1
|
Wasserman S, Muron S, Lee H, Routh M, Hepperla A, Scoville D, Huber A, Umana J, Pereira N, Foley C, James L, Hathaway N. Dynamic activation of rAAV transgene expression by a small molecule that recruits endogenous transcriptional machinery. Nucleic Acids Res 2025; 53:gkaf345. [PMID: 40298110 PMCID: PMC12038400 DOI: 10.1093/nar/gkaf345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/21/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Adeno-associated virus (AAV) gene therapies typically use constitutive transgene expression vectors that cannot be altered after vector administration. Here, we describe a bioorthogonal platform for tuning AAV expression which enables the controlled activation of viral transgenes after transduction. This platform uses a small, synthetic DNA-binding protein embedded in the AAV genome coupled with a heterobifunctional small molecule that recruits endogenous transcriptional machinery to chemically induce transgene expression in a dose-dependent and reversible manner. In human cells, this strategy successfully activates AAV expression across different viral serotypes, cassette configurations, and transgene payloads. Epigenomic analysis reveals that this technology facilitates direct and specific recruitment of the transcriptional regulator BRD4 to AAV genomes. Our results demonstrate that the expression of native AAV genomes can be tuned through chemically induced proximity, opening the possibility of a new class of AAV vectors that can be dynamically potentiated.
Collapse
Affiliation(s)
- Sara R Wasserman
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Savannah Muron
- Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Hae Rim Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States and North Carolina State University, Raleigh, NC, 27606, United States
| | - Madison L Routh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Austin J Hepperla
- Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Neuroscience Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Deena M Scoville
- Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Avery Huber
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Jessica D Umana
- Structural Genomics Core, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Nicole E Pereira
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Caroline A Foley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Nathaniel A Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| |
Collapse
|
2
|
Luo X, Huang B, Xu P, Wang H, Zhang B, Lin L, Liao J, Hu M, Liu X, Huang J, Fu Y, Kilby MD, Kellems RE, Fan X, Xia Y, Baker PN, Qi H, Tong C. The Placenta Regulates Intrauterine Fetal Growth via Exosomal PPARγ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404983. [PMID: 39951006 PMCID: PMC12005745 DOI: 10.1002/advs.202404983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/25/2024] [Indexed: 04/19/2025]
Abstract
Abnormal adipogenesis is a major contributor to fetal growth restriction (FGR) and its associated complications. However, the underlying etiology remains unclear. Here, it is reported that the placentas of women with pregnancies complicated with FGR exhibit peroxisome proliferator-activated receptor γ (PPARγ) inactivation. In mice, trophoblast-specific ablation of murine PPARγ reproduces the phenotype of human fetuses with FGR and defective adipogenesis. Coculture of trophoblasts with preadipocytes significantly improves preadipocyte commitment and differentiation and increases the transcription of a series of adipogenic genes via intercellular transfer of exosomal PPARγ proteins. Moreover, nanoparticle-mediated placenta-specific delivery of rosiglitazone (RGZ) significantly rescues adipogenesis defects in an FGR-induced mouse model. In summary, the placenta is a major reservoir of PPARγ. An insufficient supply of placental PPARγ to fetal preadipocytes via exosomes during late gestation is a major mechanism underlying FGR. Preclinically, placenta-targeted RGZ administration can be a promising interventional therapy for FGR and/or defective intrauterine fat development.
Collapse
Affiliation(s)
- Xiaofang Luo
- Reproductive Medicine CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Biao Huang
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Ping Xu
- Department of Biochemistry & Molecular BiologyUniversity of Texas McGovern Medical School at HoustonHoustonTX77030USA
| | - Hao Wang
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Baozhen Zhang
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Li Lin
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Jiujiang Liao
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Mingyu Hu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Xiyao Liu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Jiayu Huang
- Reproductive Medicine CenterThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yong Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Mark D. Kilby
- Institute of Metabolism and System ResearchUniversity of Birmingham, and the Fetal Medicine CentreBirmingham Women's and Children's Foundation TrustEdgbastonB15 2TTUK
| | - Rodney E. Kellems
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Xiujun Fan
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yang Xia
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqing401147China
| | - Philip N. Baker
- College of Life SciencesUniversity of LeicesterLeicesterLE1 7RHUK
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Ministry of Education International Collaborative Laboratory of Reproduction and DevelopmentChongqing400016China
| | - Chao Tong
- National Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren's Hospital of Chongqing Medical UniversityChongqing401122China
| |
Collapse
|
3
|
Neckermann P, Mohr M, Billmeier M, Karlas A, Boilesen DR, Thirion C, Holst PJ, Jordan I, Sandig V, Asbach B, Wagner R. Transgene expression knock-down in recombinant Modified Vaccinia virus Ankara vectors improves genetic stability and sustained transgene maintenance across multiple passages. Front Immunol 2024; 15:1338492. [PMID: 38380318 PMCID: PMC10877035 DOI: 10.3389/fimmu.2024.1338492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Modified vaccinia virus Ankara is a versatile vaccine vector, well suited for transgene delivery, with an excellent safety profile. However, certain transgenes render recombinant MVA (rMVA) genetically unstable, leading to the accumulation of mutated rMVA with impaired transgene expression. This represents a major challenge for upscaling and manufacturing of rMVA vaccines. To prevent transgene-mediated negative selection, the continuous avian cell line AGE1.CR pIX (CR pIX) was modified to suppress transgene expression during rMVA generation and amplification. This was achieved by constitutively expressing a tetracycline repressor (TetR) together with a rat-derived shRNA in engineered CR pIX PRO suppressor cells targeting an operator element (tetO) and 3' untranslated sequence motif on a chimeric poxviral promoter and the transgene mRNA, respectively. This cell line was instrumental in generating two rMVA (isolate CR19) expressing a Macaca fascicularis papillomavirus type 3 (MfPV3) E1E2E6E7 artificially-fused polyprotein following recombination-mediated integration of the coding sequences into the DelIII (CR19 M-DelIII) or TK locus (CR19 M-TK), respectively. Characterization of rMVA on parental CR pIX or engineered CR pIX PRO suppressor cells revealed enhanced replication kinetics, higher virus titers and a focus morphology equaling wild-type MVA, when transgene expression was suppressed. Serially passaging both rMVA ten times on parental CR pIX cells and tracking E1E2E6E7 expression by flow cytometry revealed a rapid loss of transgene product after only few passages. PCR analysis and next-generation sequencing demonstrated that rMVA accumulated mutations within the E1E2E6E7 open reading frame (CR19 M-TK) or deletions of the whole transgene cassette (CR19 M-DelIII). In contrast, CR pIX PRO suppressor cells preserved robust transgene expression for up to 10 passages, however, rMVAs were more stable when E1E2E6E7 was integrated into the TK as compared to the DelIII locus. In conclusion, sustained knock-down of transgene expression in CR pIX PRO suppressor cells facilitates the generation, propagation and large-scale manufacturing of rMVA with transgenes hampering viral replication.
Collapse
Affiliation(s)
- Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Madlen Mohr
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | | | - Ditte R. Boilesen
- Department of Immunology and Microbiology, Center for Medical Parasitology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | | | - Peter J. Holst
- Department of Immunology and Microbiology, Center for Medical Parasitology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | | | | | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institue of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Wang D, Zheng X, Chai L, Zhao J, Zhu J, Li Y, Yang P, Mao Q, Xia H. FAM76B regulates NF-κB-mediated inflammatory pathway by influencing the translocation of hnRNPA2B1. eLife 2023; 12:e85659. [PMID: 37643469 PMCID: PMC10446823 DOI: 10.7554/elife.85659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
FAM76B has been reported to be a nuclear speckle-localized protein with unknown function. In this study, FAM76B was first demonstrated to inhibit the NF-κB-mediated inflammatory pathway by affecting the translocation of hnRNPA2B1 in vitro. We further showed that FAM76B suppressed inflammation in vivo using a traumatic brain injury (TBI) mouse model. Lastly, FAM76B was shown to interact with hnRNPA2B1 in human tissues taken from patients with acute, organizing, and chronic TBI, and with different neurodegenerative diseases. The results suggested that FAM76B mediated neuroinflammation via influencing the translocation of hnRNPA2B1 in vivo during TBI repair and neurodegenerative diseases. In summary, we for the first time demonstrated the role of FAM76B in regulating inflammation and further showed that FAM76B could regulate the NF-κB-mediated inflammatory pathway by affecting hnRNPA2B1 translocation, which provides new information for studying the mechanism of inflammation regulation.
Collapse
Affiliation(s)
- Dongyang Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
- Translational Medicine Center, Northwest Women’s and Children’s HospitalXi'anChina
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Lihong Chai
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Yanqing Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Qinwen Mao
- Department of Pathology, University of UtahSalt LakeUnited States
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| |
Collapse
|
5
|
Zhang J, Chen H, Chen C, Liu H, He Y, Zhao J, Yang P, Mao Q, Xia H. Systemic administration of mesenchymal stem cells loaded with a novel oncolytic adenovirus carrying IL-24/endostatin enhances glioma therapy. Cancer Lett 2021; 509:26-38. [PMID: 33819529 DOI: 10.1016/j.canlet.2021.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Oncolytic adenovirus-mediated gene therapy shows promise for cancer treatment; however, the systemic delivery of oncolytic adenovirus to tumors remains challenging. Recently, mesenchymal stem cells (MSCs) have emerged as potential vehicles for improving delivery. Yet, because the oncolytic adenovirus replicates in MSCs, balancing MSC viability with viral load is key to achieving optimal therapeutic effect. We thus developed an all-in-one Tet-on system that can regulate replication of oncolytic adenovirus. Then, we loaded the novel oncolytic adenovirus carrying interleukin (IL)-24 and/or Endostatin in human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) for glioma therapy. In vitro assays demonstrated that this novel oncolytic adenovirus could efficiently replicate and kill glioma cells while sparing normal cells. Moreover, doxycycline effectively regulated oncolytic adenovirus replication in the hUCB-MSCs. The doxycycline induction group with dual expression of IL-24 and Endostatin exhibited significantly greater antitumor effects than other groups in a xenograft model of glioma. Thus, this strategy for systemic delivery of oncolytic adenovirus with its oncolytic activity controlled by a Tet-on system is a promising method for achieving antitumor efficacy in glioma, especially for metastatic tumors.
Collapse
Affiliation(s)
- Junhe Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China; Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Hao Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chen Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Haimeng Liu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Yurou He
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA.
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
6
|
Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, Thummer RP. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2018; 686:146-159. [PMID: 30472380 DOI: 10.1016/j.gene.2018.11.069] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Over a decade ago, a landmark study that reported derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming fibroblasts has transformed stem cell research attracting the interest of the scientific community worldwide. These cells circumvent the ethical and immunological concerns associated with embryonic stem cells, and the limited self-renewal ability and restricted differentiation potential linked to adult stem cells. iPSCs hold great potential for understanding basic human biology, in vitro disease modeling, high-throughput drug testing and discovery, and personalized regenerative medicine. The conventional reprogramming methods involving retro- and lenti-viral vectors to deliver reprogramming factors in somatic cells to generate iPSCs nullify the clinical applicability of these cells. Although these gene delivery systems are efficient and robust, they carry an enormous risk of permanent genetic modifications and are potentially tumorigenic. To evade these safety concerns and derive iPSCs for human therapy, tremendous technological advancements have resulted in the development of non-integrating viral- and non-viral approaches. These gene delivery techniques curtail or eliminate the risk of any genomic alteration and enhance the prospects of iPSCs from bench-to-bedside. The present review provides a comprehensive overview of non-integrating viral (adenoviral vectors, adeno-associated viral vectors, and Sendai virus vectors) and DNA-based, non-viral (plasmid transfection, minicircle vectors, transposon vectors, episomal vectors, and liposomal magnetofection) approaches that have the potential to generate transgene-free iPSCs. The understanding of these techniques could pave the way for the use of iPSCs for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Bitan Saha
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
7
|
Lauer KB, Borrow R, Blanchard TJ. Multivalent and Multipathogen Viral Vector Vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00298-16. [PMID: 27535837 PMCID: PMC5216423 DOI: 10.1128/cvi.00298-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presentation and delivery of antigens are crucial for inducing immunity and, desirably, lifelong protection. Recombinant viral vectors-proven safe and successful in veterinary vaccine applications-are ideal shuttles to deliver foreign proteins to induce an immune response with protective antibody levels by mimicking natural infection. Some examples of viral vectors are adenoviruses, measles virus, or poxviruses. The required attributes to qualify as a vaccine vector are as follows: stable insertion of coding sequences into the genome, induction of a protective immune response, a proven safety record, and the potential for large-scale production. The need to develop new vaccines for infectious diseases, increase vaccine accessibility, reduce health costs, and simplify overloaded immunization schedules has driven the idea to combine antigens from the same or various pathogens. To protect effectively, some vaccines require multiple antigens of one pathogen or different pathogen serotypes/serogroups in combination (multivalent or polyvalent vaccines). Future multivalent vaccine candidates are likely to be required for complex diseases like malaria and HIV. Other novel strategies propose an antigen combination of different pathogens to protect against several diseases at once (multidisease or multipathogen vaccines).
Collapse
Affiliation(s)
- Katharina B Lauer
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
| | - Ray Borrow
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Thomas J Blanchard
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Consultant in Infectious Diseases and Tropical Medicine, Royal Liverpool Hospital, Liverpool, United Kingdom
| |
Collapse
|
8
|
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells. Sci Rep 2016; 6:37289. [PMID: 27853296 PMCID: PMC5112523 DOI: 10.1038/srep37289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.
Collapse
|
9
|
Jiang B, Zhang R, Feng D, Wang F, Liu K, Jiang Y, Niu K, Yuan Q, Wang M, Wang H, Zhang Y, Fang X. A Tet-on and Cre-loxP Based Genetic Engineering System for Convenient Recycling of Selection Markers in Penicillium oxalicum. Front Microbiol 2016; 7:485. [PMID: 27148179 PMCID: PMC4828452 DOI: 10.3389/fmicb.2016.00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/23/2016] [Indexed: 01/15/2023] Open
Abstract
The lack of selective markers has been a key problem preventing multistep genetic engineering in filamentous fungi, particularly for industrial species such as the lignocellulose degrading Penicillium oxalicum JUA10-1(formerly named as Penicillium decumbens). To resolve this problem, we constructed a genetic manipulation system taking advantage of two established genetic systems: the Cre-loxP system and Tet-on system in P. oxalicum JUA10-1. This system is efficient and convenient. The expression of Cre recombinase was activated by doxycycline since it was controlled by Tet-on system. Using this system, two genes, ligD and bglI, were sequentially disrupted by loxP flanked ptrA. The successful application of this procedure will provide a useful tool for genetic engineering in filamentous fungi. This system will also play an important role in improving the productivity of interesting products and minimizing by-product when fermented by filamentous fungi.
Collapse
Affiliation(s)
- Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Ruiqin Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Dan Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Fangzhong Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Quanquan Yuan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China; State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong UniversityJinan, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong UniversityJinan, China; State Key Laboratory of Microbial Technology, School of Life Science, Shandong University-Helmholtz Institute of Biotechnology, Shandong UniversityJinan, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| |
Collapse
|