1
|
Kang JS, Kim JH, Kim MJ, Min B, Lee SM, Go GY, Kim JW, Kim S, Kwak JY, Chun SW, Song W, Moon HY, Chung SG, Park DH, Park JH, Kim C, Lee KP, Kwon ES, Kim N, Kwon KS, Yang YR. Exercise-induced CLCF1 attenuates age-related muscle and bone decline in mice. Nat Commun 2025; 16:4743. [PMID: 40399268 PMCID: PMC12095553 DOI: 10.1038/s41467-025-59959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 05/09/2025] [Indexed: 05/23/2025] Open
Abstract
Skeletal muscle undergoes many alterations with aging. However, the impact of aging on muscle's ability to secrete myokines and its subsequent effects on the body remain largely unexplored. Here, we identify myokines that have the potential to ameliorate age-related muscle and bone decline. Notably, circulating levels of cardiotrophin-like cytokine factor 1 (CLCF1) decrease with age, while exercise significantly upregulates CLCF1 levels in both humans and rodents. Restoring CLCF1 levels in aged male mice improves their physical performance, glucose tolerance, and mitochondrial activity. Furthermore, CLCF1 protects against age-induced bone loss by inhibiting osteoclastogenesis and promoting osteoblast differentiation in aged male mice. These improvements mirror some of the effects of exercise training. Conversely, blocking CLCF1 activity significantly abolishes these beneficial effects, confirming the crucial role of CLCF1 in mediating the positive effects of exercise on muscle and bone health in male mice. These findings collectively suggest that CLCF1 may contribute to the regulation of age-associated musculoskeletal deterioration, and warrant further investigation into its potential role as a modulator of musculoskeletal health during aging.
Collapse
Affiliation(s)
- Jae Sook Kang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Min Ju Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Byungkuk Min
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung-Min Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ga-Yeon Go
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ji-Won Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seongwan Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ju Yeon Kwak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sung-Wook Chun
- Research Institute of Physical Education & Sports Science, Pusan National University, Pusan, Republic of Korea
| | - Wook Song
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| | - Sun Gun Chung
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Ji Hoon Park
- New Drug Development Center, Osong Medical Innovation Foundation (KBioHealth), ChungJu, Republic of Korea
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Ki-Sun Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Aventi Inc., Daejeon, Republic of Korea.
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Wang M, Mo D, Zhou C, Guo M, Zhang W, Chen R, Xu J, Zhang N, Yu H. Association between Ward's triangle bone mineral density levels and abdominal aortic calcification: Data from the national health and nutrition examination survey 2013-2014. Clin Nutr ESPEN 2024; 64:344-357. [PMID: 39461592 DOI: 10.1016/j.clnesp.2024.10.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND & AIMS Despite extensive research into the cardiovascular implications of abdominal aortic calcification (AAC), there is a scarcity of robust studies exploring its association with Ward's triangle bone mineral density (BMD). This study aimed to evaluate this relationship in a nationally representative sample and compare the predictive value with femoral neck BMD and total femur BMD. METHODS We conducted a cross-sectional analysis of 2013-2014 National Health and Nutrition Examination Survey (NHANES) data, utilizing a complex, stratified, multistage, cluster sampling design. BMD measurements at Ward's triangle, femoral neck, and total femur were assessed using DXA scans. AAC severity was defined by a Kauppila score of ≥5. Predictors of AAC-24 scores were identified through correlation and linear regression models. Stratified regression and restricted cubic splines were applied to explore subgroup and dose-response relationships. RESULTS Of the 2965 participants representing 116, 562, 500 individuals in the U.S., 11 % had severe AAC. Ward's triangle BMD showed a significant negative association with AAC-24 scores (β = -1.90, 95 % CI: -2.80 to -1.00, P < 0.002) and a reduced risk of severe AAC (OR = 0.85, 95 % CI: 0.76 to 0.95, P = 0.010). Non-linear associations were observed between Ward's triangle BMD and AAC outcomes. Ward's triangle BMD outperformed femoral neck and total femur BMD in predicting AAC. CONCLUSIONS Higher Ward's triangle BMD is linked to lower odds of severe AAC, highlighting its potential for improved early detection of AAC over femoral neck and total femur BMD. Healthcare providers should consider the implications of reduced Ward's triangle BMD for systemic atherosclerosis and recommend early AAC screening for enhanced cardiovascular risk management.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; Institute of Cardiovascular Disease, Qingdao University, Qingdao 266001, Shandong, China.
| | - Degang Mo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Chi Zhou
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Wenqiang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Rui Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jiachao Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Ning Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; Institute of Cardiovascular Disease, Qingdao University, Qingdao 266001, Shandong, China.
| |
Collapse
|
3
|
Salfi G, Casiraghi F, Remuzzi G. Current understanding of the molecular mechanisms of circulating permeability factor in focal segmental glomerulosclerosis. Front Immunol 2023; 14:1247606. [PMID: 37795085 PMCID: PMC10546017 DOI: 10.3389/fimmu.2023.1247606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
The pathogenetic mechanisms underlying the onset and the post-transplant recurrence of primary focal segmental glomerulosclerosis (FSGS) are complex and remain yet to be fully elucidated. However, a growing body of evidence emphasizes the pivotal role of the immune system in both initiating and perpetuating the disease. Extensive investigations, encompassing both experimental models and patient studies, have implicated T cells, B cells, and complement as crucial actors in the pathogenesis of primary FSGS, with various molecules being proposed as potential "circulating factors" contributing to the disease and its recurrence post kidney-transplantation. In this review, we critically assessed the existing literature to identify essential pathways for a comprehensive characterization of the pathogenesis of FSGS. Recent discoveries have shed further light on the intricate interplay between these mechanisms. We present an overview of the current understanding of the engagement of distinct molecules and immune cells in FSGS pathogenesis while highlighting critical knowledge gaps that require attention. A thorough characterization of these intricate immune mechanisms holds the potential to identify noninvasive biomarkers that can accurately identify patients at high risk of post-transplant recurrence. Such knowledge can pave the way for the development of targeted and personalized therapeutic approaches in the management of FSGS.
Collapse
Affiliation(s)
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy
| | | |
Collapse
|
4
|
CRLF1 and CLCF1 in Development, Health and Disease. Int J Mol Sci 2022; 23:ijms23020992. [PMID: 35055176 PMCID: PMC8780587 DOI: 10.3390/ijms23020992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cytokines and their receptors have a vital function in regulating various processes such as immune function, inflammation, haematopoiesis, cell growth and differentiation. The interaction between a cytokine and its specific receptor triggers intracellular signalling cascades that lead to altered gene expression in the target cell and consequent changes in its proliferation, differentiation, or activation. In this review, we highlight the role of the soluble type I cytokine receptor CRLF1 (cytokine receptor-like factor-1) and the Interleukin (IL)-6 cytokine CLCF1 (cardiotrophin-like cytokine factor 1) during development in physiological and pathological conditions with particular emphasis on Crisponi/cold-induced sweating syndrome (CS/CISS) and discuss new insights, challenges and possibilities arising from recent studies.
Collapse
|
5
|
Yokota S, Matsumae G, Shimizu T, Hasegawa T, Ebata T, Takahashi D, Heguo C, Tian Y, Alhasan H, Takahata M, Kadoya K, Terkawi MA, Iwasaki N. Cardiotrophin Like Cytokine Factor 1 (CLCF1) alleviates bone loss in osteoporosis mouse models by suppressing osteoclast differentiation through activating interferon signaling and repressing the nuclear factor-κB signaling pathway. Bone 2021; 153:116140. [PMID: 34364014 DOI: 10.1016/j.bone.2021.116140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 01/31/2023]
Abstract
A growing body of evidence suggests that immune factors that regulate osteoclast differentiation and bone resorption might be promising therapeutic agents for the treatment of osteoporosis. The expression of CLCF1, an immune cell-derived molecule, has been reported to be reduced in patients with postmenopausal osteoporosis. This suggests that it may be involved in bone remodeling. Thus, we explored the functional role of CLCF1 in osteoclastogenesis and bone loss associated with osteoporosis. Surprisingly, the administration of recombinant CLCF1 repressed excessive bone loss in ovariectomized mice and prevented RANKL-induced bone loss in calvarial mouse model. Likewise, the addition of recombinant CLCF1 to RANKL-stimulated monocytes resulted in a significant suppression in the number of differentiated osteoclasts with small resorption areas being observed on dentine slices in vitro. At the same dosage, CLCF1 did not exhibit any detectable negative effects on the differentiation of osteoblasts. Mechanistically, the inhibition of osteoclast differentiation by the CLCF1 treatment appears to be related to the activation of interferon signaling (IFN) and the suppression of the NF-κB signaling pathway. Interestingly, the expression of the main components of IFN-signaling namely, STAT1 and IRF1, was detected in macrophages as early as 1 h after stimulation with CLCF1. Consistent with these results, the blockade of STAT1 in macrophages abolished the inhibitory effect of CLCF1 on osteoclast differentiation in vitro. These collective findings point to a novel immunoregulatory function of CLCF1 in bone remodeling and highlight it as a potentially useful therapeutic agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shunichi Yokota
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Tomoka Hasegawa
- Department of developmental biology of hard tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Cai Heguo
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yuan Tian
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|