedicine has revolutionized orthopedics. Numerous nanomaterials with distinctive chemical, physical, and biological properties have been engineered to generate innovative medication delivery methods for the local, sustained, and targeted delivery of drugs with enhanced therapeutic efficacy and minimal or no toxicity, indicating a very promising strategy for effectively controlling illnesses. Extensive study has been carried out on the applications of nanotechnology, particularly in orthopedics. Nanotechnology can revolutionize orthopedics cure, diagnosis, and research. Drug delivery precision employing nanotechnology using gold and liposome nanoparticles has shown especially encouraging results. Moreover, the delivery of drugs and biologics for osteosarcoma is actively investigated. Different kind of biosensors and nanoparticles has been used in the diagnosis of bone disorders, for example, renal osteodystrophy, Paget's disease, and osteoporosis. The major hurdles to the commercialization of nanotechnology-based composite are eventually examined, thus helping in eliminating the limits in connection to some pre-existing biomaterials for orthopedics, important variables like implant life, quality, cure cost, and pain and relief from pain. The potential for nanotechnology in orthopedics is tremendous, and most of it looks to remain unexplored, but not without challenges. This review aims to highlight the up tp date developments in nanotechnology for boosting the treatment modalities for orthopedic ailments. Moreover, we also highlighted unmet requirements and present barriers to the practical adoption of biomimetic nanotechnology-based orthopedic treatments.
Collapse
Affiliation(s)
- Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
12
|
Nguyen TT, Nguyen-Thi PT, Nguyen THA, Ho TT, Tran NMA, Van Vo T, Van Vo G. Recent Advancements in Nanomaterials: A Promising Way to Manage Neurodegenerative Disorders. Mol Diagn Ther 2023; 27:457-473. [PMID: 37217723 DOI: 10.1007/s40291-023-00654-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Neurodegenerative diseases (NDs) such as dementia, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis are some of the most prevalent disorders currently afflicting healthcare systems. Many of these diseases share similar pathological hallmarks, including elevated oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation, all of which contribute to the deterioration of the nervous system's structure and function. The development of diagnostic and therapeutic materials in the monitoring and treatment of these diseases remains challenging. One of the biggest challenges facing therapeutic and diagnostic materials is the blood-brain barrier (BBB). The BBB is a multifunctional membrane possessing a plethora of biochemical, cellular, and immunological features that ensure brain homeostasis by preventing the entry and accumulation of unwanted compounds. With regards to neurodegenerative diseases, the recent application of tailored nanomaterials (nanocarriers and nanoparticles) has led to advances in diagnostics and therapeutics. In this review, we provide an overview of commonly used nanoparticles and their applications in NDs, which may offer new therapeutic strategies for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | | | - Thi Hong Anh Nguyen
- Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Vietnam.
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Toi Van Vo
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
13
|
Tsikopoulos K, Meroni G, Kaloudis P, Pavlidou E, Gravalidis C, Tsikopoulos I, Drago L, Romano CL, Papaioannidou P. Is nanomaterial- and vancomycin-loaded polymer coating effective at preventing methicillin-resistant Staphylococcus aureus growth on titanium disks? An in vitro study. INTERNATIONAL ORTHOPAEDICS 2023; 47:1415-1422. [PMID: 36976333 PMCID: PMC10199848 DOI: 10.1007/s00264-023-05757-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Periprosthetic joint infections induced by methicillin-resistant Staphylococcus aureus (MRSA) pose a major socioeconomic burden. Given the fact that MRSA carriers are at high risk for developing periprosthetic infections regardless of the administration of eradication treatment pre-operatively, the need for developing new prevention modalities is high. METHODS The antibacterial and antibiofilm properties of vancomycin, Al2O3 nanowires, and TiO2 nanoparticles were evaluated in vitro using MIC and MBIC assays. MRSA biofilms were grown on titanium disks simulating orthopedic implants, and the infection prevention potential of vancomycin-, Al2O3 nanowire-, and TiO2 nanoparticle-supplemented Resomer® coating was evaluated against biofilm controls using the XTT reduction proliferation assay. RESULTS Among the tested modalities, high- and low-dose vancomycin-loaded Resomer® coating yielded the most satisfactory metalwork protection against MRSA (median absorbance was 0.1705; [IQR = 0.1745] vs control absorbance 0.42 [IQR = 0.07]; p = 0.016; biofilm reduction was 100%; and 0.209 [IQR = 0.1295] vs control 0.42 [IQR = 0.07]; p < 0.001; biofilm reduction was 84%, respectively). On the other hand, polymer coating alone did not provide clinically meaningful biofilm growth prevention (median absorbance was 0.2585 [IQR = 0.1235] vs control 0.395 [IQR = 0.218]; p < 0.001; biofilm reduction was 62%). CONCLUSIONS We advocate that apart from the well-established preventative measures for MRSA carriers, loading implants with bioresorbable Resomer® vancomycin-supplemented coating may decrease the incidence of early post-op surgical site infections with titanium implants. Of note, the payoff between localized toxicity and antibiofilm efficacy should be considered when loading polymers with highly concentrated antimicrobial agents.
Collapse
Affiliation(s)
- Konstantinos Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece, 54124.
| | - Gabriele Meroni
- One Health Unit, Department of Biomedical Surgical and Dental Sciences, School of Medicine, Università degli Studi di Milano, Milan, Italy
| | - Panagiotis Kaloudis
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece, 54124
| | - Eleni Pavlidou
- Condensed Matter and Materials Section, Department of Physics, Faculty of Exact Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece, 54124
| | - Christoforos Gravalidis
- Condensed Matter and Materials Section, Department of Physics, Faculty of Exact Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece, 54124
| | - Ioannis Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece, 54124
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology and Microbiome, Department of Biomedical Sciences for Health. School of Medicine, University of Milan, Milan, Italy
| | | | - Paraskevi Papaioannidou
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece, 54124
| |
Collapse
|
14
|
Deng Y, Zhou C, Fu L, Huang X, Liu Z, Zhao J, Liang W, Shao H. A mini-review on the emerging role of nanotechnology in revolutionizing orthopedic surgery: challenges and the road ahead. Front Bioeng Biotechnol 2023; 11:1191509. [PMID: 37260831 PMCID: PMC10228697 DOI: 10.3389/fbioe.2023.1191509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
An emerging application of nanotechnology in medicine currently being developed involves employing nanoparticles to deliver drugs, heat, light, or other substances to specific types of cells (such as cancer cells). As most biological molecules exist and function at the nanoscale, engineering and manipulating matter at the molecular level has many advantages in the field of medicine (nanomedicine). Although encouraging, it remains unclear how much of this will ultimately result in improved patient care. In surgical specialties, clinically relevant nanotechnology applications include the creation of surgical instruments, suture materials, imaging, targeted drug therapy, visualization methods, and wound healing techniques. Burn lesion and scar management is an essential nanotechnology application. Prevention, diagnosis, and treatment of numerous orthopedic conditions are crucial technological aspects for patients' functional recovery. Orthopedic surgery is a specialty that deals with the diagnosis and treatment of musculoskeletal disorders. In recent years, the field of orthopedics has been revolutionized by the advent of nanotechnology. Using biomaterials comprised of nanoparticles and structures, it is possible to substantially enhance the efficacy of such interactions through nanoscale material modifications. This serves as the foundation for the majority of orthopedic nanotechnology applications. In orthopedic surgery, nanotechnology has been applied to improve surgical outcomes, enhance bone healing, and reduce complications associated with orthopedic procedures. This mini-review summarizes the present state of nanotechnology in orthopedic surgery, including its applications as well as possible future directions.
Collapse
Affiliation(s)
- Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haiyan Shao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
15
|
Orthopedical Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
16
|
Chakraborty U, Bhanjana G, Kaur N, Kaur G, Kaushik AK, Kumar S, Chaudhary GR. Design and testing of nanobiomaterials for orthopedic implants. ENGINEERED NANOSTRUCTURES FOR THERAPEUTICS AND BIOMEDICAL APPLICATIONS 2023:227-271. [DOI: 10.1016/b978-0-12-821240-0.00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Muacevic A, Adler JR, Pundkar A, Bukhari RR, Chandanwale R. Influence of COVID-19 on Tertiary Orthopaedic Centres. Cureus 2022; 14:e31388. [PMID: 36514646 PMCID: PMC9741971 DOI: 10.7759/cureus.31388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious lethal infection that has successfully spread all across the world. The novel coronavirus that is behind the menace and spread of COVID-19, is the next in the lineage of the Coronaviridae family of viruses, which had previously given two deadly viruses with limited geographical extent. After sustaining for more than two years, the virus is still active and keeps on mutating to evade human immunity. The impact of COVID-19 is felt not only by patients of COVID-19 who go through the trauma but also by non-COVID-19 patients due to the non-pharmacological interventions (NPIs) enforced. Patients in the orthopedic departments suffered a huge blow as their rehabilitation practices were stalled due to a lack of health professionals and also restrictions imposed. But to soften the blow, usage of telemedicine was done in some instances so that the essential therapies can continue despite the movement restrictions imposed. COVID-19 has disrupted many aspects of human life including clinical practices and this endeavor is to review those aspects and provide conclusions if any. The aim of the study is to review the available resources regarding Indoor orthopedic practice during the COVID-19 pandemic and draw a conclusion that can help further research on the aforementioned topic.
Collapse
|
18
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
19
|
Sarna-Boś K, Boguta P, Skic K, Wiącek D, Maksymiuk P, Sobieszczański J, Chałas R. Physicochemical Properties and Surface Characteristics of Ground Human Teeth. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185852. [PMID: 36144590 PMCID: PMC9500924 DOI: 10.3390/molecules27185852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022]
Abstract
Enamel, dentin and cementum apatite has a complex composition. The lack of complete reports on the chemical composition of all tooth tissues together and the need to create a modern biomaterial that reproduces the correct ratio of individual tooth mineral components prompted the authors to undertake the research. A detailed evaluation of the micro- and macro-elements of tooth powder, using various methods of chemical analysis was conducted. All four groups of human sound teeth were crushed using the grinder. A fine powder was implemented for the FTIR (Fourier Transform Infrared Spectroscopy), ICP (Inductively Coupled Plasma Optical Emission Spectometry) and for the potentiometric titration, SEM and mercury porosimetry analyses. The obtained studies indicate that there is no significant correlation in chemical composition between the different teeth types. This proves that every removed, crushed tooth free of microorganisms can be a suitable material for alveolar augmentation. It is essential to know the chemical profiles of different elements in teeth to develop a new class of biomaterials for clinical applications.
Collapse
Affiliation(s)
- Katarzyna Sarna-Boś
- Department of Dental Prosthetics, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland
- Correspondence:
| | - Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Dariusz Wiącek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Paweł Maksymiuk
- Department of Oral Medicine, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland
| | | | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland
| |
Collapse
|
20
|
Makuku R, Werthel JD, Zanjani LO, Nabian MH, Tantuoyir MM. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: a concise literature review. J Int Med Res 2022; 50:3000605221117212. [PMID: 35983666 PMCID: PMC9393707 DOI: 10.1177/03000605221117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue banking programs fail to meet the demand for human organs and tissues for
transplantation into patients with congenital defects, injuries, chronic
diseases, and end-stage organ failure. Tendons and ligaments are among the most
frequently ruptured and/or worn-out body tissues owing to their frequent use,
especially in athletes and the elderly population. Surgical repair has remained
the mainstay management approach, regardless of scarring and adhesion formation
during healing, which then compromises the gliding motion of the joint and
reduces the quality of life for patients. Tissue engineering and regenerative
medicine approaches, such as tendon augmentation, are promising as they may
provide superior outcomes by inducing host-tissue ingrowth and tendon
regeneration during degradation, thereby decreasing failure rates and morbidity.
However, to date, tendon tissue engineering and regeneration research has been
limited and lacks the much-needed human clinical evidence to translate most
laboratory augmentation approaches to therapeutics. This narrative review
summarizes the current treatment options for various tendon pathologies, future
of tendon augmentation, cell therapy, gene therapy, 3D/4D bioprinting,
scaffolding, and cell signals.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-David Werthel
- Department of Orthopedic and Trauma Surgery, Shariati Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Oryadi Zanjani
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Mohammad Hossein Nabian
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Marcarious M Tantuoyir
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France.,Biomedical Engineering Unit, University of Ghana Medical Centre, Accra, Ghana
| |
Collapse
|
21
|
Chen MQ. Recent Advances and Perspective of Nanotechnology-Based Implants for Orthopedic Applications. Front Bioeng Biotechnol 2022; 10:878257. [PMID: 35547165 PMCID: PMC9082310 DOI: 10.3389/fbioe.2022.878257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bioimplant engineering strives to provide biological replacements for regenerating, retaining, or modifying injured tissues and/or organ function. Modern advanced material technology breakthroughs have aided in diversifying ingredients used in orthopaedic implant applications. As such, nanoparticles may mimic the surface features of real tissues, particularly in terms of wettability, topography, chemistry, and energy. Additionally, the new features of nanoparticles support their usage in enhancing the development of various tissues. The current study establishes the groundwork for nanotechnology-driven biomaterials by elucidating key design issues that affect the success or failure of an orthopaedic implant, its antibacterial/antimicrobial activity, response to cell attachment propagation, and differentiation. The possible use of nanoparticles (in the form of nanosized surface or a usable nanocoating applied to the implant’s surface) can solve a number of problems (i.e., bacterial adhesion and corrosion resilience) associated with conventional metallic or non-metallic implants, particularly when implant techniques are optimised. Orthopaedic biomaterials’ prospects (i.e., pores architectures, 3D implants, and smart biomaterials) are intriguing in achieving desired implant characteristics and structure exhibiting stimuli-responsive attitude. The primary barriers to commercialization of nanotechnology-based composites are ultimately discussed, therefore assisting in overcoming the constraints in relation to certain pre-existing orthopaedic biomaterials, critical factors such as quality, implant life, treatment cost, and pain alleviation.
Collapse
Affiliation(s)
- Ming-Qi Chen
- Traumatic Orthopedics Yantai Mountain Hospital, Yantai, China
| |
Collapse
|
22
|
Wang P, Jiang Q. Orthopedical Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_15-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Liu H, Chen J, Qiao S, Zhang W. Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomater Sci Eng 2021; 7:4718-4735. [PMID: 34586781 DOI: 10.1021/acsbiomaterials.1c00759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the main load-bearing structure in the human body, bone and cartilage are susceptible to damage in sports and other activities. The repair and regeneration of bone and articular cartilage have been extensively studied in the past decades. Traditional approaches have been widely applied in clinical practice, but the effect varies from person to person and may cause side effects. With the rapid development of tissue engineering and regenerative medicine, various biomaterials show great potential in the regeneration of bone and cartilage. Carbon-based nanomaterials are solid materials with different structures and properties composed of allotropes of carbon, which are classified into zero-, one-, and two-dimensional ones. This Review systemically summarizes the different types of carbon-based nanomaterials, including zero-dimensional (fullerene, carbon dots, nanodiamonds), one-dimensional (carbon nanotubes), and two-dimensional (graphenic materials) as well as their applications in bone, cartilage, and osteochondral regeneration. Current limitations and future perspectives of carbon-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421 Homburg, Germany
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
24
|
Wang Z, Agrawal P, Zhang YS. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zongliang Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Prajwal Agrawal
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
25
|
Popescu D, Marinescu R, Laptoiu D, Deac GC, Cotet CE. DICOM 3D viewers, virtual reality or 3D printing - a pilot usability study for assessing the preference of orthopedic surgeons. Proc Inst Mech Eng H 2021; 235:1014-1024. [PMID: 34176364 DOI: 10.1177/09544119211020148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As standard practice in orthopedic surgery, the information gathered by analyzing Computer Tomography (CT) 2D images is used for patient diagnosis and planning surgery. Lately, these virtual slices are the input for generating 3D virtual models using DICOM viewers, facilitating spatial orientation, and diagnosis. Virtual Reality (VR) and 3D printing (3DP) technologies are also reported for use in anatomy visualization, medical training, and diagnosis. However, it has not been yet investigated whether the surgeons consider that the advantages offered by 3DP and VR outweigh their development efforts. Moreover, no comparative evaluation for understanding surgeon's preference in using these investigation tools has been performed so far. Therefore, in this paper, a pilot usability test was conducted for collecting surgeons' opinions. 3D models of knee, hip and foot were displayed using DICOM 3D viewer, two VR environments and as 3D-printed replicas. These tools adequacy for diagnosis was comparatively assessed in three cases scenarios, the time for completing the diagnosis tasks was recorded and questionnaires filled in. The time for preparing the models for VR and 3DP, the resources needed and the associated costs were presented in order to provide surgeons with the whole context. Results showed a preference in using desktop DICOM viewer with 3D capabilities along with the information provided by Unity-based VR solution for visualizing the virtual model from various angles challenging to analyze on the computer screen. 3D-printed replicas were considered more useful for physically simulating the surgery than for diagnosis. For the VR and 3DP models, the lack of information on bone quality was considered an important drawback. The following order of using the tools was preferred: DICOM viewer, followed by Unity VR and 3DP.
Collapse
Affiliation(s)
- Diana Popescu
- Department of Robotics and Production Systems, University Politehnica of Bucharest, Bucharest, Romania
| | - Rodica Marinescu
- University of Medicine and Pharmacy Carol Davila Bucharest, Bucharest, Romania
| | - Dan Laptoiu
- Department of Orthopedics, Colentina Clinical Hospital, Bucharest, Romania
| | - Gicu Calin Deac
- Department of Robotics and Production Systems, University Politehnica of Bucharest, Bucharest, Romania
| | - Costel Emil Cotet
- Department of Robotics and Production Systems, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
26
|
Cheng L, Suresh K S, He H, Rajput RS, Feng Q, Ramesh S, Wang Y, Krishnan S, Ostrovidov S, Camci-Unal G, Ramalingam M. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives. Int J Nanomedicine 2021; 16:4289-4319. [PMID: 34211272 PMCID: PMC8239380 DOI: 10.2147/ijn.s311001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.
Collapse
Affiliation(s)
- Lijia Cheng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Shoma Suresh K
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hongyan He
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Ritu Singh Rajput
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Qiyang Feng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Saravanan Ramesh
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Yuzhuang Wang
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Sasirekha Krishnan
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
27
|
Nanomedicines accessible in the market for clinical interventions. J Control Release 2021; 330:372-397. [DOI: 10.1016/j.jconrel.2020.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
|
28
|
Sharma V, Srinivasan A, Nikolajeff F, Kumar S. Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomater 2021; 120:20-37. [PMID: 32413577 DOI: 10.1016/j.actbio.2020.04.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023]
Abstract
Biomineralization can be considered as nature's strategy to produce and sustain biominerals, primarily via creation of hard tissues for protection and support. This review examines the biomineralization process within the hard tissues of the human body with special emphasis on the mechanisms and principles of bone and teeth mineralization. We describe the detailed role of proteins and inorganic ions in mediating the mineralization process. Furthermore, we highlight the various available models for studying bone physiology and mineralization starting from the historical static cell line-based methods to the most advanced 3D culture systems, elucidating the pros and cons of each one of these methods. With respect to the mineralization process in teeth, enamel and dentin mineralization is discussed in detail. The key role of intrinsically disordered proteins in modulating the process of mineralization in enamel and dentine is given attention. Finally, nanotechnological interventions in the area of bone and teeth mineralization, diseases and tissue regeneration is also discussed. STATEMENT OF SIGNIFICANCE: This article provides an overview of the biomineralization process within hard tissues of the human body, which encompasses the detailed mechanism innvolved in the formation of structures like teeth and bone. Moreover, we have discussed various available models used for studying biomineralization and also explored the nanotechnological applications in the field of bone regeneration and dentistry.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
29
|
Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). BIOFOULING 2021; 37:1-35. [PMID: 33618584 DOI: 10.1080/08927014.2020.1869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Orthopedic device related infections (ODRI's) represent a difficult to treat situation owing to their biofilm based nature. Biofilm infections once established are difficult to eradicate even with an aggressive treatment regimen due to their recalcitrance towards antibiotics and immune attack. The involvement of antibiotic resistant pathogens as the etiological agent further worsens the overall clinical picture, pressing on the need to look into alternative treatment strategies. The present review highlightes the microbiological challenges associated with treatment of ODRI's due to biofilm formation on the implant surface. Further, it details the newer anti-infective modalities that work either by preventing biofilm formation and/or through effective disruption of the mature biofilms formed on the medical implant. The study, therefore aims to provide a comprehensive insight into the newer anti-biofilm interventions (non-antibiotic approaches) and a better understanding of their mechanism of action essential for improved management of orthopedic implant infections.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Zhenwu Gao
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Zhenwei Tan
- Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China
| | - Jun Xiao
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Li Wei
- Nursing Department, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yirui Chen
- Department of Orthopedics, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
31
|
Native Bovine Hydroxyapatite Powder, Demineralised Bone Matrix Powder, and Purified Bone Collagen Membranes Are Efficient in Repair of Critical-Sized Rat Calvarial Defects. MATERIALS 2020; 13:ma13153393. [PMID: 32751921 PMCID: PMC7436118 DOI: 10.3390/ma13153393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
Here we evaluated the efficacy of bone repair using various native bovine biomaterials (refined hydroxyapatite (HA), demineralised bone matrix (DBM), and purified bone collagen (COLL)) as compared with commercially available bone mineral and bone autografts. We employed a conventional critical-sized (8 mm diameter) rat calvarial defect model (6-month-old male Sprague–Dawley rats, n = 72 in total). The artificial defect was repaired using HA, DBM, COLL, commercially available bone mineral powder, bone calvarial autograft, or remained unfilled (n = 12 animals per group). Rats were euthanised 4 or 12 weeks postimplantation (n = 6 per time point) with the subsequent examination to assess the extent, volume, area, and mineral density of the repaired tissue by means of microcomputed tomography and hematoxylin and eosin staining. Bovine HA and DBM powder exhibited excellent repair capability similar to the autografts and commercially available bone mineral powder while COLL showed higher bone repair rate. We suggest that HA and DBM powder obtained from bovine bone tissue can be equally applied for the repair of bone defects and demonstrate sufficient potential to be implemented into clinical studies.
Collapse
|
32
|
Javaid M, Haleem A. Impact of industry 4.0 to create advancements in orthopaedics. J Clin Orthop Trauma 2020; 11:S491-S499. [PMID: 32774017 PMCID: PMC7394797 DOI: 10.1016/j.jcot.2020.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Scientists and health professional are focusing on improving the medical sciences for the betterment of patients. The fourth industrial revolution, which is commonly known as Industry 4.0, is a significant advancement in the field of engineering. Industry 4.0 is opening a new opportunity for digital manufacturing with greater flexibility and operational performance. This development is also going to have a positive impact in the field of orthopaedics. The purpose of this paper is to present various advancements in orthopaedics by the implementation of Industry 4.0. To undertake this study, we have studied the available literature extensively on Industry 4.0, technologies of Industry 4.0 and their role in orthopaedics. Paper briefly explains about Industry 4.0, identifies and discusses the major technologies of Industry 4.0, which will support development in orthopaedics. Finally, from the available literature, the paper identifies twelve significant advancements of Industry 4.0 in orthopaedics. Industry 4.0 uses various types of digital manufacturing and information technologies to create orthopaedics implants, patient-specific tools, devices and innovative way of treatment. This revolution is to be useful to perform better spinal surgery, knee and hip replacement, and invasive surgeries.
Collapse
Affiliation(s)
- Mohd Javaid
- Corresponding author., https://scholar.google.co.in/citations?user=rfyiwvsAAAAJ&hl=en
| | | |
Collapse
|
33
|
Spinal Fusion Surgery and Local Antibiotic Administration: A Systematic Review on Key Points From Preclinical and Clinical Data. Spine (Phila Pa 1976) 2020; 45:339-348. [PMID: 31568186 DOI: 10.1097/brs.0000000000003255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Systematic review. OBJECTIVE The present review of clinical and preclinical in vivo studies focused on the local antibiotic administration for surgical site infection (SSI) in spinal fusion procedures and identifying new approaches or research direction able to release antibiotics in the infected environment. SUMMARY OF BACKGROUND DATA SSI is a severe complication of spinal fusion procedures that represents a challenging issue for orthopedic surgeons. SSIs can range from 0.7% to 2.3% without instrumentation up to 6.7% with the use of instrumentation with significant implications in health care costs and patient management. METHOD A systematic search was carried out by two independent researchers according to the PRISMA statement in three databases (www.pubmed.com, www.scopus.com and www.webofknowledge.com) to identify preclinical in vivo and clinical reports in the last 10 years. Additionally, to evaluate ongoing clinical trials, three of the major clinical registry websites were also checked (www.clinicaltrials.gov, www.who.int/ictrp, https://www.clinicaltrialsregister.eu). RESULTS After screening, a total of 43 articles were considered eligible for the review: 36 clinical studies and seven preclinical studies. In addition, six clinical trials were selected from the clinical registry websites. CONCLUSION The results reported that the topical vancomycin application seem to represent a strategy to reduce SSI incidence in spine surgery. However, the use of local vancomycin as a preventive approach for SSIs in spine surgery is mostly based on retrospective studies with low levels of evidence and moderate/severe risk of bias that do not allow to draw a clear conclusion. This review also underlines that several key points concerning the local use of antibiotics in spinal fusion still remains to be defined to allow this field to make a leap forward that would lead to the identification of specific approaches to counteract the onset of SSIs. LEVEL OF EVIDENCE 4.
Collapse
|
34
|
Medina-Cruz D, Mostafavi E, Vernet-Crua A, Cheng J, Shah V, Cholula-Diaz JL, Guisbiers G, Tao J, García-Martín JM, Webster TJ. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv 2020; 17:341-356. [PMID: 32064959 DOI: 10.1080/17425247.2020.1727441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Current treatments for osteogenic disorders are often successful, however they are not free of drawbacks, such as toxicity or side effects. Nanotechnology offers a platform for drug delivery in the treatment of bone disorders, which can overcome such limitations. Nevertheless, traditional synthesis of nanomaterials presents environmental and health concerns due to its production of toxic by-products, the need for extreme and harsh raw materials, and their lack of biocompatibility over time.Areas covered: This review article contains an overview of the current status of treating osteogenic disorders employing green nanotechnological approaches, showing some of the latest advances in the application of green nanomaterials, as drug delivery carriers, for the effective treatment of osteogenic disorders.Expert opinion: Green nanotechnology, as a potential solution, is understood as the use of living organisms, biomolecules and environmentally friendly processes for the production of nanomaterials. Nanomaterials derived from bacterial cultures or biomolecules isolated from living organisms, such as carbohydrates, proteins, and nucleic acids, have been proven to be effective composites. These nanomaterials introduce enhancements in the treatment and prevention of osteogenic disorders, compared to physiochemically-synthesized nanostructures, specifically in terms of their improved cell attachment and proliferation, as well as their ability to prevent bacterial adhesion.
Collapse
Affiliation(s)
- David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Cheng
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Veer Shah
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Juan Tao
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
35
|
Fabricating Ultra-Smooth Diamond-Like Carbon Film and Investigating its Antifungal and Antibiofilm Activity. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2019. [DOI: 10.4028/www.scientific.net/jbbbe.43.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diamond like carbon (DLC) a carbon-based nanomaterial has been nominated as a potential solution to prevent the biofilm formation on indwelling medical devices such as dentures and heart valves.Candidaalbicansis an opportunistic fungal pathogen where biofilms are a part of its pathogenicity which primarily utilized indwelling medical devices as platform to build up the biofilm. In this work, DLC deposited on silicon substrate was prepared to accomplish the optimal characteristics for bio-coating material (roughness, purity, uniformity) and then evaluated for their ability to prevent or reduce the biofilm formation of pathogenicC.albicans(SC5314) under conditions mimicking human body. Optimized DLC was synthesized via chemical vapor deposition, and then the film was characterized by Raman spectroscopy, scan electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The potential biofilms on DLC, silicon substrate and positive control (polyvinyl chloride-PVC) were quantified via colorimetric cell viability assay (XTT); as intact and vortexed biofilms. The characteristics of formed biofilms were carried out using confocal scanning laser microscopy (CSLM) and scan electron microscope (SEM). The result showed that DLC was successfully deposited on the silicon substrate with a root mean square (RMS) roughness of 0.183± 0.09 nm. The biofilm efficaciously grown on all samples (DLC and positive control) with thickness of 46.8 ± 6.97 μm and 42.18 ± 4.65 μm, respectively. No topological and morphological changes have been observed by SEM on biofilm-DLC compared to PVC-biofilm. Moreover, all results indicated that the hydrophobicity and roughness of DLC appeared to support the attachment and the growth ofC.albicans.In conclusion , there is no privilege of utilizing DLC over PVC in term of reduction or inhibition ofC.albicansbiofilm formation at physiological conditions. Furthermore, this study may serve as an experimental model to evaluate the potential effect of nanomaterials coating on biofilm formation at conditions mimicking human’s body.
Collapse
|
36
|
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019; 111:666-675. [PMID: 30611991 DOI: 10.1016/j.biopha.2018.12.133] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, the researchers and drug designers have given growing attention to new nanotechnology strategies to improve drug delivery to the central nervous system (CNS). Nanotechnology has a great potential to affect the treatment of neurological disorders, mainly Alzheimer's disease, Parkinson's disease, brain tumors, and stroke. With regard to neurodegeneration, several studies showed that nanomaterials have been successfully used for the treatments of CNS disorders. In this regard, nanocarriers have facilitated the targeted delivery of chemotherapeutics resulting in the efficient inhibition of disease progression in malignant brain tumors. Therefore, the most efficacious application of nanomaterials is the use of these substances in the treatment of CNS disease that enhances the overall effect of drug and highlights the importance of nano-therapeutics. This study was conducted to review the evidence on the applications of nanotechnology in designing drug delivery systems with the ability to cross through the blood-brain barrier (BBB) in order to transfer the therapeutic agents to the CNS.
Collapse
Affiliation(s)
- Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Masoumeh Eslamifar
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Science, Sari, Iran.
| | - Khadijeh Khezri
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran..
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
|
38
|
Sun H, Lv L, Bai Y, Yang H, Zhou H, Li C, Yang L. Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. Int J Nanomedicine 2018; 13:8325-8338. [PMID: 30584303 PMCID: PMC6289228 DOI: 10.2147/ijn.s173063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The hemostatic and anti-infection treatments in the field of orthopedics are always the pivotal yet challenging topics. In the first part of this review, synthesized or naturally derived nanoscale agents and materials for hemostatic treatment in orthopedic surgery are introduced. The hemostatic mechanisms and the safety concerns of these nanotechnology-enabled materials are discussed. Beside the materials to meet hemostatic needs in orthopedic surgery, the need for antimicrobial or anti-infection strategy in orthopedic surgery also becomes urgent. Nanosilver and its derivatives have the most consistent anti-infective effect and thus high translational potential for clinical applications. In the second part, the factors affecting the antimicrobial effect of nanosilver and its application status are summarized. Finally, the status and translational potential of various nanotechnology-enabled materials and agents for hemostatic and anti-infective treatments in orthopedic surgery are discussed.
Collapse
Affiliation(s)
- Haolin Sun
- Department of Orthopaedics, Peking University First Hospital, Beijing 100034, China,
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
| | - Lu Lv
- Orthopaedic Institute and Department of Orthopaedics, Soochow University, Suzhou 215006, China,
| | - Yanjie Bai
- School of Public Health, Medical College, Soochow University, Suzhou 215000, China
| | - Huilin Yang
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
- Orthopaedic Institute and Department of Orthopaedics, Soochow University, Suzhou 215006, China,
| | - Huan Zhou
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chunde Li
- Department of Orthopaedics, Peking University First Hospital, Beijing 100034, China,
| | - Lei Yang
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
- Orthopaedic Institute and Department of Orthopaedics, Soochow University, Suzhou 215006, China,
| |
Collapse
|