1
|
Kim J, Jo J, Cho S, Kim H. Genomic insights and functional evaluation of Lacticaseibacillus paracasei EG005: a promising probiotic with enhanced antioxidant activity. Front Microbiol 2024; 15:1477152. [PMID: 39469458 PMCID: PMC11513463 DOI: 10.3389/fmicb.2024.1477152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Probiotics, such as Lacticaseibacillus paracasei EG005, are gaining attention for their health benefits, particularly in reducing oxidative stress. The goal of this study was to reinforce the antioxidant capacity of EG005, along with comprehensive genomic analysis, with a focus on assessing superoxide dismutase (SOD) activity, acid resistance and bile tolerance, and safety. Methods EG005 was screened for SOD activity and change of SOD activity was tested under various pH conditions. Its survival rates were assessed in acidic (pH 2.5) and bile salt (0.3%) conditions and the antibiotic MIC test and hemolysis test were performed to evaluate safety. Genetic analyses including functional identification and phylogenetic tree construction were performed. The SOD overexpression system was constructed using Ptuf, Pldh1, Plhd2, and Pldh3 strong promoters. Results EG005 demonstrated higher SOD activity compared to Lacticaseibacillus rhamnosus GG, with optimal activity at pH 7.0. It showed significant acid and bile tolerance, with survival rates recovering to 100% after 3 h in acidic conditions. Phylogenetic analysis confirmed that EG005 is closely related to other L. paracasei strains with ANI values above 98%. Overexpression of SOD using the Ptuf promoter resulted in a two-fold increase in activity compared to the controls. Additionally, EG005 exhibited no hemolytic activity and showed antibiotic susceptibility within safe limits. Discussion Our findings highlight EG005's potential as a probiotic with robust antioxidant activity and high tolerance to gastrointestinal conditions. Its unique genetic profile and enhanced SOD activity through strong promoter support its application in probiotic therapies and functional foods. Further research should be investigated to find the in vivo effects of EG005 on gut health and oxidative stress reduction. In addition, attB and attP-based recombination, combined with CRISPR-Cas9 technologies, could offer a more stable alternative for long-term sodA gene expression in commercial and medical applications.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinchul Jo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome Inc., Seoul, Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Sanyal RP, Prashar V, Jawali N, Sunkar R, Misra HS, Saini A. Molecular and Biochemical Analysis of Duplicated Cytosolic CuZn Superoxide Dismutases of Rice and in silico Analysis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864330. [PMID: 35707617 PMCID: PMC9191229 DOI: 10.3389/fpls.2022.864330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Superoxide dismutases (SODs, EC 1.15.1.1) are ubiquitous antioxidant metalloenzymes important for oxidative stress tolerance and cellular redox environment. Multiple factors have contributed toward the origin and diversity of SOD isoforms among different organisms. In plants, the genome duplication events, responsible for the generation of multiple gene copies/gene families, have also contributed toward the SOD diversity. However, the importance of such molecular events on the characteristics of SODs has not been studied well. This study investigated the effects of divergence on important characteristics of two block-duplicated rice cytosolic CuZn SODs (OsCSD1, OsCSD4), along with in silico assessment of similar events in other plants. The analysis revealed heterogeneity in gene length, regulatory regions, untranslated regions (UTRs), and coding regions of two OsCSDs. An inconsistency in the database-predicted OsCSD1 gene structure was also identified and validated experimentally. Transcript analysis showed differences in the basal levels and stress responsiveness of OsCSD1 and OsCSD4, and indicated the presence of two transcription start sites in the OsCSD1. At the amino acid level, the two OsCSDs showed differences at 18 sites; however, both exist as a homodimer, displaying typical CuZn SOD characteristics, and enhancing the oxidative stress tolerance of Escherichia coli cells. However, OsCSD4 showed higher specific activity as well as stability. The comparison of the two OsCSDs with reported thermostable CSDs from other plants identified regions likely to be associated with stability, while the homology modeling and superposition highlighted structural differences. The two OsCSDs displayed heteromeric interaction capability and forms an enzymatically active heterodimer (OsCSD1:OsCSD4) on co-expression, which may have significance as both are cytosolic. In silico analysis of 74 plant genomes revealed the prevalence of block duplications for multiple CSD copies (mostly cytosolic). The divergence and clustering analysis of CSDs suggested the possibility of an ancestral duplication event in monocots. Conserved SOD features indicating retention of SOD function among CSD duplicates were evident in few monocots and dicots. In most other species, the CSD copies lacked critical features and may not harbor SOD function; however, other feature-associated functions or novel functions might be present. These aspects of divergent CSD copies encoding co-localized CSDs may have implications in plant SOD functions in the cytosol and other organelles.
Collapse
Affiliation(s)
- Ravi Prakash Sanyal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vishal Prashar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narendra Jawali
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Centre for Natural Biological Resources and Community Development, Bengaluru, India
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ajay Saini
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Fesharaki-Esfahani M, Shahpiri A, Kazemi-Nasab A. A highly efficient, thermo stable and broad pH adaptable copper-zinc super oxide dismutase (AmSOD1) mediates hydrogen peroxide tolerance in Avicennia marina. PHYTOCHEMISTRY 2021; 187:112766. [PMID: 33878605 DOI: 10.1016/j.phytochem.2021.112766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Avicennia marina is a widely distributed mangrove species with high tolerance to salt, oxidative stress and heavy metals. In the preset work, we found that superoxide dismutase (SOD) activity increases in Avicennia marina leaves in response to salt and hydrogen peroxide. Monitoring the SOD using Western blot analysis revealed that the accumulation of SOD increased in response to hydrogen peroxide but not in response to salinity stress. Here we also isolated and cloned a gene encoding AmSOD1 which was classified into the group of plant CuZnSODs based on amino acid sequence analysis. AmSOD1 was heterologously expressed in the soluble fraction of E. coli strain Rosetta (DE3). The cells expressing His-AmSOD1 were more tolerant in response to hydrogen peroxide treatment but not salt stress, suggesting the involvement of AmSOD1 in hydrogen peroxide tolerance. The enzyme His-AmSOD1 exhibited a molecular mass of 38 kDa, but it could be monomer in reducing conditions indicating a double-strand protein with intra-molecular disulfide bridge. There are two copper and two zinc moles per mole of dimer form of His-AmSOD1 suggesting the binding of one copper and one zinc ions to each monomer. The Pure His-AmSOD1 was highly active in vitro and its activity was considerably enhanced when the growth medium of the cells producing AmSOD1 was supplemented with Cu2+. The high stability of the recombinant AmSOD1 after incubation in a broad range pH and high temperature is a distinctive feature for AmSOD1, which may open new insights for application of AmSOD1 as a protein drug in different medical purposes.
Collapse
Affiliation(s)
- Monireh Fesharaki-Esfahani
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Akram Kazemi-Nasab
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
4
|
Yadav S, Gill SS, Passricha N, Gill R, Badhwar P, Anjum NA, Francisco JBJ, Tuteja N. Genome-wide analysis and transcriptional expression pattern-assessment of superoxide dismutase (SOD) in rice and Arabidopsis under abiotic stresses. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2018.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Electronic and Functional Structure of Copper in Plant Cu/Zn Superoxide Dismutase with Combined Site-directed Mutagenesis and Electron Paramagnetic Resonance. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Biochemical and functional characterization of OsCSD3, a novel CuZn superoxide dismutase from rice. Biochem J 2018; 475:3105-3121. [DOI: 10.1042/bcj20180516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
Superoxide dismutases (SODs, EC 1.15.1.1) belong to an important group of antioxidant metalloenzymes. Multiple SODs exist for scavenging of reactive oxygen species (ROS) in different cellular compartments to maintain an intricate ROS balance. The present study deals with molecular and biochemical characterization of CuZn SOD encoded by LOC_Os03g11960 (referred to as OsCSD3), which is the least studied among the four rice isozymes. The OsCSD3 showed higher similarity to peroxisomal SODs in plants. The OsCSD3 transcript was up-regulated in response to salinity, drought, and oxidative stress. Full-length cDNA encoding OsCSD3 was cloned and expressed in Escherichia coli and analyzed for spectral characteristics. UV (ultraviolet)–visible spectroscopic analysis showed evidences of d–d transitions, while circular dichroism analysis indicated high β-sheet content in the protein. The OsCSD3 existed as homodimer (∼36 kDa) with both Cu2+ and Zn2+ metal cofactors and was substantially active over a wide pH range (7.0–10.8), with optimum pH of 9.0. The enzyme was sensitive to diethyldithiocarbamate but insensitive to sodium azide, which are the characteristics features of CuZn SODs. The enzyme also exhibited bicarbonate-dependent peroxidase activity. Unlike several other known CuZn SODs, OsCSD3 showed higher tolerance to hydrogen peroxide and thermal inactivation. Heterologous overexpression of OsCSD3 enhanced tolerance of E. coli sod double-knockout (ΔsodA ΔsodB) mutant and wild-type strain against methyl viologen-induced oxidative stress, indicating the in vivo function of this enzyme. The results show that the locus LOC_Os03g11960 of rice encodes a functional CuZn SOD with biochemical characteristics similar to the peroxisomal isozymes.
Collapse
|
7
|
Bhatia K, Mal G, Bhar R, Jyoti, Attri C, Seth A. Purification and characterization of thermostable superoxide dismutase from Anoxybacillus gonensis KA 55 MTCC 12684. Int J Biol Macromol 2018; 117:1133-1139. [DOI: 10.1016/j.ijbiomac.2018.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
|
8
|
Zafra A, Castro AJ, Alché JDD. Identification of novel superoxide dismutase isoenzymes in the olive (Olea europaea L.) pollen. BMC PLANT BIOLOGY 2018; 18:114. [PMID: 29884131 PMCID: PMC5994013 DOI: 10.1186/s12870-018-1328-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Among antioxidant enzymes, the superoxide dismutase (SOD) family is a major actor in catalysing the disproportionation of superoxide. Apart from its role as antioxidant, these enzymes have a role in cell signalling, and Cu,Zn-SOD proteins are also major pollen allergens. In order to deepen our understanding of the SOD isoenzymes present in olive pollen and to analyse the molecular variability of the pollen Cu,Zn-SOD family, we carried out biochemical, transcriptomic and localization studies of pollen grains from different olive cultivars and other allergenic species. RESULTS Olive pollen showed a high rate of total SOD activity in all cultivars assayed, which did not correlate with pollen viability. Mass spectrometry analysis together with activity assays and Western blotting experiments enabled us to identify new forms of Cu,Zn-SOD enzyme (including chloroplastidic and peroxisomal forms) as well as differentially expressed Mn-, Fe- and Cu,Zn-SOD isoenzymes among the pollen of different olive cultivars and allergenic species. Ultrastructural localization of Cu,Zn-SOD revealed its plastidial localization in the pollen grain. We also identified the occurrence of a shorter form of one of the cytosolic Cu,Zn-SOD enzymes, likely as the result of alternative splicing. This shorter enzyme showed lower SOD activity as compared to the full length form. CONCLUSIONS The presence of multiple SOD isoenzymes in the olive pollen could be related to the need of finely tuning the ROS metabolism during the transition from its quiescent condition at maturity to a highly metabolically active state at germination.
Collapse
Grants
- BFU2016-77243-P Secretaría de Estado de Investigación, Desarrollo e Innovación
- RTC-2016-4824-2 Secretaría de Estado de Investigación, Desarrollo e Innovación
- RTC-2015-4181-2 Secretaría de Estado de Investigación, Desarrollo e Innovación
- BFU2011-22779 Secretaría de Estado de Investigación, Desarrollo e Innovación
- 201540E065 Consejo Superior de Investigaciones Científicas
- 201840E055 Consejo Superior de Investigaciones Científicas
- P2010-AGR6274 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
- P2011-CVI-7487 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
Collapse
Affiliation(s)
- Adoración Zafra
- Plant Reproductive Biology Research Laboratory, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Department of Biochemistry, Cell and Molecular Biology of Plants, Profesor Albareda 1, 18008 Granada, Spain
| | - Antonio Jesús Castro
- Plant Reproductive Biology Research Laboratory, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Department of Biochemistry, Cell and Molecular Biology of Plants, Profesor Albareda 1, 18008 Granada, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology Research Laboratory, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Department of Biochemistry, Cell and Molecular Biology of Plants, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
9
|
Nishiyama Y, Fukamizo T, Yoneda K, Araki T. Complete Amino Acid Sequence of a Copper/Zinc-Superoxide Dismutase from Ginger Rhizome. Protein J 2017; 36:98-107. [PMID: 28185046 DOI: 10.1007/s10930-017-9700-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Superoxide dismutase (SOD) is an antioxidant enzyme protecting cells from oxidative stress. Ginger (Zingiber officinale) is known for its antioxidant properties, however, there are no data on SODs from ginger rhizomes. In this study, we purified SOD from the rhizome of Z. officinale (Zo-SOD) and determined its complete amino acid sequence using N terminal sequencing, amino acid analysis, and de novo sequencing by tandem mass spectrometry. Zo-SOD consists of 151 amino acids with two signature Cu/Zn-SOD motifs and has high similarity to other plant Cu/Zn-SODs. Multiple sequence alignment showed that Cu/Zn-binding residues and cysteines forming a disulfide bond, which are highly conserved in Cu/Zn-SODs, are also present in Zo-SOD. Phylogenetic analysis revealed that plant Cu/Zn-SODs clustered into distinct chloroplastic, cytoplasmic, and intermediate groups. Among them, only chloroplastic enzymes carried amino acid substitutions in the region functionally important for enzymatic activity, suggesting that chloroplastic SODs may have a function distinct from those of SODs localized in other subcellular compartments. The nucleotide sequence of the Zo-SOD coding region was obtained by reverse-translation, and the gene was synthesized, cloned, and expressed. The recombinant Zo-SOD demonstrated pH stability in the range of 5-10, which is similar to other reported Cu/Zn-SODs, and thermal stability in the range of 10-60 °C, which is higher than that for most plant Cu/Zn-SODs but lower compared to the enzyme from a Z. officinale relative Curcuma aromatica.
Collapse
Affiliation(s)
- Yuki Nishiyama
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kinki University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Tomohiro Araki
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto, 862-8652, Japan.
| |
Collapse
|
10
|
Abrashev R, Feller G, Kostadinova N, Krumova E, Alexieva Z, Gerginova M, Spasova B, Miteva-Staleva J, Vassilev S, Angelova M. Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363. Fungal Biol 2016; 120:679-89. [DOI: 10.1016/j.funbio.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
|
11
|
Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N. Superoxide dismutase--mentor of abiotic stress tolerance in crop plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10375-94. [PMID: 25921757 DOI: 10.1007/s11356-015-4532-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 05/20/2023]
Abstract
Abiotic stresses impact growth, development, and productivity, and significantly limit the global agricultural productivity mainly by impairing cellular physiology/biochemistry via elevating reactive oxygen species (ROS) generation. If not metabolized, ROS (such as O2 (•-), OH(•), H2O2, or (1)O2) exceeds the status of antioxidants and cause damage to DNA, proteins, lipids, and other macromolecules, and finally cellular metabolism arrest. Plants are endowed with a family of enzymes called superoxide dismutases (SODs) that protects cells against potential consequences caused by cytotoxic O2 (•-) by catalyzing its conversion to O2 and H2O2. Hence, SODs constitute the first line of defense against abiotic stress-accrued enhanced ROS and its reaction products. In the light of recent reports, the present effort: (a) overviews abiotic stresses, ROS, and their metabolism; (b) introduces and discusses SODs and their types, significance, and appraises abiotic stress-mediated modulation in plants; (c) analyzes major reports available on genetic engineering of SODs in plants; and finally, (d) highlights major aspects so far least studied in the current context. Literature appraised herein reflects clear information paucity in context with the molecular/genetic insights into the major functions (and underlying mechanisms) performed by SODs, and also with the regulation of SODs by post-translational modifications. If the previous aspects are considered in the future works, the outcome can be significant in sustainably improving plant abiotic stress tolerance and efficiently managing agricultural challenges under changing climatic conditions.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak, Haryana, 124001, India,
| | | | | | | | | | | | | | | | | |
Collapse
|