1
|
Kazarian GS, Du J, Gang CH, Shahi P, Asada T, Lu A, Korsun M, Tuma O, Singh N, Araghi K, Maayan O, Singh S, Iyer S. Preoperative and Postoperative Segmental and Overall Range of Motion in Patients Undergoing Lumbar Spinal Fusion Using HA-Infused PEEK and HA-Treated Titanium Alloy Interbody Cages. Global Spine J 2025; 15:1077-1086. [PMID: 38116633 PMCID: PMC11877480 DOI: 10.1177/21925682231223117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
STUDY DESIGN Retrospective observational radiographic analysis. OBJECTIVE Determine how single level lumbar interbody fusion (LIF) alters segmental range of motion (ROM) at adjacent levels and decreases overall ROM. METHODS This study included 54 patients who underwent single-level anterior (ALIF, 39%), thoraco-LIF (TLIF, 26%), posterior LIF (PLIF, 22%), or lateral LIF (LLIF, 13%) (L2-3/L3-4/L4-5/L5-S1: 4%/13%/35%/48%). Segmental ROM from L1-2 to L5-S1 and the overall lumbar ROM (L1-S1) were assessed from preoperative and postoperative flexion-extension radiographs. K-means cluster analysis was used to identify ROM subgroups. RESULTS The overall L1-S1 ROM decreased 14% (25.5 ± 20.4° to 22.0 ± 17.2°, P = .104) postoperatively. ROM at the fusion level decreased 77% (4.8 ± 5.0° to 1.1 ± 1.1°, P < .001). Caudal adjacent segment ROM decreased 12% (5.2 ± 5.7° to 4.6 ± 4.4°, P = .345) and cranially ROM increased 34% (4.3 ± 5.0° to 5.7 ± 5.7°, P = .05). K-cluster analysis identified 3 distinct clusters (P < .05). Cluster 1 lost more ROM and had less improvement in patient-reported outcomes measures (PROMs) than average. Cluster 2 had less ROM loss than average with worse PROMs improvement. Cluster 3 did not have changes in ROM and better improvement in PROMs than average. Successful fusion was verified in 96% of all instrumented segments with >6 months follow-up (ROM <4°). CONCLUSION Following single-level L IF, patients should expect a loss of 3.3°, or 14% of overall lumbar motion with increases in ROM of the cranial segment. However, specific clusters of patients exist that experience different relative changes in ROM and PROMs.
Collapse
Affiliation(s)
| | - Jerry Du
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | | | - Pratysuh Shahi
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Tomoyuki Asada
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Amy Lu
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Maximillian Korsun
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Olivia Tuma
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Nishtha Singh
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Kasra Araghi
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Omri Maayan
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Sumedha Singh
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Sravisht Iyer
- Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| |
Collapse
|
2
|
Li H, Liu J, Cui H, Shen N, Wu F, Zhang Z, Zhu Z, Qiu C, Xiang H. The effects of cage on endplate collapse after stand-alone OLIF: based on finite element analysis and in vitro mechanics experiments. Front Bioeng Biotechnol 2024; 12:1508385. [PMID: 39723127 PMCID: PMC11669059 DOI: 10.3389/fbioe.2024.1508385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Background Lumbar degenerative diseases are an important factor in disability worldwide, and they are also common among the elderly population. Stand-Alone Oblique Lumbar Interbody Fusion (Stand-Alone OLIF) is a novel surgical approach for treating lumbar degenerative diseases. However, long-term follow-up after surgery has revealed the risk of endplate collapse associated with Stand-Alone OLIF procedures. This study aimed to investigate the effect of the cage factor on endplate collapse after Stand-Alone OLIF. Methods Finite element (FE) models and calf lumbar functional units were established separately and used to simulate Stand-Alone OLIF surgery. On the L5 endplate of the FE model and the calf lumbar functional unit, 12 cage positions from anterior to posterior, 16 cage inclination angles from 0° to 15°, and 4 cage heights were selected to simulate surgical models with different cage positions. Compression loads of 400N were applied to the upper surface of the superior vertebral body of the cage, and 10Nm torques in four directions were used to simulate four different physiological movements of the lumbar spine: flexion, extension, lateral curvature and torsion, in order to compare the range of motion of the surgical segment and the endplate stress. Results When the cage is placed closer to the anterior and posterior edges of the endplate and when the height of the cage exceeds 12mm, the intervertebral range of motion at the surgical segment is greater and the stress on the endplate is higher during various lumbar spine activities. When the cage is inclined at an angle within 15°, there are no significant differences in the corresponding endplate stress and the range of motion. Conclusion For Stand-Alone OLIF surgery, inserting the cage in the central anterior-posterior position of the intervertebral space and selecting a cage with a height not exceeding 12 mm can reduce the stress on the endplate after surgery, which is more conducive to the stability of the lumbar spine postoperatively and reduces the risk of postoperative endplate collapse. The inclination angle of the cage placement does not significantly affect postoperative endplate stress or lumbar stability.
Collapse
Affiliation(s)
- Hao Li
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qindao, China
| | - Jiarui Liu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qindao, China
| | - Huifei Cui
- Department of Spinal Surgery, Zibo First Hospital, Zibo, China
| | - Nana Shen
- The Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Futong Wu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qindao, China
| | - Zhihao Zhang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qindao, China
| | - Zhongze Zhu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qindao, China
| | - Chensheng Qiu
- Department of Spinal Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Hongfei Xiang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qindao, China
| |
Collapse
|
3
|
Hiyama A, Sakai D, Katoh H, Sato M, Watanabe M. The Role of Cage Placement Angle in Optimizing Short-Term Clinical Outcomes in Lateral Lumbar Interbody Fusion. World Neurosurg 2024; 192:e306-e317. [PMID: 39321917 DOI: 10.1016/j.wneu.2024.09.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE The purpose is to investigate the impact of cage angle on clinical outcomes and indirect decompression efficacy in patients undergoing lateral lumbar interbody fusion (LLIF). METHODS A retrospective review was conducted on 87 patients with single-level lumbar degenerative disease who underwent LLIF. Patients were grouped based on the angle of cage placement: minimal (0°-5°), mild (>5° ≤ 15°), and severe (>15°). Clinical outcomes assessed included pain intensity, functional improvement, and complication rates. Magnetic resonance imaging evaluations included measurements of canal diameter and central canal area pre- and postoperatively. Patient-reported outcomes were also analyzed using the Japanese Orthopedic Association Back Pain Evaluation Questionnaire. RESULTS Clinical and radiographic outcomes were significantly improved across all cage angle groups. Reductions in low back pain, leg pain, and numbness were significant in all groups, with no significant differences. Magnetic resonance imaging evaluations revealed significant increases in canal diameter and central canal area postoperatively, confirming effective indirect decompression. Japanese Orthopedic Association Back Pain Evaluation Questionnaire scores showed significant improvements in all domains, including low back pain, lumbar function, walking ability, social life function, and mental health. However, the severe angle group had higher rates of delayed cage subsidence. Complications such as transient motor weakness, thigh pain, numbness, and the need for revision surgery were consistent across groups, with no significant differences. CONCLUSIONS LLIF effectively treats LDD patients, providing significant short-term clinical and radiographic improvements regardless of cage angle. However, oblique cage placement increases the risk of cage subsidence, requiring careful surgical planning and postoperative following.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan.
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Katoh
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
4
|
Liu G, Huang W, Leng N, He P, Li X, Lin M, Lian Z, Wang Y, Chen J, Cai W. Comparative Biomechanical Stability of the Fixation of Different Miniplates in Restorative Laminoplasty after Laminectomy: A Finite Element Study. Bioengineering (Basel) 2024; 11:519. [PMID: 38790385 PMCID: PMC11117612 DOI: 10.3390/bioengineering11050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
A novel H-shaped miniplate (HSM) was specifically designed for restorative laminoplasties to restore patients' posterior elements after laminectomies. A validated finite element (FE) model of L2/4 was utilized to create a laminectomy model, as well as three restorative laminoplasty models based on the fixation of different miniplates after a laminectomy (the RL-HSM model, the RL-LSM model, and the RL-THM model). The biomechanical effects of motion and displacement on a laminectomy and restorative laminoplasty with three different shapes for the fixation of miniplates were compared under the same mechanical conditions. This study aimed to validate the biomechanical stability, efficacy, and feasibility of a restorative laminoplasty with the fixation of miniplates post laminectomy. The laminectomy model demonstrated the greatest increase in motion and displacement, especially in axial rotation, followed by extension, flexion, and lateral bending. The restorative laminoplasty was exceptional in preserving the motion and displacement of surgical segments when compared to the intact state. This preservation was particularly evident in lateral bending and flexion/extension, with a slight maintenance efficacy observed in axial rotation. Compared to the laminectomy model, the restorative laminoplasties with the investigated miniplates demonstrated a motion-limiting effect for all directions and resulted in excellent stability levels under axial rotation and flexion/extension. The greatest reduction in motion and displacement was observed in the RL-HSM model, followed by the RL-LSM model and then the RL-THM model. When comparing the fixation of different miniplates in restorative laminoplasties, the HSMs were found to be superior to the LSMs and THMs in maintaining postoperative stability, particularly in axial rotation. The evidence suggests that a restorative laminoplasty with the fixation of miniplates is more effective than a conventional laminectomy due to the biomechanical effects of restoring posterior elements, which helps patients regain motion and limit load displacement responses in the spine after surgery, especially in axial rotation and flexion/extension. Additionally, our evaluation in this research study could benefit from further research and provide a methodological and modeling basis for the design and optimization of restorative laminoplasties.
Collapse
Affiliation(s)
- Guoyin Liu
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (W.H.); (N.L.); (P.H.); (M.L.)
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weiqian Huang
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (W.H.); (N.L.); (P.H.); (M.L.)
| | - Nannan Leng
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (W.H.); (N.L.); (P.H.); (M.L.)
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (W.H.); (N.L.); (P.H.); (M.L.)
| | - Xin Li
- Department of Orthopedics, Central Military Commission Joint Logistics Support Force 904th Hospital, Wuxi 214044, China;
| | - Muliang Lin
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (W.H.); (N.L.); (P.H.); (M.L.)
| | - Zhonghua Lian
- Xiamen Medical Device Research and Testing Center, Xiamen 361022, China;
| | - Yong Wang
- Outpatient Department of The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China;
| | - Jianmin Chen
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; (G.L.); (W.H.); (N.L.); (P.H.); (M.L.)
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
5
|
Cucinotta F, Mineo R, Raffaele M, Salmeri F, Tartara F, Sfravara F. A comparison of traditional and net structured intersomatic cages in the lombosacral region: A biomechanical analysis for enhancing discopathy treatment. Heliyon 2024; 10:e28978. [PMID: 38617931 PMCID: PMC11015422 DOI: 10.1016/j.heliyon.2024.e28978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
The vertebral column represents an essential element for support, mobility, and the protection of the central nervous system. Various pathologies can compromise these vital functions, leading to pain and a decrease in the quality of life. Within the scope of this study, a novel redesign of the Intersomatic Cage, traditionally used in the presence of discopathy, was proposed. The adoption of additive manufacturing technology allowed for the creation of highly complex geometries, focusing on the lumbosacral tract, particularly on the L4-L5 and L5-S1 intervertebral discs. In addition to the tensile analysis carried out using Finite Element Analysis (FEA) in static simulations, a parallel study on the range of motion (ROM) of the aforementioned vertebral pairs was conducted. The ROM represents the relative movement range between various vertebral pairs. The introduction of the intersomatic cage between the vertebrae, replacing the pulpy nucleus of the intervertebral disc, could influence the ROM, thus having significant clinical implications. For the analysis, the ligaments were modelled using a 1D approach. Their constraint reaction and deformability upon load application were analysed to better understand the potential biomechanical implications arising from the adoption of the cages. During the FEA simulations, two types of cages were analysed: LLIF for L4-L5 and ALIF for L5-S1, subjecting them to four different loading conditions. The results indicate that the stresses exhibited by cages with a NET structure are generally lower compared to those of traditional cages. This stress reduction in cages with NET structure suggests a more optimal load distribution, but it is essential to assess potential repercussions on the surrounding bone structure.
Collapse
Affiliation(s)
| | | | | | - Fabio Salmeri
- Department of Engineering, University of Messina, Italy
| | | | | |
Collapse
|
6
|
Wang Y, Maimaiti A, Xiao Y, Tuoheti A, Zhang R, Maitusong M, Chen Q, Rexiti P. Hybrid cortical bone trajectory and modified cortical bone trajectory techniques in transforaminal lumbar interbody fusion at L4-L5 segment: A finite element analysis. Heliyon 2024; 10:e26294. [PMID: 38434416 PMCID: PMC10906328 DOI: 10.1016/j.heliyon.2024.e26294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Background The academia has increasingly acknowledged the superior biomechanical performance of the hybrid fixation technique in recent years. However, there is a lack of research on the hybrid fixation technique using BCS (Bilateral Cortical Screws) and BMCS (Bilateral Modified Cortical Screws). This study aims to investigate the biomechanical performance of the BCS and BMCS hybrid fixation technique in transforaminal lumbar interbody fusion (TLIF) at the L4-L5 segment in a complete lumbar-sacral finite element model. Methods Three cadaver specimens are used to construct three lumbar-sacral finite element models. The biomechanical properties of various fixation technologies (BCS-BCS, BMCS-BMCS, BMCS-BCS, and BCS-BMCS) are evaluated at the L4-5 segment with a TLIF procedure conducted, including the range of motion (ROM) of the L4-5 segment, as well as the stress experienced by the cage, screws, and rods. The testing is conducted under specific loading conditions, including a compressive load of 400 N and a torque of 7.5Nm, subjecting the model to simulate flexion, extension, lateral bending, and rotation. Results No significant variations are seen in the ROM at the L4-5 segment when comparing the four fixation procedures during flexion and extension. However, when it comes to lateral bending and rotation, the ROM is ordered in descending order as BCS-BCS, BCS-BMCS, BMCS-BMCS, and BMCS-BCS. The maximum stress experienced by the cage is observed to be highest within the BMCS-BCS technique during movements including flexion, extension, and lateral bending. Conversely, the BMCS-BMCS technique exhibits the highest cage stress levels during rotational movements. The stress applies to the screws and rods order the sequence of BCS-BCS, BCS-BMCS, BMCS-BCS, and BMCS-BMCS throughout all four working conditions. Conclusion The BMCS-BCS technique shows better biomechanical performance with less ROM and lower stress on the internal fixation system compared to other fixation techniques. BMCS-BMCS technology has similar mechanical performance to BMCS-BCS but has more contact area between screws and cortical bone, making it better for patients with severe osteoporosis.
Collapse
Affiliation(s)
- Yixi Wang
- First Clinical Medical College, Xinjiang Medical University, Urumqi, China
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abulikemu Maimaiti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yang Xiao
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abudusalamu Tuoheti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rui Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | - Qihao Chen
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Paerhati Rexiti
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, China
| |
Collapse
|
7
|
Andriamifidy HF, Rohde M, Swami P, Liang H, Grande D, Virk S. Influence of Placement of Lumbar Interbody Cage on Subsidence Risk: Biomechanical Study. World Neurosurg 2024; 183:e440-e446. [PMID: 38154684 DOI: 10.1016/j.wneu.2023.12.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE Lumbar spinal fusion is a common surgical procedure that can be done with a variety of different instrumentation and techniques. Despite numerous research studies investigating subsidence risk factors, the impact of cage placement on subsidence is not fully elucidated. This study aims to determine whether placement of an expandable transforaminal lumbar interbody fusion cage at the center end plate or at the anterior apophyseal ring affects cage subsidence. METHODS A transforaminal lumbar interbody fusion cage was placed centrally or peripherally between 2 synthetic vertebral models of L3 and L4. A compression plate attached to a 10 KN load cell was used to uniaxially compress the assembly. The ultimate force required for the assembly to fail and subsidence stiffness were analyzed. Computed tomography scans of each L3 and L4 were obtained, and maximum end plate subsidence was measured in the frontal plane. RESULTS Anterior apophyseal cage placement resulted in higher stiffness of the vertebrae-cage assembly (Ks, 962.89 N/mm) and a higher subsidence stiffness (Kb,987.21 N/mm) compared with central placement (P < 0.05). Ultimate compressive load of the vertebrae-cage assembly did not increase. Moreover, the maximum subsidence depth did not significantly vary between placements. CONCLUSIONS The subsidence stiffness increased with anterior apophyseal cage placement. Periphery end plate cortical bone architecture may play a role in resisting the impact of cage subsidence. To fully understand the effect of cage placement on cage subsidence, future studies should investigate its implications on native and diseased spine.
Collapse
Affiliation(s)
| | - Matthew Rohde
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
| | - Pooja Swami
- Department of Orthopaedic Research Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Haixiang Liang
- Department of Orthopaedic Research Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Daniel Grande
- Department of Orthopaedic Research Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Sohrab Virk
- Department of Orthopaedic Surgery, Northwell Health Long Island Jewish Medical Center/North Shore University Hospital, Manhasset, New York, USA
| |
Collapse
|
8
|
Liu J, Geng Z, Wang J, Zhang Z, Zhang X, Miao J. Biomechanical differences between two different shapes of oblique lumbar interbody fusion cages on whether to add posterior internal fixation system: a finite element analysis. J Orthop Surg Res 2023; 18:962. [PMID: 38093357 PMCID: PMC10720077 DOI: 10.1186/s13018-023-04461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Oblique lateral lumbar fusion (OLIF) is widely used in spinal degeneration, deformity and other diseases. The purpose of this study was to investigate the biomechanical differences between two different shapes of OLIF cages on whether to add posterior internal fixation system, using finite element analysis. METHODS A complete three-dimensional finite element model is established and verified for L3-L5. Surgical simulation was performed on the verified model, and the L4-L5 was the surgical segment. A total of the stand-alone group (Model A1, Model B1) and the BPSF group (Model A2, Model B2) were constructed. The four OLIF surgical models were: A1. Stand-alone OLIF with a kidney-shaped Cage; B1. Stand-alone OLIF with a straight cage; A2. OLIF with a kidney-shaped cage + BPSF; B2. Stand-alone OLIF with a straight cage + BPSF, respectively. The differences in the range of motion of the surgical segment (ROM), equivalent stress peak of the cage (ESPC), the maximum equivalent stress of the endplate (MESE) and the maximum stress of the internal fixation (MSIF) were compared between different models. RESULTS All OLIF surgical models showed that ROM declines between 74.87 and 96.77% at L4-L5 operative levels. The decreasing order of ROM was Model A2 > Model B2 > Model A1 > Model A2. In addition, the ESPC and MESE of Model A2 are smaller than those of other OLIF models. Except for the left-bending position, the MSIF of Model B2 increased by 1.51-16.69% compared with Model A2 in each position. The maximum value of MESE was 124.4 Mpa for Model B1 in the backward extension position, and the minimum value was 7.91 Mpa for Model A2 in the right rotation. Stand-alone group showed significantly higher ROMs and ESPCs than the BPSF group, with maximum values of 66.66% and 70.59%. For MESE, the BPSF group model can be reduced by 89.88% compared to the stand-alone group model. CONCLUSIONS Compared with the traditional straight OLIF cage, the kidney-shaped OLIF cage can further improve the stability of the surgical segment, reduce ESPC, MESE and MSIF, and help to reduce the risk of cage subsidence.
Collapse
Affiliation(s)
- Jianchao Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Ziming Geng
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jian Wang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Zepei Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Xingze Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jun Miao
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China.
| |
Collapse
|