1
|
Shuch B, Pantuck AJ, Bernhard JC, Morris MA, Master V, Scott AM, van Praet C, Bailly C, Önal B, Aksoy T, Merkx R, Schuster DM, Lee ST, Pandit-Taskar N, Fan AC, Allman P, Schmidt K, Tauchmanova L, Wheatcroft M, Behrenbruch C, Hayward CRW, Mulders P. [ 89Zr]Zr-girentuximab for PET-CT imaging of clear-cell renal cell carcinoma: a prospective, open-label, multicentre, phase 3 trial. Lancet Oncol 2024; 25:1277-1287. [PMID: 39270701 DOI: 10.1016/s1470-2045(24)00402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND With limitations of conventional imaging and biopsy, accurate, non-invasive techniques to detect clear-cell renal cell carcinoma in patients with renal masses remain an unmet need. 89Zr-labelled monoclonal antibody ([89Zr]Zr-girentuximab) has high affinity for carbonic anhydrase 9, a tumour antigen highly expressed in clear-cell renal cell carcinoma. We aimed to evaluate [89Zr]Zr-girentuximab PET-CT imaging for detection and characterisation of clear-cell renal cell carcinoma. METHODS ZIRCON was a prospective, open-label, multicentre, phase 3 trial conducted at 36 research hospitals and practices across nine countries (the USA, Australia, Canada, the UK, Türkiye, Belgium, the Netherlands, Spain, and France). Patients aged 18 years or older with an indeterminate renal mass 7 cm or smaller (cT1) suspicious for clear-cell renal cell carcinoma and scheduled for nephrectomy received a single dose of [89Zr]Zr-girentuximab (37 MBq ±10%; 10 mg girentuximab) intravenously followed by abdominal PET-CT imaging 5 days (±2 days) later. Surgery was performed no later than 90 days after administration of [89Zr]Zr-girentuximab. Blinded central review, conducted by three independent readers, determined the histology from surgical samples. The coprimary endpoints, determined for each individual reader, were the sensitivity and specificity of [89Zr]Zr-girentuximab PET-CT imaging to detect clear-cell renal cell carcinoma, with histopathological confirmation as standard of truth. Analyses were on the full analysis set of patients, defined as patients who had evaluable PET-CT imaging and a confirmed histopathological diagnosis. The trial is registered with ClinicalTrials.gov, NCT03849118, and EUDRA Clinical Trials Register, 2018-002773-21, and is closed to enrolment. FINDINGS Between Aug 14, 2019, and July 8, 2022, 371 patients were screened for eligibility, 332 of whom were enrolled. 300 patients received [89Zr]Zr-girentuximab (214 [71%] male and 86 [29%] female). 284 (95%) evaluable patients were included in the primary analysis. The mean sensitivity was 85·5% (95% CI 81·5-89·6) and mean specificity was 87·0% (81·0-93·1). No safety signals were observed. Most adverse events were not or were unlikely to be related to [89Zr]Zr-girentuximab, with most (193 [74%] of 261 events) occurring during or after surgery. The most common grade 3 or worse adverse events were post-procedural haemorrhage (in six [2%] of 261 patients), urinary retention (three [1%]), and hypertension (three [1%]). In 25 (8%) of 300 patients, 52 serious adverse events were reported, of which 51 (98%) occurred after surgery. There were no treatment-related deaths. INTERPRETATION Our results suggest that [89Zr]Zr-girentuximab PET-CT has a favourable safety profile and is a highly accurate, non-invasive imaging modality for the detection and characterisation of clear-cell renal cell carcinoma, which has the potential to be practice changing. FUNDING Telix Pharmaceuticals.
Collapse
Affiliation(s)
- Brian Shuch
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Allan J Pantuck
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jean-Christophe Bernhard
- Department of Urology, Centre Hospitalier Universitaire de Bordeaux-Groupe Hospitalier Pellegrin, Bordeaux, France
| | | | - Viraj Master
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | | | - Clement Bailly
- Department of Nuclear Medicine, Nantes University Hospital, Nantes, France
| | - Bülent Önal
- Department of Urology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tamer Aksoy
- Department of Nuclear Medicine, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Robin Merkx
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - David M Schuster
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Sze Ting Lee
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Neeta Pandit-Taskar
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Alice C Fan
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Karl Schmidt
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft, Dresden, Germany
| | | | | | | | | | - Peter Mulders
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
3
|
Marka AW, Luitjens J, Gassert FT, Steinhelfer L, Burian E, Rübenthaler J, Schwarze V, Froelich MF, Makowski MR, Gassert FG. Artificial intelligence support in MR imaging of incidental renal masses: an early health technology assessment. Eur Radiol 2024; 34:5856-5865. [PMID: 38388721 PMCID: PMC11364579 DOI: 10.1007/s00330-024-10643-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE This study analyzes the potential cost-effectiveness of integrating an artificial intelligence (AI)-assisted system into the differentiation of incidental renal lesions as benign or malignant on MR images during follow-up. MATERIALS AND METHODS For estimation of quality-adjusted life years (QALYs) and lifetime costs, a decision model was created, including the MRI strategy and MRI + AI strategy. Model input parameters were derived from recent literature. Willingness to pay (WTP) was set to $100,000/QALY. Costs of $0 for the AI were assumed in the base-case scenario. Model uncertainty and costs of the AI system were assessed using deterministic and probabilistic sensitivity analysis. RESULTS Average total costs were at $8054 for the MRI strategy and $7939 for additional use of an AI-based algorithm. The model yielded a cumulative effectiveness of 8.76 QALYs for the MRI strategy and of 8.77 for the MRI + AI strategy. The economically dominant strategy was MRI + AI. Deterministic and probabilistic sensitivity analysis showed high robustness of the model with the incremental cost-effectiveness ratio (ICER), which represents the incremental cost associated with one additional QALY gained, remaining below the WTP for variation of the input parameters. If increasing costs for the algorithm, the ICER of $0/QALY was exceeded at $115, and the defined WTP was exceeded at $667 for the use of the AI. CONCLUSIONS This analysis, rooted in assumptions, suggests that the additional use of an AI-based algorithm may be a potentially cost-effective alternative in the differentiation of incidental renal lesions using MRI and needs to be confirmed in the future. CLINICAL RELEVANCE STATEMENT These results hint at AI's the potential impact on diagnosing renal masses. While the current study urges careful interpretation, ongoing research is essential to confirm and seamlessly integrate AI into clinical practice, ensuring its efficacy in routine diagnostics. KEY POINTS • This is a model-based study using data from literature where AI has been applied in the diagnostic workup of incidental renal lesions. • MRI + AI has the potential to be a cost-effective alternative in the differentiation of incidental renal lesions. • The additional use of AI can reduce costs in the diagnostic workup of incidental renal lesions.
Collapse
Affiliation(s)
- Alexander W Marka
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Institut für diagnostische und interventionelle Radiologie, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Johanna Luitjens
- Department of Radiology, Klinikum Großhadern, Ludwig-Maximilians-Universität, Marchioninistraße 15, 81377, Munich, Germany
| | - Florian T Gassert
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Institut für diagnostische und interventionelle Radiologie, Ismaninger Str. 22, 81675, Munich, Germany
| | - Lisa Steinhelfer
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Institut für diagnostische und interventionelle Radiologie, Ismaninger Str. 22, 81675, Munich, Germany
| | - Egon Burian
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Institut für diagnostische und interventionelle Radiologie, Ismaninger Str. 22, 81675, Munich, Germany
| | - Johannes Rübenthaler
- Department of Radiology, Klinikum Großhadern, Ludwig-Maximilians-Universität, Marchioninistraße 15, 81377, Munich, Germany
| | - Vincent Schwarze
- Department of Radiology, Klinikum Großhadern, Ludwig-Maximilians-Universität, Marchioninistraße 15, 81377, Munich, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Institut für diagnostische und interventionelle Radiologie, Ismaninger Str. 22, 81675, Munich, Germany
| | - Felix G Gassert
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Institut für diagnostische und interventionelle Radiologie, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
5
|
Trovato P, Simonetti I, Morrone A, Fusco R, Setola SV, Giacobbe G, Brunese MC, Pecchi A, Triggiani S, Pellegrino G, Petralia G, Sica G, Petrillo A, Granata V. Scientific Status Quo of Small Renal Lesions: Diagnostic Assessment and Radiomics. J Clin Med 2024; 13:547. [PMID: 38256682 PMCID: PMC10816509 DOI: 10.3390/jcm13020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Small renal masses (SRMs) are defined as contrast-enhanced renal lesions less than or equal to 4 cm in maximal diameter, which can be compatible with stage T1a renal cell carcinomas (RCCs). Currently, 50-61% of all renal tumors are found incidentally. Methods: The characteristics of the lesion influence the choice of the type of management, which include several methods SRM of management, including nephrectomy, partial nephrectomy, ablation, observation, and also stereotactic body radiotherapy. Typical imaging methods available for differentiating benign from malignant renal lesions include ultrasound (US), contrast-enhanced ultrasound (CEUS), computed tomography (CT), and magnetic resonance imaging (MRI). Results: Although ultrasound is the first imaging technique used to detect small renal lesions, it has several limitations. CT is the main and most widely used imaging technique for SRM characterization. The main advantages of MRI compared to CT are the better contrast resolution and tissue characterization, the use of functional imaging sequences, the possibility of performing the examination in patients allergic to iodine-containing contrast medium, and the absence of exposure to ionizing radiation. For a correct evaluation during imaging follow-up, it is necessary to use a reliable method for the assessment of renal lesions, represented by the Bosniak classification system. This classification was initially developed based on contrast-enhanced CT imaging findings, and the 2019 revision proposed the inclusion of MRI features; however, the latest classification has not yet received widespread validation. Conclusions: The use of radiomics in the evaluation of renal masses is an emerging and increasingly central field with several applications such as characterizing renal masses, distinguishing RCC subtypes, monitoring response to targeted therapeutic agents, and prognosis in a metastatic context.
Collapse
Affiliation(s)
- Piero Trovato
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Alessio Morrone
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy;
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy;
| | - Annarita Pecchi
- Department of Radiology, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Sonia Triggiani
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Pellegrino
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Petralia
- Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| |
Collapse
|
6
|
Shetty AS, Fraum TJ, Ballard DH, Hoegger MJ, Itani M, Rajput MZ, Lanier MH, Cusworth BM, Mehrsheikh AL, Cabrera-Lebron JA, Chu J, Cunningham CR, Hirschi RS, Mokkarala M, Unteriner JG, Kim EH, Siegel CL, Ludwig DR. Renal Mass Imaging with MRI Clear Cell Likelihood Score: A User's Guide. Radiographics 2023; 43:e220209. [PMID: 37319026 DOI: 10.1148/rg.220209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Small solid renal masses (SRMs) are frequently detected at imaging. Nearly 20% are benign, making careful evaluation with MRI an important consideration before deciding on management. Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype with potentially aggressive behavior. Thus, confident identification of ccRCC imaging features is a critical task for the radiologist. Imaging features distinguishing ccRCC from other benign and malignant renal masses are based on major features (T2 signal intensity, corticomedullary phase enhancement, and the presence of microscopic fat) and ancillary features (segmental enhancement inversion, arterial-to-delayed enhancement ratio, and diffusion restriction). The clear cell likelihood score (ccLS) system was recently devised to provide a standardized framework for categorizing SRMs, offering a Likert score of the likelihood of ccRCC ranging from 1 (very unlikely) to 5 (very likely). Alternative diagnoses based on imaging appearance are also suggested by the algorithm. Furthermore, the ccLS system aims to stratify which patients may or may not benefit from biopsy. The authors use case examples to guide the reader through the evaluation of major and ancillary MRI features of the ccLS algorithm for assigning a likelihood score to an SRM. The authors also discuss patient selection, imaging parameters, pitfalls, and areas for future development. The goal is for radiologists to be better equipped to guide management and improve shared decision making between the patient and treating physician. © RSNA, 2023 Quiz questions for this article are available in the supplemental material. See the invited commentary by Pedrosa in this issue.
Collapse
Affiliation(s)
- Anup S Shetty
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Tyler J Fraum
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - David H Ballard
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Mark J Hoegger
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Malak Itani
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Mohamed Z Rajput
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Michael H Lanier
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Brian M Cusworth
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Amanda L Mehrsheikh
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Jorge A Cabrera-Lebron
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Jia Chu
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Christopher R Cunningham
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Ryan S Hirschi
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Mahati Mokkarala
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Jackson G Unteriner
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Eric H Kim
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Cary L Siegel
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Daniel R Ludwig
- From the Mallinckrodt Institute of Radiology (A.S.S., T.J.F., D.H.B., M.J.H., M.I., M.Z.R., M.H.L., B.M.C., A.L.M., J.A.C.L., J.C., C.R.C., R.S.H., M.M., J.G.U., C.L.S., D.R.L.) and Division of Urologic Surgery (E.H.K.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| |
Collapse
|